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Introduction

These notes will try to introduce the reader to a range of questions

dealing with the birational geometry of moduli spaces of pointed sta-

ble curves (and, although only in passing, maps) particularly the Mori

theory of their standard models. The guiding philosophy, popular-

ized by Mumford, is that, not only it is fair game to ask about moduli

spaces any question that is of interest for a general variety, but that

the modular property—by letting apply results about families—will

often allow us to say more about the answers for moduli spaces than

we can hope to in general. In recent years, a number of results have

also demonstrated that the web of relationships that links different

moduli spaces, exemplified by the inductive structure of the stratifi-

cations of the spaces Mg,n by topological type, can make it easier to

proving results for the right collections of moduli spaces easier than

proving them for the individual spaces.

I have tried to make the notes as user-friendly as possible, to assume

only a basic familiarity with the language and actors of rmoduli spaces

of stable curves and of Mori theory, and to recall basic definitions

and results as they are needed. The previous sentence is, of course, a

bald-faced lie. The reader for whom all this pre-requisite material is

genuinely new will almost certainly be at sea fairly quickly without

some further background. For basic material about moduli spaces

of curves, Moduli of Curves [32] will be an indispensable reference.

Indeed, I have borrowed a number of figures and many notations
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from that book and I have provided, as an appendix, a list of the

typos in Moduli of Curves [32] of which I am aware—surely not all.

For the facts about Mori theory that I need, the basic reference is [47].

I have also tried to provide a look at both classic (defined as, say,

from the last millenium) and recent work and to give some sense of

how our picture of these questions has evolved over the last roughly

30 years. As a result, each lecture reviews many results and it has

not been possible in four talks to prove everything even in outline.

However, I also tried to provide more than a roster of definitions and

statements and to explain one or more key steps in the proof of each

main result. Even so, the reader who wants to understand the area

is perhaps best advised to treat these notes as a set of annotated

suggestions for further reading.

Here is a brief summary of what is discussed in each of the lectures.

The first lecture reviews background about the spaces themselves,

the divisor classes they carry and basic techniques for working with

them. The second deals with bounds for the cone of effective divisors

from inside (the Eisenbud-Harris-Mumford computation of the classes

of Brill-Noether divisors and its generalization to Koszul divisors by

Farkas), outside (my work with Harris on slope inequalities for ef-

fective divisors) and both (Keel and McKernan’s description of the

effective cone of M0,ñ leading to the the description for M0,0(Pd , d)
recently given by Coskun, Harris and Starr and, independently, by

Keel). Lecture three treats analogous questions for ample and nef

divisors reviewing constructions of such divisors (due to Parshin,

Knudsen and Mumford, Cornalba and Harris, and Farkas and Gibney),

inequalities bounding the ample cone (due to Keel and McKernan, to

Faber, and to Gibney, Keel and myself) and results comparing these

cones for different moduli spaces that arise in producing inequali-

ties and in work of Coskun, Harris and Starr on the ample cone of

M0,0(Pd , d). A final lecture—not included in this version—will study

log canonical models of the pair (Mg, ∆), reviewing both initial results
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of Hassett and Hyeon [36] for general g based on an old construction

of Schubert [58], more complete results in genera 2 (Hassett [35]) and 3

(Hyeon and Lee [38]) and ongoing work of Smyth [59] on M1,n.

Here also are a few disclaimers about what the reader will not find in

these notes. First, the talks were designed to introduce non-specialists

to the subject and much of their audience came from the Teichmüller

side of the subject I have adopted the “fat chance” approach to stack-

theoretic issues. This means minimizing (if not quite eliminating)

references to moduli stacks and stacky variants of spacey concepts

and has the advantage of making Moduli of Curves [32] a more appro-

priate reference. The price paid is the need for minor but inelegant

book-keeping in many calculations and for some major arm-waving at

a few points. The second major lacuna, dictated partly by time (these

notes grew out of two short lecture series) but also in some ways a

corollary of the first, is that there is almost no discussion of moduli

spaces of stable maps. I made an modest exception to mention the

work of Coskun, Harris and Starr cited above both because of its

elegance and because of their novel use of test families. Finally, I

make no pretense to the completeness of this survey. Many other

results are missing not because I did not want to include them but

because I could not squeeze them, even allusively, onto my critical

path.

One more remark I’d like to make here, since it remains in the back-

ground in above and, to an extent, in the notes, are the signs of life

from the dead parrot1 of geometric invariant theory. All the construc-

tions of ample classes in lecture three and of log canonical models

in lecture four depend on stability and instability results for Hilbert

schemes of n-canonical curves for values of n less than the minimum

1The Monty Python reference is to a survey talk on applications of GIT to con-
structions of moduli that I gave at an American Institute of Mathematics Workshop on
Compact moduli in which I tried to uphold the Cleesian thesis that the parrot was only
sleeping against János Kollár’s Palinian view that it had been done in by the modern
minimal model program
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5 that can be used in Gieseker’s GIT construction ofMg . Ironically, the

most subtle GIT questions arise in carrying out log minimal model

program for (Mg, δ).

An early version of these lectures was given at the EAGER Summer

School on Moduli Spaces of Curves held in Trento, Italy in September

2001. Since then, there has been much activity in this area. These notes

are a revision and extension presented at the Centre de Récherches

Mathématiques in Montréal in June, 2007 as part of its Workshop on

Moduli Spaces and Related Topics. I’d like to thank the organizers

of both meetings—Giorgio Bolondi and Ciro Ciliberto for the EAGER

group and Marco Bertola and Dmitri Korotkin for the CRM—for provid-

ing the impetus to develop these notes. A Fordham University Faculty

Fellowship enabled me to visit the Tata Institute of Fundamental

Research and the University of Sydney in 2007-2008. Both institutions

provided excellent environments in which to revise my notes and I’d

like to thank Vasudevan Srinivas and Gus Lehrer, respectively, for

their help in arranging these visits. Finally, many mathematicians

have helped me by explaining their ideas, supplying early drafts of

work-in-progress or in other ways and I wish to take this opportunity

to thank Enrico Arbarello, Dave Bayer, Carel Faber, Gavril Farkas,

Angela Gibney, Brendan Hassett, Joe Harris, Donghoon Hyeon, Seán

Keel, Jason Starr, Michael Thaddeus, Ravi Vakil and Angelo Vistoli.



Chapter 1

Preliminaries concerning divisor

classes

The aim of this lecture is to take a first look at the most natural divisor

classes on moduli spaces of n-pointed stable curves, or, curves as

we’ll usually refer to them for convenience. We also want to review

the basic methods for obtaining relations amongst divisor classes

and illustrate their use by deriving some basic relations which we’ll

need in the later lectures. Since there’s a lot of material to cover and

most of it is explained in detail in Moduli of Curves [32] , I will often

simply quote prerequisites.

1.1 Basic divisor classes

I’ll start by defining the most important divisor classes on moduli

spaces of stable curves—we’ll find generators and relations for the

Picard groups of all the spaces Mg,n—and reviewing how they behave

under the natural maps that relate these spaces. In the introductory

spirit of these lectures, I’ll review some very basic definitions but with

the hope that I am recalling well-known facts for most of you.
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The Hodge class

Let’s begin with the moduli spaceMg of ordinary smooth curves which

comes equipped with one obvious line bundle. The the universal curve

Cg -Mg comes equipped with a relative dualizing sheafωCg/Mg which

we can think of more naively as the bundle whose restriction to each

fiber C is the canonical bundle. Taking the direct image of this bundle

gives a bundle of rank g on Mg whose fiber over [C] is just H0(C,KC).

Definition 1.1: We call this bundle the Hodge bundle and denote it

by Λ. We set

λi = ci(Λ)
and call the divisor class λ = λ1 the Hodge class.

There is one small problem with this definition: a universal curve

Cg exists only over the locus M0
g of curves without automorphisms

where we have fine moduli. Since it turns out that for g ≥ 2 curves

with automorphisms have codimension at least g−2 inMg this allows

us to make sense of the class λ for g ≥ 3.

We’ll deal with this issue later but for now I’d like focus on introducing

the cast so I’m going to pretend that all moduli spaces are fine and

will continue to imagine that there is a universal curve π : Cg -Mg
with relative dualizing sheaf ω =ωCg/Mg .

Note that there is a second way to use ω to produce classes on Mg .
Instead of first pushing down to Mg and then taking a Chern class,

we can reverse the order of these operations. Define

γ = c1(ω)

which is a divisor class on Cg and then set

κ1 := π∗(γ2)

(the squaring produces a class in codimension 2 on Cg which then

pushes down to one of codimension 1 in Mg). Likewise, we can set

κi := π∗(γi+1) .
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We’ll see how these are related shortly.

It’s not obvious that the class λ is even non-trivial but by topological

methods coming from Teichmüller theory which we won’t enter into

at all, Harer has shown (among many other striking results),

Harer’s Theorem 1.2 For g ≥ 3,

H1(Mg,Q) = H3(Mg,Q) = 0

and

H2(Mg,Q) = Q · λ .

Corollary 1.3 For g ≥ 3, Pic(Mg)
⊗

Q = Q · λ.

For g = 2, things are rather different. We can define the class λ but

only by the methods to be discussed later since every curve has an

automorphism. Moreover, a theorem of Igusa says that M2 is affine,

hence, in this case, λ is trivial (although, as we’ll see, this itself has

some interesting consequences).

Since, we’ll always be working modulo torsion, we’ll drop the explicit

references to tensoring Picard groups with Q in the sequel and write

Pic(M) instead of Pic(M)
⊗

Q for all spaces M that arise.

Stable curves

Of course, to have an interesting divisor theory we need to work on a

complete model and pass from Mg to Mg , the moduli space of stable

curves.

Definition 1.4: A curve is called stable if it is complete, connected,

has only ordinary nodes as singularities, and has finitely automor-

phism group. In view of the connectedness, a nodal curve can have

infinite automorphism group only if it has rational components. So

we can give alternate formulations as:
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• every smooth rational component of C meets the other

components in at least 3 points.

• every smooth rational component of the normalization of

C has at least 3 points lying over singular points of C.

If we replace the number 3 by 2 in either of these definitions, the

resulting curves are called semi-stable. By contracting rational curves

meeting the other components in two points, every semi-stable curve

determines a unique stable curve called its stable model.

For reference, we note a few basic facts about stable curves. For

proofs, see Chapter 3 of Moduli of Curves [32].

Genus Formula 1.5 Fix a connected nodal curve C of genus g with

γ components Cj of genera gj and δ nodes pi and let ν : C̃ -C be its

normalization and qi and ri be the points of C̃ lying over the node pi .
Then we have a long exact sequence

0 - OC - OC̃ -
δ∑
i=1

Cpi - 0

and the associated long exact sequence yields the genus formula

(g − 1) =
γ∑
j=1
(gj − 1)+ δ or g =

 γ∑
j=1
gj

+ δ− ν + 1 .
If ϕ : C -B is a flat family of connected nodal curves with smooth

generic fiber, the relative dualizing sheaf ωC/B is the unique line

bundle on C which agrees with the relative cotangent bundle

Coker
(
dϕ :ϕ∗(ΩB) -ΩC

)
away from the singular locus of ϕ.

A local calculation shows that such an extension exists (and, since

any two agree up to codimension 2, is unique) and that:
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Ω Formula 1.6 If ϕ : C -B is a one-parameter family of connected

nodal curves over with smooth base B, smooth total space C, and

smooth general fiber and IZ is the ideal sheaf of the locus Z of nodes

of fibers, then

ΩC/B =ωC/B
⊗
IZ .

We may also informally characterizeωC/B as the bundle whose sections

restrict to rational differentials with “cancelling residues” on every

fiber. If the total space C is smooth, this simplifies to give ωC/B =
KC
⊗(
ϕ∗(KB)∨

)
. From this second characterization it follows that

R1ϕ∗(ωC/B) = OB

and hence that the relative or Grothendieck duality formula

R1ϕ∗(ωC/B
⊗
L∨) = (ϕ∗L)∨

holds for bundles L on C for which h0(Cb, L Cb) is constant. Finally,

the relative dualizing sheaf is functorial in the sense that the relative

dualizing sheaf of a pullback is the pullback of the relative dualizing

sheaf. In particular, this means that we can use the relative dualizing

sheaf ωCg/Mg of the universal curve Cg -Mg to define a bundle Λ
which extends the corresponding bundle on Cg (modulo, as usual, the

fact that a universal curve exists only over the locus of stable curves

without automorphisms). By pushing down and taking Chern classes

(or vice-versa), we can then define classes λi and κi extending those

defined on Mg above.

Finally, stable curves have moduli.

Theorem 1.7 A coarse moduli space Mg exists for stable curves of

genus g: it is projective and irreducible.

How does the Picard group of Mg differ from that of Mg? Any extra

classes must live on the boundary

∆ := Mg \Mg
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—the locus of curves which are singular—but how many are there.

The answer comes from the deformation theory of nodal curves. The

key fact is:

Lemma 1.8 A neighborhood of a nodal curve [C] in its space of first

order deformations may be identified with with a neighborhood of the

origin in C3g−3 in such a way that the deformations of C preserving

any node are identified with a smooth divisor, any collection of these

divisors meet transversely at the origin and the normal space to any

of the divisors at the origin is identified with the tensor product of the

tangent spaces to the branches of C at the corresponding node.

By the universal property of Mg this translates directly to:

Proposition 1.9 [Normal bundle to ∆] In a neighborhood of

the moduli point [C] of a stable curve without automorphisms, the

boundary ∆ is a normal-crossings divisor, with branches corresponding

one-to-one to the nodes of C and with the normal space to each branch

isomorphic to the tensor product of the tangent spaces to the branches

of C at the corresponding node.

This fact will be essential to making enumerative calculations later on.

We can draw one conclusion immediately: All singular stable curves

lie in the closure of the locus of stable curves with a single node.

What are the possibilities for a curve of genus g with a single node?

By the genus formula, such a curve is either irreducible or the union

of irreducible curves of genera i and g − i meeting at a single point.

We denote the closures of these loci by ∆irr and ∆i , i = 1, . . . , bg/2c.
We can represent generic curves in the two components of ∆ in M3

schematically with either of the sets of pictures

or

The second set is actually less misleading since the branches at the

nodes are shown as transverse.
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Figure 1.10: ∆irr and ∆1 in M3—surface sketches

2 1

Figure 1.11: ∆irr and ∆1 in M3—schematic sketches

Proposition 1.12 The closures of the loci ∆irr and ∆i are the irre-

ducible components of ∆.

One the one hand, the intersection of any two of these loci consists

of curves with at least two nodes so has codimension 2 in Mg so each

is a union of components. To see that each is actually irreducible, we

need only exhibit dominating maps to each from irreducible varieties

which we’ll do in the next section using moduli spaces of pointed

curves. Adopting the convention that the divisor class defined by a

boundary class ∆ (possibly with decoration) is denoted by δ (similarly

decorated), we can immediately conclude that

Corollary 1.13 For g ≥ 3,

Pic(Mg) = Q · λ⊕Q ·∆irr ⊕
(bg/2c⊕
i=1

Q ·∆i
)
.

For g = 2, the boundary classes alone generate since Pic(M2) is trivial.

One further remark before we close this section. A component of a

stable curve which has genus 1 and meets the rest of the curve in a

single point is called an elliptic tail. Such a curve always has a non-

trivial automorphism—the involution on the elliptic tail fixing the join

point. Thus ∆1 is a divisor in Mg consisting entirely of curves with

automorphisms. This means it’s always an exception in enumerative

calculations. But, it is exceptional in another way: at generic points
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of ∆1 the automorphism group is exactly Z/2Z so Mg is smooth at

such points. The quotient by an involution which extends to a divisor

is the exception to the principle that Mg is singular at curves with

automorphisms: the only other example is the hyperelliptic locus in

genus 3.

Pointed stable curves

Definition 1.14: A stable n-pointed curve (C, p1, . . . , pn) is a com-

plete connected nodal curve together with an ordered choice of n
distinct smooth points (called the marked points of C) such that the

group of automorphisms of C fixing the marked points is finite (or

equivalently, such that every smooth rational component contains

at least three nodes or marked points). It’s convenient to allow the

marked points to be indexed by any finite ordered set N of cardinality

n, not just the standard one n = {1,2, . . . , n} (in practice, such an N
is usually a subset of a standard one). We then speak of N-pointed

stable curves.

Once again, the basic fact about moduli of such curves is

Theorem 1.15 A coarse moduli space Mg,N exists for N-pointed sta-

ble curves of genus g: it is projective and irreducible.

For unpointed curves, Gieseker’s GIT construction [26,27] is discussed

in Chapter 4 of Moduli of Curves [32]. Only recently has the extension—

surprisingly non-trivial—of this construction to pointed curves (see

[3]) been undertaken. An alternate approach in the spirit of the log-

minimal model program can be found in [34]. One point to emphasise

is that these spaces are also defined for g < 2: for g = 1, just a

single marked point is needed to kill the one-parameter group of

automorphisms given by translation, while for g = 0, we need at least

3 marked points.
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As an example, let’s look at the M0,n for small n. By the sharp triple

transitivity of PGL(2), M0,3 is a point and M0,4—which is also the

universal curve over M0,3—is P1 with the points 0, 1 and ∞ marked.

(Of course, we could equally well mark any other set of three points

but this is the natural and standard choice). What’s the universal

curve over M0,4? An obvious candidate is the surface P1 × P1 marked

by the constant sections {0} × P1, {1} × P1, and {∞} × P1 and the

diagonal. There’s a small problem: over the points 0 , 1 and ∞ in M0,4,

the diagonal meets the corresponding constant section and we don’t

have 4 distinct marked points. This is easily remedied by blowing

up these three points of intersection. So we see that there are three

singular curves in M0,4, each of which consists of a pair of P1’s with

two marked points meeting in a single node with each division of the

three divisons of the 4 marked points into two pairs occuring once.

The picture near such a fiber before and after the blowup is as shown

on the left and right respectively in Figure 1.16.

Figure 1.16: Singular fibers of the universal curve over M0,4

Exercise 1.17: Find the next stage in this tower. That is, show that

M0,j5 is P1×P1 blown up in the three points (0,0), (1,1), and (∞,∞)
and express the universal curve over it as a blowup of P1 × P1 × P1.
The full story in is [40].

Let’s do one more simple example. The space M1,1 is the moduli

space of elliptic curves (that is, curves of genus 1 plus a marked

origin) which is just the j-line, a copy of A1 parameterized by the

j-invariant of the curve so M1,1 � P1. The universal curve here is
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then some rational elliptic surface with having singular fibers over

the pole of the j-function at ∞. In this case, there can be no reducible

singular fiber: the only possibility permitted by the genus formula is

a curve of genus 1 meeting a rational curve in a single node but since

there is only one marked point such a rational curve can be at best

semi-stable.

Definition 1.18: In various situations, it is necessary to “forget” the

all or part of the ordering of the set of marked points, or equivalently

to take a quotient Mg,n/G of Mg,n by a subgroup G of the symmetric

group Sn. If, as will usually be the case, G fixes the lastm of n = l+m
points, we will write n = l+ m̃. Thus Mg,ñ denotes the quotient by the

full symmetric group andMg,l+m̃ the quotient by the group permuting

the last m points.

There are three natural collections of maps which connect the family

of all Mg,N ’s. The inductive structure which these maps capture and

its use in studying their birational geometry—even if we only ask

questions about unpointed curves, our answers will usually involve

pointed ones—is a basic theme of these lectures. The simplest of the

sets of maps is the set of “forgetful” maps.

Definition 1.19 [Forgetful Maps]: If N is a subset of P , the

forgetful map πP,N : Mg,P -Mg,N is the map which sends the mod-

uli point of an P -pointed stable curve to the moduli point of the

N-pointed stable curve obtained by forgetting the marked points not

indexed by N and taking the stable model of the resulting curve.

The maps π(N,q),N : Mg,(N,q) -Mg,N is loosely referred to as the

universal curve over Mg,N—for example, when N = �, we obtain

the universal curve referred to in Definition 1.1. Two warnings are in

order here. First, the fiber over a N-pointed curve C is isomorphic to

C only if C has no automorphisms; in general, it’s C/Aut(C). Even in

this case, the curve in Mg,(N,q) whose moduli point is given by q ∈ C
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is only stably equivalent to C when either q is a node of C or q ∈ N.

In both cases a blow-up is needed, in the former so that we do not

mark a node, in the latter so that the marked points remain distinct.

When q is a node, we glue the two points of the normalization of C
lying over the node to 0 and ∞ on a copy of P1 and label the point 1
on P1 by q. When q = pn for some n ∈ N, we glue it to the point 0 on

a copy of P1and labelling the points 1 and ∞ on the P1 by n and q:

this process is sometimes called attaching a leg at pn.

One advantage of this procedure is that it endows the map π =
π(N,q),N with canonical sections σn : Mg,N -Mg,(N,q) indexed by N:

σn(C) is the curve which has a leg attached at pn. We let Σn be the

image of σn.

You may object that we should really denote Σn by something Σn,N—

using the second subscript to make clear which space the class lives

on. We’ll occasionally do so but more often we’ll rely on the context

to make this clear with the view that the simplification which results

more than justifies any minor imprecision.

Forgetful maps in turn allow us to extend the definitions of the classes

λ and κ to Mg,N by setting

λ = c1
(
π∗(ωπ)

)
and κ = π∗

(
c1
(
ωπ

( ∑
n∈N

Σn
))2)

and to define a new set of classes ψn for n ∈ N by

ψn = σ∗n
(
c1(ωπ)

)
.

Note that the class λ is 0 when g ≤ 1.

The other natural maps we’ll need to deal with involve the boundary

components of Mg,N . First, what are these? Proposition 1.9 continues

to apply so the boundary is again the closure of the locus of stable

curves with a single node and this again is the union of loci ∆irr

and ∆i for i ≥ 0. Since it’s usually clear—as here—from the context

which Mg,N is referred to, we usually won’t make this explicit in the

notation.
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There are two differences. First, the locus ∆irr is empty if g = 0
by the genus formula. Second, when N ≠ �, the ∆i can be further

decomposed. A deformation which preserves the node must also

preserve the partition of N into two subsets corresponding to which

“side” of the node each marked point lies on. For 0 ≤ i ≤ g and P ⊂ N,

we denote by ∆i,P the locus of curves C with a node which divides C
into a component of genus i contain the points indexed by P and a

component of genus g − i containing the points indexed by N \ P . Of

course, ∆i,P = ∆g−i,N\P and when i = 0 [resp: i = g] stability implies

that we’ll only get a non-empty locus if |P | ≥ 2 [resp: |N \ P | ≥ 2].

The other two sets of basic maps are glueing maps which relate the

boundary components of Mg,N to other moduli spaces of pointed

curves.

Definition 1.20 [Glueing Map]: We denote by

1. ξ : Mg−1,N∪{q,r} -Mg,N the map, with image the closure of ∆irr,

defined by identifying pq and pr ;
2. η : M i,P∪{q} ×Mg−i,(N\P)∪{r} -Mg,N , the map, with image the

closure of ∆i,P , again defined by identifying the points pq and

pr ; and,

3. θ := θD : M i,P∪{q} -Mg,N the map defined by choosing a fixed

curve D in Mg−i,(N\P)∪{r} and gluing the point pr on D to the

point pq on the moving curve in M i,P∪{q}.

Note that all these maps are finite. In fact, they are all of degree 1
except for the maps ξ which are always of degree 2 (we can swap q
and r ) and the map η which is of degree 2 in the case where g and |N|
are even, i = g

2 and |P | = |N|
2 and we can swap (i, P) and (g− i,N \ P).

A first application of these maps is the

Proposition 1.21 The closures of the loci ∆irr and ∆i,P are the irre-

ducible components of the boundary ∆ of Mg,N .

which follows directly from the irreducibility of the spaces Mg,N .
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But much more is true. To simplify the description, we make the

marked points implicit. Every stable pointed curve C determines a

labelled dual graph Γ (C) with a vertex for each component (labelled

with the genus of its normalization), an edge for every node connected

the two vertices on whose components the node lies (self-edges are

allowed to handle nodes of irreducible type) and a leg or half-edge for

each marked point based at the vertex of the component on which

the point lies and labelled with the marking.

Exercise 1.22: 1. Two stable pointed curves have isomorphic dual

graphs iff they have the same topological type meaning that there is

a topological isomorphism between their normalizations preserving

the set of nodes and the ordered set of marked points.

2. The set of curves with a given dual graph is a locus of pure codi-

mension equal to the number of edges (i.e. nodes) and these sets

form a stratification of Mg,n.

This is usually known as the stratification by topological type. Note

that we may view the normalization C̃ of a curve C in Mg,n as a

(possibly disconnected) pointed curve by marking the two preimages

of each node. There is then a natural map between the dual graphs by

“fusing” the two legs on Γ (C̃) to an edge on Γ (C). This globalizes and,

arguing as above via an induction on the codimension, we see that

Proposition 1.23 Any stratum of Mg,n is the image of a product

of moduli spaces Mgi ,ni by a finite, proper, surjective glueing map

that identifies two marked points to each node. The closure of any

stratum of Mg,n is the image of a product of moduli spaces Mgi ,ni by

an extension of such a glueing map.

1.2 Pullback formulae

In order to use the three families of basic maps effectively, we need

a dictionary describing how all these classes pull back under them.



1.2 Pullback formulae 18

This dictionary and various other formulae which follow later are

simplified if we think of ψn as an “anti-boundary” and define

δ0,n = −ψn = δ0,N\{n} .

It’s also useful to introduce the sum of classes:

ψ =
∑
n∈N

ψn.

We’ll also adopt the usual convention that a class δi,P on Mg,N is 0
when i > g or i < 0 and when P 6⊂ N.

Lemma 1.24 Under the map π = π(N,q),N : Mg,(N,q) -Mg,N ,

1. π∗(λ)= λ.

2. π∗(κ)= κ + δ0,{q}.
3. π∗(δirr)= δirr.

4. π∗(δi,P)= δi,P + δi,(P,q),w unless δi,P = δi,(P,q), when

π∗(δi,P)= δi,P .

Lemma 1.25 Under the map ξ : Mg−1,N∪{q,r} -Mg,N ,

1. ξ∗(λ)= λ.

2. ξ∗(κ)= κ.

3. ξ∗(δirr)= δirr +
∑
q∈P,r 6∈P δi,P .

4. ξ∗(δi,P)= δi,P + δi−1,(P,q,r).

Lemma 1.26 Under the map θ : M i,(P,q) -Mg,N ,

1. θ∗(λ)= λ.

2. θ∗(κ)= κ.

3. θ∗(δirr)= δirr.

4. θ∗(δi,P)= δi,P .

Just a few remarks about the proofs. For more details, see [16, Section

2] or [2, Section 1]. The claims for λ follow from the functoriality of the
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dualizing sheaf. For example, if θ maps [B] to [C] by attaching the

fixed curve D then H0(C,ωC) = H0(B,ωB)
⊕
H0(D,ωD). So θ∗(ΛN)

is the direct sum of Λi,(P,q) and a trivial bundle and the two have the

same first Chern class. This argument comes up often enough that

we formalize it.

Attachment Lemma 1.27 For any family X -B of stable curves,

let Y -B be the family obtained by attaching a fixed pointed curve

(C, p) along a single section of smooth points of fibers and let π :

X -Y be the inclusion. Then. ΛY = ΛX⊕
(
H0(C,wC)

⊗
OB) and hence

π∗(λY ) = λX . An analogous result holds if several fixed curves are

attached along several disjoint sections, or, if a fixed curve is attached

along several sections, or both.

Likewise Λ pulls back under ξ to the sum of the the Λ in genus g − 1
and a trivial line bundle (essentially the kernel of the addition map

from a sum of trivial bundles at q and r ).

The formulae for the boundary classes follow directly by drawing

pictures of general curves in each and asking what curves map to

them. I’ll leave these as exercises. Once these are established the

formulae for κ follow immediately from Mumford’s Formula 1.44

κ = 12λ+ψ− δ, discussed in the next section for N = � but which

then follows for all N once 2. of Lemma 1.24 is established. This

follows from

Lemma 1.28 The restrictionω(Σ) Σ is isomorphic, by taking residues,

to OΣ . Hence,

π∗
(
c1(ω) Σ

)
= π∗(Σ Σ) = ψ .

by simply expanding the self-intersection in the definition of κ.

Since H1(Mg,n,Q) is always 0 (cf. [2]), by Künneth, the second coho-

mology group of M i,P∪{q} ×Mg−i,(N\P)∪{r} is the direct sum of the the

second cohomology groups of the two factors. Thus, the formulae for
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the maps θ give formulae for the maps ξ by pulling back under the

projections onto the two factors and summing.

In our study of nef cones in Chapter 3, we will need a further refine-

ment;

Lemma 1.29 1. Any line bundle on ∆i,P of is numerically equiva-

lent to a tensor product of the pushforwards under η of unique

line bundles from the two factorsM i,P∪{q} andMg−i,(N\P)∪{r}. The

given line bundle is nef on ∆i,P iff each of the line bundles on the

factors is nef.

2. Dually, let B be any curve on the product and let B′i and B′g−i
be its images on the two factors (with multiplicity given by the

pushforward of cycles). This gives curves Bi and Bg−i in Mg,n by

gluing on a fixed curve lying the “other” factor and the numerical

equivalence classes of these curves depends only on that of B.

Conversely, B and Bi + Bg−i are numerically equivalent on Mg,n.

3. Any curve B in Mg,n has generic point [C] corresponding to a

curve C which decomposes as F∪C′ where the subcurve F is fixed

and the subcurve C′ traces out a curve B′ in some Mg′,n′ . Any

such B is numerically equivalent to one for which the subcurves

C′ are generically irreducible.

The first statement follows inductively from the pullback formulae

above and the stratification of Proposition 1.23: details may again be

found in [16, Section 2] which gives an algorithm for realizing these

equivalences explicitly. Once this is established the other assertions

are immediate.

There’s one more set of classes which come up fairly often. We denote

by ω the relative dualing sheaf of the universal curve Mg,1 -Mg , by

ρi,n the map ρi,n : Mg,n -Mg,1 given by forgetting all but the ith

marked point and defineωi = ρ∗i,n(ω). Warning:ωi is not the relative

dualizing sheaf for the map πN,N\{i} which forgets the ith point (cf.

Pointed Canonical Bundle Formula 1.46).
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Exercise 1.30: Show that ωp = ψp −
∑
p∈P δ0,P .

Picard groups

The following theorem, for whose proof I’ll simply refer to [2, Theorem

2.2], says that we’ve now seen all the divisor classes on Mg,n.

Theorem 1.31 Pic(Mg,N) is generated by the basic classes λ, κ, δirr,

δi,P and ψn for all g and N. For g ≥ 3, the only relations on these

classes are:

1. κ = 12λ+ψ− δ ( cf. Mumford’s Formula 1.44);

2. The symmetries δi,P = δg−i,N\P .

In smaller genera there are some extra relations. In genus 2, the fact

that λ is trivial on M2 forces it to be a sum of boundaries on M2: in

Genus 2 λ–Formula 1.52 we’ll see that in fact

λ = 1
10
δirr +

1
5
δ1 ,

Exercise 1.32: Use Lemma 1.24 to see that the same relation holds

on M2,N for any N.

In genus 1, there must again be a relation involving λ. From the

description of M1,1 in the preceding section and the next exercise, we

see than it must be λ = ψ = 1
12δirr on M1,1. Pulling these relations

back we find that

λ = 1
12
δirr and ψn =

1
12
δirr +

∑
n∈P
δ0,P .

for any N.

Exercise 1.33: 1. Show that, if ρ : X -B is a flat family of curves

over a smooth complete curve B and with smooth total space X and

σ : B -X is a section of ρ with image Σ, then ωX/B · Σ = −Σ2. Hint:

The fiber of ωX/B at any point is the dual of the tangent space to the
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fibers of ρ at that point; at a point of Σ, this is the dual to the fiber of

the normal bundle to Σ.

2. Let ρ : X -P1 be the blowup of a general pencil of cubics at its

basepoints (all smooth on each element of the pencil, by genericity)

and let Σ be an exceptional divisor of the blowup. Show that X
has 12 singular fibers, all pigtails (rational nodal curves), and that

ωX/B ·ωX/B · Σ = −Σ2 = 1.

3. Since the pencil is generic, B maps non-trivially to M1,1 hence must

be a covering. Deduce the relations 12λ = 12ψ = δirr on M1,1.

In genus 0, the locus δirr is empty (a curve with a non-disconnecting

node must have positive genus) as is the class λ (in fact the bundle Λ
is zero). In M0,4, the three points of the boundary (which correspond

to δ0,{1,2} = δ0,{3,4}, δ0,{1,3} = δ0,{2,4}, δ0,{1,4} = δ0,{2,3}) are all linearly

equivalent. Pulling these back to M0,N , we get

Four Point Relations 1.34 For any subset Q = {i, j, k, l} of n of

order 4, the class

δQ :=
∑

i,j∈P,k,l 6∈P
δ0,P

depends, as the notation suggests, only on Q and not on choice of the

pair of elements i and j .

Keel [40] proves that all relations in genus 0 are consequences of

these but it’s worth noting a few expressing the classes κ and ψn in

terms of boundary classes for future reference. The basic case is M0,3

(a point!) where all these classes are 0.

Exercise 1.35: Show that pulling back these relations from M0,3 to

M0,n gives the relations:

1. κ =
∑
q,r∉P

δ0,P for any q and r in n.

2. κ =
∑
P

( |P |(n− |P |)
n− 1 − 1

)
δ0,P . (Average!)

3. ψn =
∑

s∈P,q,r ,∉P
δ0,P for any q and r in n distinct from s.



1.3 Relations amongst divisor classes 23

1.3 Relations amongst divisor classes

A natural goal is to study relations amongst cycle classes on Mg,n and

to deduce geometric properties from this study. A basic difficulty is

that most techniques give relations amongst analogous classes on the

base of a family X -B of stable curves. If we had a fine moduli space,

we’d have some handle on the problem since we could try to work

out what these results say for the universal curve but even then we’d

have to work over bases of large dimension. What we’d like is a way

to work with 1-parameter families of curves and derive conclusions

about moduli spaces as in Exercise 1.33.

The standard solution is to enlarging the category of schemes to the

category of algebraic stacks which is big enough to contain a stack

Mg,n representing the functor of families of stable curves. Since.

moreover, there is a map (of stacks) ζ :Mg,n -Mg,n, we could first

prove facts about Mg,n and then deduce consequences about Mg,n.

The kicker is that the language of stacks is complex and it takes a fair

while to learn to work with them. So, here I will simply review the ad

hoc or “fat chance” approach used in Moduli of Curves [32], referring

to Section 3.D for more details.

Likewise, the toolkit for deriving relations on these classes is a fairly

hefty one. Here, I have chosen to be even more laconic. Consequences

of Grothendieck-Riemann-Roch and Porteous’ formula are simply

quoted from Section 3.E of Moduli of Curves [32] because I will not

need others in the sequel. We will have more need for admissible

covers but since easily understood schematic diagrams of particular

covers will usually suffice I will again simply refer to Section 3.G

for details on their global properties. But I will give a sketch of

Harris’ computation of the class of the hyperelliptic locus in M3,

both because I will need it (and some corollaries) in later chapters,

and because it remains, 20 years after Joe lectured on it at Bowdoin

([30]), the prettiest and most accessible illustration of all the ideas
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rostered above. Further details, are in Sections 3.F and 3.H of Moduli

of Curves [32].

Rational divisor classes and formulae for working with

them

Definition 1.36: A rational divisor class on the moduli space is an

element of

A1(Mg,n)
⊗
Q = Pic(Mg,n)

⊗
Q.

These are equal because, since Mg,n has only finite quotient singulari-

ties, every codimension 1 subvariety of Mg,n is Q-Cartier.

Definition 1.37: A rational divisor class on the moduli stack is

an association to each family ρ : X -B of a rational divisor class

γ(ρ) ∈ Pic(B)
⊗
Q such that for any fiber square

X′ � B′ ×B X - X

B′

ρ′

?
- B
?

ρ

the class γ(ρ′) associated to the morphism ρ′ : X′ -B′ is the pull-

back of the class γ(ρ) associated to ρ : X -B. The group of rational

divisor classes on the moduli stack will be denoted Picfun(Mg,n)
⊗
Q.

Warning If you know just a bit about stacks, you might think this is

a definition abstracted from that category. It’s not. For example, to

specify a line bundle on a stack you need to specify the isomorphism

associated to a fiber square. This definition is purely ad hoc: we

are not working with stacks. I use the notation Picfun(Mg,n) rather

than Pic(Mg,n) to emphasize this but, for convenience, I will speak

abusively of classes in the former and the latter as stack and space

classes respectively.
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Now that these definitions are behind us, I’ll return to omitting the

explicit tensor Q’s and just implicitly assume them.

The first fact, which I will simply recall from Proposition 3.88 of

Moduli of Curves [32] is that these two notions are, in fact, the same.

That is, there is a canonical isomorphism ζ : Picfun(Mg,n) -Pic(Mg,n).

In practice, what we need are tools for moving classes from betwen

these two groups. A class like the Hodge class λ lives naturally in

Picfun(Mg,n)—it’s associated to the relative dualizing sheaf. In fact,

this is how we get around the non-existence of a universal curve.

The boundary classes δi (the classes of the divisors ∆i), on the other

hand, live naturally in Pic(Mg,n). What codimension 1 subvariety do

we associate to λ? What stack divisor class do we associate to ∆ for a

family of curves all of which are singular?

To begin with, let’s note several standard reductions.

1. Any class γ in Pic(Mg,n) is determined by its values on families

ρ : X -B with smooth, one-dimensional base B (since two line

bundles which agree on every smooth curve are equal).

2. Since we know that Pic(Mg,n) is discrete, these values are deter-

mined by degrees deg(γ(ρ)) ∈ Q for such families ρ.

3. Both the reductions above apply with the additional restriction

that ϕ(B) can be taken not to lie inside any proper subvariety

of Mg,n.

In other words, another way to think of a rational divisor class on

the moduli stack is as something that measures the non-triviality of a

one-parameter family—we’ll stick to these henceforth—by counting

the number of fibers of some type (e.g., δ counts the number of

singular fibers). This will let us avoid having to associate loci in Mg,n

to classes like λ that are naturally defined for families and we’ll only

need one notation for both classes.

We can and must turn this around for classes defined as geometric

loci in Mg,n. To any closed codimension 1 subvariety Σ ⊂ Mg,n we can
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associate a rational divisor class σ by associating a number to each

family ρ : X -B, naively “the number of elements of the family lying

in Σ”. To do this, we fix a small neighborhood of b ∈ B which maps

to the versal deformation of Xb giving us a diagram:

b ∈U ϕ̃ - Def(Xb)⊃ Σ̃

B
?

?

ϕ - Mg,n

ψ
?

⊃ Σ
There are two cases shown on the left and right of the figure below:

b b
ϕ̃ ϕ̃

Def(Xb) Def(Xb)

Σ̃ Σ̃

Figure 1.38: Counting fibers: the two cases

1. Only finitely many fibers Xb lie in Σ: Here we want to assign

each such fiber a multiplicity and sum up. We do this using the

universal deformation Def(Xb) space of Xb. On the one hand,

Σ determines a divisor Σ̃ in this space (Cartier, since Def(Xb)
is smooth). On the other hand, a small neighborhood of b ∈ B
maps to Def(Xb) and we set multb(σ) to be the multiplicity of

the pullback of Σ̃ under this map. This is well-defined because

two such maps agree on a possibly smaller neighborhood.

2. All fibers Xb lie in Σ: Formally, we could avoid this case (cf.,

the reductions above) but it’s actually easier to tackle it directly.

The idea is to describe σ(ρ) as a line bundle L on B: for L, we

take the pullback of the normal bundle to Σ̃ in Def(Xb). This is

well-defined because Def(Xb) is also a universal deformation of

fibers near b by “openness of versality”.
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This raises the question: what is the relation between the class σ just

defined and the one given by applying “ζ∗” to the rational divisor

class [Σ] ∈ Pic(Mg,n)? The answer again comes from deformation

theory. If the general member C of a divisor Σ has automorphism

group of order n, then the mapψ : Def(Xb) -Mg,n will be ramified to

order n along Σ (essentially because in the definition of a deformation

automorphisms are rigidified away) so:

Proposition 1.39 If the automorphism group of a general point

[C] of Σ has order n, then σ = 1
nζ

∗[Σ].

In other words, for irreducible divisors, the two versions agree “up to

case” except in genus 2, for the hyperelliptic locus H in genus 3 and

for ∆1,� for g ≥ 2. The upshot for finding relations between classes is

expressed in:

Basic Dictionary 1.40 Fix corresponding classes Γ ∈ Pic(Mg,n)
and γ ∈ Pic(Mg,n): i.e., γ = ζ∗(Γ ). Let Σ1, . . . , Σk be irreducible codi-

mension 1 subvarieties of Mg,n, let σ1, . . . , σk be the classes they de-

termine in Pic(Mg,n) and let ai be the order of the automorphism

group of a general member of Σi . Then the following statements are

equivalent:

1. The relation
∑
i ci · σi(ρ) = γ(ρ) holds in Pic(B) for every one-

parameter family ρ : X -B of stable curves of genus g.

2. The relation
∑
i
( ci
ai

)
· [Σi] = Γ holds in Pic(Mg,n)

⊗
Q.

Moreover, the second statement follows if we know the first for families

whose general fiber does not lie in any of the Σi .

Remark 1.41: We can actually work with families ρ : X -B which

are only generically stable: to define the degree of γ on such a family

make a semi-stable reduction ρ′ : X′ -B′ and divide the degree of

γ on the new family by the order of the base change B′ -B. In this

sense, the first statement above follows for such families if the second

is known.
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Finally, note that because ∆ contains the component ∆1,� whose

generic element has automorphism group of order 2, the divisor class

δ on the moduli stack does not agree with ζ∗(∆). Rather, ζ∗(∆) =
δ+ δ1,�.

To get a more concrete feel for what is involved and because we’ll

use the answer extensively later, let’s work out the most basic exam-

ple and determine the rational divisor class δ on the moduli stack

associated to the codimension 1 subvariety ∆. To do this, fix a family

ρ : X -B with smooth one-dimensional base B and a local parameter

t on B.

To begin with let’s suppose that the general fiber Xt is smooth and

that the special fiber X0 has a single node at p. We can then choose

coordinates x and y on X near p so that xy = tk for some k. If so, then

in the versal deformation space of the nodal curve X0, the image of B
will be a curve with contact of order k with the (smooth) hypersurface

of singular deformations. The germ of the image of B in Mg,n near

0 will be tangent to ∆ to order k hence, the defining equation of

∆ ⊂ Mg,n will have pullback to B vanishing to order exactly k at t = 0.

This form generalizes straightforwardly to the case where X0 has n
nodes pi with local defining equations xy = tki :

mult0(δ) =
n∑
i=1
ki .

What if the general fiber is singular—say, to keep things simple, there

is a single node pb in each fiber Xb? Now we want to use the main

claim of Proposition 1.9, that the normal bundle to the discriminant

hypersurface in the versal deformation space is isomorphic to the

tensor product of the tangent spaces to the two branches of Xb at pb.
To do so, first let ν : X̃ -X be the normalization of the total space

X followed by a base change if needed, so that the inverse images

of the nodes, Γ̃ , consists of two disjoint sections Γ̃1 and Γ̃2. The map

ρ̃ := ρ ◦ ν : X̃ -B is smooth so the description above translates to
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say that

δ(ρ) = NΓ̃1/X̃
⊗
NΓ̃2/X̃ .

which we interpret as an equality in Pic(B) by making the canonical

identifications of the Γ̃i ’s with B.

Finally, we can pass to the case where the general fiber has any

number of nodes and combine this with the case where there are

extra nodes on the special fiber to arrive at:

Lemma 1.42 [Description of δ] Let ρ : X -B be a family of sta-

ble curves of genus g over a smooth, one-dimensional base B whose

general fiber has n nodes. Let X̃ -X be the normalization of the total

space of X and ρ̃ : X̃ -B the composition. Let Γ ⊂ X be the positive-

dimensional components of the singular locus of ρ, and suppose, by

making a base change if necessary, that Γ̃ ⊂ X̃ the inverse image of Γ
in X̃ consists of 2n disjoint sections Γ̃i . For each point p in the singular

locus sing(ρ̃) of the map ρ̃, let k(p) be the unique integer such that

there exist local coordinates x, y , t on X̃ near p satisfying xy = tk(p).
Then

δ(ρ) =
2nO
i=1
NΓ̃i/X̃

⊗
OB
( ∑
p∈Sing(ρ̃)

k(p) · ρ̃(p)
)
.

In particular, the degree of δ is given by

deg(δ(ρ)) = (Γ̃ )2 +
∑

p∈Sing(ρ̃)

k(p).

Remark 1.43: The freedom to pass to semi-stable families noted

in Remark 1.41 is often useful where we’d like to work with family

having smooth total space X. If k(p) = n above, then X will have an

An−1 singularity at p, but we can resolve this singularity by (n − 1)
blowups replacing the point p by a chain of (n − 1) rational curves

on which there are n nodes qi , each with k(qi) = 1.

We leave it as an exercise to the reader to formulate variants of

Lemma 1.42 describing the classes of the individual components δi,P
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by specifying the types of the nodes and the locations of the marked

points.

Finally, I want to quote a few basic relations amongst divisor classes

that follow from the Grothendieck-Riemann-Roch formula and Porte-

ous’ formula. I won’t even recall these tools here except to note that

they naturally give relations amongst stack classes and that it’s in

applying these tools that some version of the formalism above (or an

honest study of the stacky version we are trying to avoid) becomes

essential.

We’ll need two formulae proved using Grothendieck-Riemann-Roch

(and I’ll also use it at a couple of points in Section 3.1). The first,

Mumford’s Formula 1.44, relates the classes κ and λ. For Mg , this was

originally proved by Mumford’s [53] and his argument may also be

found in Section 3.E of Moduli of Curves [32]. The proof for Mg,n is

a fairly straightforward generalization. or can be deduced from the

unpointed case using Lemma 1.24.

Mumford’s Formula 1.44 κ = 12λ+ψ− δ

The Canonical Bundle Formula 1.45, which we will only need in the

unpointed case proved in Section 3.E of Moduli of Curves [32], calls

for a bit of comment, since Mg is singular. is we need to fiddle a bit

to define this class. There’s no problem defining a canonical bundle

on the smooth locus of Mg : we just take the bundle generated by

holomorphic differential forms of (top) degree (3g−3). But this locus

has codimension at least 2 for g ≥ 3 (cf. Exercise 2.27 of Moduli of

Curves [32] and recall that points of a divisor, like δ1 or the hyperellip-

tic locus in genus 3, whose generic member carries a single involution

are, in fact, smooth) so there is a unique rational line bundle extend-

ing the canonical bundle on the smooth locus. Its stack class is given

by,

Canonical Bundle Formula 1.45 KMg
= 13λ− 2δ
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In terms of classes on Mg this last becomes

KMg = 13λ− 2[∆irr]−
3
2
[∆1]− 2[∆2]− · · ·

= 13λ− 2δ− δ1.

Since I am quoting, I’ll state the pointed generalization: see [49,

Theorem 2.6] for a proof in terms of the classes ωi .

Pointed Canonical Bundle Formula 1.46

KMg,n = 13λ+ψ− 2δ−
∑
P
δ1,P

Test curves

Often we are given a geometrically defined codimension 1 subvariety

E ofMg,N and we’d like to express the associated stack class e as a lin-

ear combination of basic divisor classes. Tools like the Grothendieck-

Riemann-Roch formula provide no help because we cannot describe

the corresponding line bundle (particularly its Chern class) explicitly.

In such cases, the most effective method is the method of test curves.

This begins by writing down e as a linear combination of basic classes

with undetermined coefficients. Let’s, for simplicity, stick toMg where

this would mean writing

e = aλ+ birrδirr +
bg/2c∑
i=1
biδi .

Given any one-parameter family ρ : C -B of stable curves of genus

g this relation implies the relation

deg
(
e(ρ)

)
= adeg

(
λ(ρ)

)
+ birrdeg

(
δirr(ρ)

)
+
bg/2c∑
i=1
bi deg

(
δi(ρ)

)
.

amongst the degrees of the corresponding divisor classes on the base

B. The idea of the method is to turn this around by calculating all

these degrees and interpreting this equation as giving a relation on the
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undetermined coefficients. If we can find enough families for which

these relations are independent, we can solve for the undetermined

coefficients.

At first, we might hope to work with families of smooth curves.

There are two objections: first, as g increases it becomes harder and

harder to write down families for which the degrees deg
(
e(ρ)

)
and

deg
(
λ(ρ)

)
are accessible. This is a reflection of the fact, explored

in the next lecture, that Mg becomes less like a rational variety and

more like a variety of general type as g increases. Moreover, such

families, by definition, have deg
(
δirr(ρ)

)
= 0 and deg

(
δi(ρ)

)
= 0

for all i so they all give the same relation letting us solve for a but

giving no information on the bi ’s. Next, we could hope to to work

with generically smooth families. Here again it soon becomes hard to

write down families where the degrees are easy to compute and the

the degrees of the higher δi ’s are non-zero. The solution is to work

with families consisting entirely of singular curves.

I want to give three simple examples and then use them to deduce a

relation we’ll need later.

Example 1.47: Fix a curve D of genus (g − 1) and an elliptic curve

E and attach a fixed point p of E to a varying point q of D. In other

words, the total space X of our family would be the disjoint union

of D ×D and D × E modulo the identification of the diagonal ∆ of

D ×D with D × {p} in E as shown below. This family lies inside ∆1.

∆

D

p

E
D

Figure 1.48: Moving point on D attached to fixed point on E
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Example 1.49: Fix a curve D of genus (g − 1) and identify a fixed

point p of D with a varying point q of D. This gives a family lying

in ∆irr. However, when we take the stable reduction of this family,

the fiber over p itself (that is, where q approaches p) is a copy of

D joined by a disconnecting node to a rational curve with a node

or “pigtail” and this family therefore meets ∆1 once. (To see this,

begin with D×D as in the diagram on the left, then blowup the point

(p, p) obtaining the diagram on the right and finally identify the now

disjoint sections D × {p} and ∆ to get the bottom diagram.) By the

uniqueness of stable reductions, this special fiber must give the limit

in Mg as q -p.

D × {p}
D ×D

∆

Dp

D ×D∆

D × {p}

D D P1

Dp

D ×D

D

Dp
Figure 1.50: Moving point on D attached to fixed point on D

Example 1.51: Fix a curve D of genus (g − 1) and identify a fixed

point p of D with a base point q of a generic pencil of plane cubic

curves E to obtain a family of stable curves of genus g over P1. As
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the elliptic curves degenerate, we again pick up a special fibers with a

“pigtail”, or rational nodal curve.

I’ve recorded in the table below, the intersection numbers of each

with the standard classes. I haven’t listed the degrees of the δi ’s for

i ≥ 2 because these are all clearly 0.

Example 1.47 Example 1.49 Example 1.51

deg(λ) 0 0 1

deg(δirr) 0 2− 2g 12

deg(δ1) 4− 2g 1 −1

I’ll verify the first two columns of the table and leave the third as an

exercise. To begin with, lets look at Example 1.47 in which the fiber

Xq is the union of D and E with q in D identified to p in E. By the

Attachment Lemma 1.27, degD(λ) = 0. The degree degD(δirr) is also

0 because each fiber Xq contains a single disconnecting node. For

the same reason, the image of this family in moduli lies entirely in

∆1. To find D · ∆1, therefore, we apply our calculation of δ , which

says that the value on D of the divisor class δ (or, equivalently in

this case, δ1) on the moduli stack is the tensor product of the normal

bundles ND×{p}/D×E
⊗
N∆/D×D. The first factor here is trivial, and the

second has degree equal to the self-intersection of the diagonal ∆ in

the product D×D of a curve of genus g−1 with itself. This is just the

topological Euler characteristic of D, which is 1−2(g−1)+1 = 4−2g.

Since test curves often lie in a component of ∆, this type of normal

sheaf argument occurs frequently.

Example 1.49 illustrates this in a somewhat dual manner. Only the

fiber Xp contains a disconnecting node and since the surface X is

smooth at this point it follows that degD(δ1) = 1. However the image

of this family in moduli lies entirely in ∆irr, so we again need to



1.3 Relations amongst divisor classes 35

compute the restriction to D of the normal bundle to ∆irr in Mg to

evaluate degD(δirr). Here this bundle is the tensor product of the

normal bundles to the proper transforms of ∆ and of D × {p} on the

blowup of D×D at (p, p). On D×D, ∆2 = 4− 2g and (D×{p})2 = 0.

Since each curve passes through (p, p), each self-intersection drops

by one when we blow up, yielding degD(δirr) = 2− 2g.

To calculate degD(λ), we use the exact sequence on Xq

0 - H0(KD) - H0(ωXq)
resp- C - 0.

The corresponding sequence of direct images is

0 - H0(KD)
⊗
O - π∗(ωX/D) - O - 0

from which it’s immediate that the first Chern class of π∗(ωX/D) is

trivial and, hence, that degD(λ) = 0.

We leave Example 1.51 as a complement to Exercise 1.33.

As a first application, we consider the case g = 2. What is special

here is that Pic(M2) = 0. (This can be seen by recalling that a smooth

curve of genus 2 is determined by its Weierstrass points: soM2 can be

expressed as a quotient of the affine variety (P1)6 minus all diagonals

by the action of the symmetric group of order six.) Thus, the class

λ ∈ Picfun(M2)
⊗
Q must be expressible as a linear combination of the

boundary classes δirr and δ1. If we write λ = birrδirr+b1δ1 then the last

two columns in the table above give the relations 0 = −2birr + b1 and

1 = 12birr − b1 which solve to give the “extra” relation in Pic(M2) = 0
which we quoted above.

Genus 2 λ–Formula 1.52

λ = 1
10
δirr +

1
5
δ1 .

More typical applications of test curves are to determining the classes

of loci of curves possessing special linear series. A model problem

is the determination of the the stack class h of the divisor H in M3

obtained by taking the closure of the hyperelliptic locus in M3. To
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get such a relation, however, it is necessary to understand when a

singular stable curve lies in h. A very workable answer to this, and

similar questions, is provided by the theory of admissible covers

discussed in Section 3.G of Moduli of Curves [32]. For the families

above, however, we can guess the answer from the principle that

fibers in H must carry a “hyperelliptic” involution which fixes the

nodes (but not any component)—and blind faith that the intersections

in question are transverse (or Exercise 1.53).

In Example 1.47, this happens for the six fibers for which the point

q on the genus 2 curve D is a Weierstrass point: thus deg
(
h(ρ)

)
= 6.

In Example 1.49, there is one such fiber. It’s not the one with the

pigtail since the pigtail has no involution; rather it’s the fiber in

which the moving point q is the image of the fixed point p under the

hyperelliptic involution on the genus two curve D. In Example 1.51,

there are no such fibers since the point of attachment of the elliptic

curve to the genus 2 curve D is general on D (in particular, not a

Weierstrass point) and any such involution would have to ramify at

D.

Thus, if we write h = aλ+ birrδirr + b1δ1 we have

6 = 0a+ 0birr − 2b1
1 = 0a+ 4birr + 1b1
0 = 1a+ 12birr − 1b1

which solves to give

h = 9λ− δirr − 3δ1 .
Taking account of the fact that generic curves in both H and ∆1 carry

an involution this gives the relation

H = 18λ− 2δirr − 3δ1
in Pic(M3)

⊗
Q.

Exercise 1.53: An application of Porteous’ theorem gives the stack

class of the hyperelliptic locus h inM3 as 9λ (cf. pp. 162-4 of Moduli
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of Curves [32]). Since the general curve in the corresponding locus H
in M3 has exactly 2 automorphisms, this means that H = 18λ. Use

this and the fact that the class h has degree 0 on the curve of Example

1.51 to deduce that the coefficient a above must equal 9 and conclude

that the intersections of the other two curves with H are, in fact,

transverse.



Chapter 2

Cones of effective divisors

The theme of this lecture is the study of cones of effective divisors

and we will be principally concerned with NE1(Mg) until the very end.

Results in this area are of two types that I will refer to loosely as

upper and lower bounds. More precisely,

Definition 2.1: Given two cones L and U in the same real vector

space V such that L ⊂ U we say that L is a lower bound for U and U
is an upper bound for L.

For example, since the sum of an very ample class and an effective

class is big and effective, we see that the sum of Amp(Mg) and an

effective ray gives a lower bound for NE1(Mg). This means that a

lower bound can be produced by computing the coordinates of any

particular effective divisor in terms of the natural basis of Pic(Mg)
given by λ and the boundary classes and applying estimates for the

ample cone that we’ll cover in Chapter 3. Carrying this out will be the

theme of the first two sections.

Upper bounds on NE1(Mg) are most readily obtained by finding test

curves B whose deformations fill out Mg and computing the degrees

of λ and the boundary classes on B. The
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Effective Dichotomy 2.2 If B is an effective curve in Mg and D is

an effective divisor, then either degD(B) ≥ 0 or B ⊂ D.

says that an effective divisor must have non-negative degree on such

a B, so each such curve yields an test inequality satisfied by the

coefficients of effective divisors. The third section works this out for

some examples due of Harris and the author.

Currently, the gap between the known upper and lower bounds is,

with few exceptions, more of a chasm. So I could not resist breaking

my general rule against introducing spaces of stable maps to briefly

discuss in the final section a recent theorem proved independently by

Coskun, Harris and Starr [10] and Keel [42] which relates the effective

cone of the Kontsevich moduli spaceM0,0(Pn, d) to that ofM0,n. This

in turn has been computed for n ≤ 5 by Keel and McKernan [43].

2.1 The Brill-Noether Ray Theorem

Setup for and statement of the theorem

To begin with, I’d like to present the classical lower bound obtained by

computing the coordinates of what are called Brill-Noether divisors.

This result, due to Harris and Mumford [33] inaugurated the subject

of this lecture. The lower bound it gives is, 25 years later, still nearly

the best known: recent work of Farkas discussed in Section 2.2 gives

slightly better bounds for many g. The proof we’ll outline a an elegant

streamlining of the original argument due to Eisenbud and Harris [14].

We should establish two points of notation first. The Brill-Noether Ray

Theorem is a calculation in the Picard group of the moduli space Mg

and the divisors we’ll be considering will come to us as subschemes

D ⊂ Mg of the moduli space. However, we’ll to carry out the necessary

calculations in the group Picfun(Mg) of rational divisor classes on the

moduli stack and will abuse notation by using the same letter D
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to denote an effective divisor D ⊂ Mg and the counting class in

Picfun(Mg) associated to it. (Recall that this counting class coincides

with the the class ζ∗([D]) ∈ Picfun(Mg) associated to [D] ∈ Pic(Mg)
given by isomorphism of stack and space Picard groups except in

genus 2 or when the support of D contains the divisor ∆1 in general

or the divisor H3 ⊂ M3 of hyperelliptic curves of genus 3. None of

these exceptions will be relevant here.)

We will coordinatize a divisor class

D = aλ− birrδirr −
bg/2c∑
i=1
biδi .

The minus signs are a deliberate (and fairly standard) departure from

the notation of Chapter 1 designed to yield positive b-coefficients. We

will refer to the ratio sD := a
birr

as the slope of D. In the sequel, it is

universally the case that a divisor of slope s can be written in the

form c(sλ− δ)+
∑bg/2c
i=1 ciδi with both c and all the ci positive so we

will abuse language slightly and assume this without comment when

we speak of a divisor of slope s.

Warning: this convention for defining slopes has the unfortunate

consequence that constructing effective divisors of small slope gives

good lower bounds for NE1(Mg) while proving they cannot exist gives

upper bounds.

With all this said, we can define the divisors we want to study.

Definition 2.3 [Brill-Noether Divisor]: Loosely, a Brill-Noether

divisor is the locus of curves that carry a grd—with r and d fixed—for

which the Brill-Noether number

ρ = g − (r + 1)(g − d + r)

is equal to −1. More carefully, a Brill-Noether divisor is the union of

the codimension 1 components of the closure of the locus of smooth

curves possessing such a linear series.
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One defect these divisors have is that they exist only for certain g.

Since we’re assuming that ρ = −1, g + 1 must be composite and our

bounds apply only in this case. For other g, Brill-Noether divisors can

be replaced by certain Petri divisors which we won’t even define here

but the bounds obtained are slightly weaker and the computations

become much more complicated. We will loosely refer to loci of curves

possessing exceptional linear series as loci of “special” curves.

We can rewrite the condition ρ = −1 in terms of r and the projective

dimension s = g − d + r − 1 of the linear series residual to the given

one in the canonical series as

g = (r + 1)(s + 1)− 1 .

Under this assumption, d, r and s are also related by

d = r(s + 2)− 1 .

Of course, in view of these constraints, once g is fixed any of the

quantities r , d and s determines the other two. However, it’ll simplify

statements of several propositions to index these divisors by both r
and s. We will thus define Drs ⊂ Mg to be union of the codimension 1
components of the closure of the locus of smooth curves possessing

such a grd .

The result we’re after is the calculation of Drs , up to a positive rational

multiple, in terms of basic classes.

Brill-Noether Ray Theorem 2.4 Whenever s ≥ 3, r ≥ 1 and

g = (r +1)(s+1)−1, the class of Drs on Mg is given, for some rational

number c > 0, by

Drs = c
((
g + 3

)
λ−

(g + 1
6

)
δirr −

bg/2c∑
i=1

(
i(g − i)

)
δi
)
.

Note the remarkable fact that the coefficients (apart from c) depend

only on g, not on r or s. In other words, when g factors in several

ways the corresponding Brill-Noether divisors all lie on the same ray

in Pic(Mg).
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The Harris-Mumford Theorem

Before turning to the proof of the Brill-Noether Ray Theorem 2.4, we

give a celebrated corollary.

Harris-Mumford Theorem 2.5 The moduli space of curves of

genus g is of general type if g ≥ 24.

Of course, this “corollary” was what Harris and Mumford were really

after. I’ve reversed the historic roles and cast the Brill-Noether Ray

Theorem 2.4 as the star not just to match the theme of these notes but

because its really the main step in the argument. The Harris-Mumford

Theorem marked a watershed in the study of moduli spaces of curves,

especially the kind of questioned considered here. It encouraged, by

example, the study of whole range of subtler and deeper questions.

The Harris-Mumford theorem follows from the Brill-Noether Ray

Theorem by a criterion that relates the Kodaira dimension of Mg to

the existence of certain effective divisors D ⊂ Mg .

General Type Criterion 2.6 Mg is of general type if there exists

an effective divisor D, as above, with
a
birr

<
13
2
,
a
bi
<
13
2

for all i, and
a
b1
<
13
3
.

This criterion condenses (in our abusive language) to the assertion

that there is an effective D of slope less than 13
2 . A little arithmetic

with the coefficients in the Brill-Noether Ray Theorem 2.4 will quickly

convince you that the only a
b -ratio in the expression for Drs that is

substantially larger than 1for large g is
a
birr

= g + 3( g+1
6

) = 6+ 12
g + 1 .

This is less than 13
2 for g ≥ 24 so the Harris-Mumford Theorem 2.5

follows by applying the first part of the criterion for such g, when

g + 1 is composite. When g + 1 is prime, the same conclusion follows

using calculations of the classes of Petri divisors.



2.1 The Brill-Noether Ray Theorem 43

The General Type Criterion 2.6 itself follows almost immediately from

two facts. The first is the computation of the canonical class of Mg in

the Canonical Bundle Formula 1.45:

KMg = 13λ−2[∆irr]−
3
2
[∆1]−2[∆2]−· · · = 13λ−2δirr−3δ1−2δ2−· · · .

The second, immediate from the Cornalba-Harris theorem which will

be proved in the next lecture (cf. Cornalba-Harris Theorem 3.9), is

the ampleness of κ = 12λ − δ (or any divisor aλ − bδ with a
b >

13
2 ).

Together these two facts show that if there is an effective divisor D as

in the criterion, then for suitably divisible m we can find an effective

divisor E and a very ample divisor H such that

K⊗mMg = H + E .

In particular, this shows that the Hilbert function

h0(Mg, K⊗mnMg
)

has order in n at least that of the divisor H⊗n: this is just another way

to say that this order is maximal, or, equivalently, that KMg is big, or,

in turn, that Mg is of general type.

There is one point in this argument which needs to be addressed.

As we remarked when stating the Canonical Bundle Formula 1.45,

Mg doesn’t have a canonical bundle per se. We simply defined KMg
to be the unique (rational) line bundle on Mg extending the canon-

ical bundle on its smooth locus. There is thus no guarantee that

a global regular section of a power of KMg will yield a pluricanoni-

cal form on a desingularization of Mg . In order to ensure that this

is in fact the case, we need to study more closely the singularities

of Mg . What must be checked is what was stated classically as the

property that “the singularities of Mg don’t impose adjunction con-

ditions”, or, in the language of contemporary birational geometry,

that “Mg has only terminal singularities”. Fortunately, the Reid-Tai

criterion provides a very effective method of checking whether any

finite quotient singularity—and recall that all singularities of Mg are
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of this type—is terminal. We will give no details here and simply refer

to Mumford’s argument in the original Harris-Mumford paper [33].

You should be aware, however, that this verification involves some

lengthy and nontrivial combinatorial complications, since, for each

g, we find a different menagerie of such singularities on Mg . Indeed,

the last step in the argument requires a computer verification whose

BASIC program listing must surely be the only one ever to appear in

Inventiones!

Before turning back to the proof of the Brill-Noether Ray Theorem

2.4, I’ll simply note that Adam Logan has [49] proved general type

results for spaces of pointed curves by a similar strategy.

Theorem 2.7 For every g ≥ 4, there is an n0(g) such that for all

n ≥ n0(g), Mg,n is of general type. For g = 2 and g = 3 , there is an

n0(g) such that for all n ≥ n0(g), Mg,n dominates a variety of general

type.

Since a variety which maps dominantly to a variety of general type

with fibers of general type is again of general type, all that’s required

is to find n0(g) such that Mg,n0 is of general type and the Harris-

Mumford theorem takes care of all g ≥ 24 with n0(g) = 0. Logan

finds suitable n0(g) for g in the range from 4 to 23: in some cases,

Logan showed his values to be minimal but recent work of Farkas

discussed in the next section shows that not all are.

Pullbacks of Brill-Noether divisors

Eisenbud and Harris prove the Brill-Noether Ray Theorem 2.4 via a

sort of wholesale version of the method of test curves. Every time

we find a family X -B over a curve B such that D is disjoint from

the image of B in Mg , we get a relation on the coefficients a and bi .
Morally speaking, if we can do the same thing with B a variety of

higher dimension, we ought to get several relations. This is essentially
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what Eisenbud and Harris do. The B’s they use are the images of

certain smaller moduli spaces under θ maps like those in Definition

1.20. Their plan is to study the pullbacks ofDrs to these smaller spaces,

show that these pullbacks lie in certain special subloci and then show

that the coefficients of divisors whose pullbacks lie in these subloci

satisfy various relations which together yield the Brill-Noether Ray

theorem.

The first space they use is the moduli space M0,g of stable g-pointed

rational curves equipped with the map u : M0,g -Mg obtained by

attaching a copy of a fixed general pointed elliptic curve at each of

the g marked points as in the figure below. We’ll loosely refer to the

image of u here as the flag locus and to a curve in it as a flag curve. A

generalization of this locus plays an important role in the next lecture

too.

u

Figure 2.8: A typical flag curve

The second space they use is M2,1, the moduli space of stable one-

pointed curves of genus 2 equipped with the map v : M2,1 -Mg

obtained by attaching a fixed general smooth one-pointed curve of

genus g − 2 at the marked point.

It seems to be rather common that loci of special curves in Mg meet

v(M2,1) only along the closure W ⊂ M2,1 of the locus in which the

marked point is a Weierstrass point of the underlying curve. This

is the case for both the Drs and the Petri divisors mentioned above.

Similarly, the curves in i(M0,g) seem to be rather general. This time

Drs—but not the more general Petri divisors—misses u(M0,g) entirely.
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We can then find relations on coefficients by applying:

Pullback Lemma 2.9 Let D ⊂ Mg be an effective divisor, with class

D = aλ− birrδirr −
bg/2c∑
i=1
biδi .

1. If v∗D is supported on W , then a = 5b1 − 2b2 and birr = b1
2 −

b2
6 .

Further,

if we write v∗D = qW for some (rational) number q, then b2 =
3q.

2. If u∗D = 0, then bi = i(g−i)
g−1 b1 for i = 2, . . . , b g2 c.

Exercise 2.10: Show that if a divisor D satisfies the relations in both

parts of this theorem, then it satisfies the Brill-Noether Ray theorem

for some c. Hint: Use the second relation to write b2 in terms of b1.
Then use the first to show that

a
birr

= 6 + 12
g + 1 . Then show that if

a = g + 3, then birr =
g + 1
6

and b1 = 1. The remaining coefficients

are then immediate from the second set of relations.

Thus, three tasks remain. First, show that the divisors Drs meet

v(M2,1) only along the closure of the image of W and miss u(M0,g)
entirely. Second, show that the constant of proportionality c in the

Brill-Noether Ray theorem is in fact positive. These both follow from

the theory of limit linear series: I end this subsection with a few

parenthetical comments about what is involved but the reader will

have to refer to Chapter 5 of Moduli of Curves [32] for all details.

Third, we must prove the Pullback Lemma 2.9. This calls on most of

the techniques developed up to this point and is sketched in next

subsection.

Recall that the dual graph of a stable curve has a vertex for each component of the

normalization and an edge for each node joining the vertices corresponding to the two

pre-images of the node. A node is called interior if the two pre-images lie on the same

component. If the graph obtained by removing interior edges from the dual graph is

a tree, then the curve is called tree-like. If a treelike curve has no interior nodes, the
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curve is said to be of compact type (as its generalized Jacobian is then the product of

those of its components): its dual graph is then really a tree.

If the general fiber of a family of curves possesses a linear series with negative ρ the

special fiber may or may not carry such a linear series. Conversely a linear series with

negative ρ on the special fiber may or may not smooth to the general fiber. The theory

of limit linear series uses a study of the ramification of linear series to identify cases

in which such specializations and smoothings must exist and in which various related

dimensional postulations hold. It then uses these results to show that certain singular

stable curves are general in the Brill-Noether-Petri sense, in particular have no limit

series with negative ρ.

The first key point is that the treelike curves in Drs are limits of smooth curves

possessing linear series with negative ρ, so the theory implies that all curves in Drs
possess “generalized crude limit series” with negative ρ. On the other hand, the theory

also shows that no curve in u(M0,g) possesses a limit series with negative ρ. Hence, no

curve in Drs can lie in u(M0,g). For the similar reasons, Drs cannot contain any treelike

curve in v(M2,1 −W). But the generic members of the boundary components of M2,1

are seen in the figure below:

and

Figure 2.11: Generic curves in ∆(M2,1)

where all components have elliptic normalizations, and these are treelike curves. Thus

the locus of non-treelike curves is of codimension > 1 in v(M2,1), and the intersection

of v(M2,1 −W) with a divisor, were it nonempty, could not consist only of non-treelike

curves. This gives the first claim and, in turn, shows that the Brill-Noether Ray theorem

must be true for some c using the exercise above.

The second statement shows that the coefficient cb2 of δ2 in the Brill-Noether Ray

theorem is positive. Since Drs is effective, this, in turn, implies that c > 0 as required. It

is proved by exhibiting, on a general member C of v(W), a limit grd that extends to a

codimension 1family of nearby smooth curves thus showing that C lies in Drs .

The final statement is proved by expressing the Weierstrass point condition in terms

of ramification of the canonical (or a limit canonical) series and then using this

characterization to express the locus W in terms of the degeneracy loci of certain maps

of associated vector bundles.
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Proving the Pullback Lemma

We first apply Lemma 1.26 to the map v to compute the pullbacks

of the basic classes on Mg . We first find that λ, δirr and δ1 pullback

to the analogous classes on M2,1 (the last because on this space

δ1 = δ1,� + δ1,{1}). Next v∗(δ2) = δ2,� + δ0,{1} = 0−ψ1 = −ψ by our

ψ-convention. We could see this directly: since the image of v lies in

δ2 we need to pull back the normal bundle O∆2(∆2) which is just the

normal bundle to the section Σ1, or by adjunction −ψ1. The boundary

classes δi , for i ≥ 3, pullback to 0 (either by quoting Lemma 1.26 or

by directly remarking that v(M2,1) is disjoint from the corresponding

loci ∆i).

With this in hand, let’s prove the first part of the Pullback Lemma 2.9.

Expressing Drs as a linear combination of standard classes as in the

Brill-Noether pullback theorem, we see that, in terms of the standard

classes on M2,1 we have v∗(Drs ) = aλ − birrδirr − b1δ1 + b2ψ. Using

the second and third claims, we see that for some q we have

aλ− birrδirr − b1δ1 + b2ψ = q(3ψ− λ− δ1)

and b2 = 3q follows immediately by equating ψ coefficients, using

the independence of ψ from the other classes.

Since λ, δirr and δ1 on M2,1 are pullbacks of the analogous classes on

M2, where, by the Genus 2 λ–Formula 1.52

λ = 1
10
δirr +

1
5
δ1 ,

this relation will continue to hold on M2,1.

Substituting this for λ and
b2
3

for q gives

a
10
− birr =

b2
30

and
a
5
− b1 = −

2
5
b2

from which the relations in the first part of the Pullback Lemma 2.9

follow by solving for a and birr.

Now we turn to the second part of the Pullback Lemma 2.9. This

amounts to finding relations on the classes u∗λ, u∗δirr and u∗δi . The
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first is easy. On any family π : X -B of curves of genus g formed by

attaching fixed elliptic tails to curves inM0,g at the marked points, the

vector bundle π∗ωX/B is trivial. In this case, the Attachment Lemma

1.27 says that it is the direct sum of the bundles
(
H0(Ei ,ωEi)

⊗
OB
)
.

Thus, u∗λ = 0.

Next, note that by the genus formula any component of a curve in

Mg,0 must be smooth and rational, the number of nodes is one less

than the number of components, and hence the dual graph is a tree.

Thus every node is disconnecting, u(M0,g) is disjoint from δirr, and

hence u∗δirr = 0.

To obtain relations amongst the higher δi ’s we express these classes

in terms of the classes εi on M0,g defined, for i = 2, . . . , bg/2c, by

εi =
∑
|P |=i

δ0,P

In other words, a node is an εi node if one of the two components

of the normalization at the node contains i marked points (and the

other (g − i)) but which i points does not matter and εi is the class

the closure in M0,g of the set of two-component curves illustrated

schematically in Figure 2.12.

i g − i
Figure 2.12: A General Curve in εi

For i = 2, . . . , bg/2c, we take εi to be the class of the divisor that is

the closure in M0,g of the set of two-component curves with exactly

i of the g marked points on one of the components as illustrated

schematically in the figure.

Exercise 2.13: The divisors εi descend to divisors ∆̃i on quotient

M0,g̃ = M0,g/Sg in which the marked points are unordered. Show that

the classes ∆̃i , and hence also the εi , are independent.
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It’s natural to introduce these divisors because, for i ≥ 2, we have

u∗δi = εi . This follows either by applying Lemma 1.26 or directly by

noting that, in Mg , the map v attaches an elliptic tail at each marked

point so the images of left and right sides of a curve in εi have genera

i and g − i respectively.

The final equality to check is that:

u∗δ1 = −
bg/2c∑
i=2

i(g − i)
(g − 1) εi .

Admit this for a second. If, then, D is any divisor, given in terms of

standard classes as in the Pullback Proposition, it will pull back on

M0,g to

−b1
(
−
bg/2c∑
i=2

i(g − i)
(g − 1) εi

)
−
bg/2c∑
i=2
biεi .

If, in addition, D misses u(M0,g) this pullback must be 0 and equating

coefficients immediately gives the claimed relations on the coeffi-

cients bi .

As usual, it suffices to check the claimed relation after restricting to

families

π : C -B, σ1, . . . , σg : B -C

of stable rational g-pointed curves, where B is a smooth curve miss-

ing any inconvenient codimension 2 loci in M0,g , and transverse to

relevant codimension 1 loci in M0,g . We can thus assume that all

reducible fibers of C have exactly two components, the general fiber

is a smooth curve, and the total space C is a smooth surface. Fix g
pointed elliptic curves (Ek, pk), and let C′ -B be the family obtained

by attaching a copy of B × Ek along σk and B × pk. The family C′ -B
lies in the g-fold self-intersection of the normal crossing divisor δ1,
and, by our characterization of the normal bundle to the discriminant

locus in the versal deformation space, u∗δ1 is thus the sum of the

pullbacks of the normal bundles to the branches.
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At the point of ∆1 corresponding to a fiber C′b of C′, the branch

corresponding to the kth node has normal bundle equal to Tσk(b),Cb ⊗
Tpk,E . Thus it pulls back on B to the normal bundle to the section

σk(B), which we may rewrite as π∗
(
σk(B)

)2
. Thus

u∗δ1 = π∗
( g∑
k=1
σk(B)2

)
.

We may contract the component of each reducible fiber meeting the

smaller number of sections (or either component if both components

meet g/2 sections) to obtain a P1-bundle π̃ : C̃ -B with g sections

σ̃k : B -C̃. These sections meet transversely in groups of i over

points of εi , and are otherwise disjoint. Thus,

π̃∗
( g∑
k=1
σ̃k(B)2

)
= π∗

( g∑
k=1
σk(B)2

)
+
bg/2c∑
i=2
iεi .

On any P1-bundle the difference of two sections is a linear combina-

tion of fibers, and thus has self-intersection 0. Applying this remark

to σ̃k(B)− σ̃j(B) gives the relation σ̃k(B)2 + σ̃j(B)2 = 2σ̃k(B) · σ̃j(B).
Summing over all pairs with k < j , we get

(g − 1)π̃∗
( g∑
k=1
σ̃k(B)2

)
= 2π̃∗

(∑
k<j

(
σ̃k(B) · σ̃j(B)

))
=
bg/2c∑
i=2

(
i(i − 1)εi

)
.

The last equality comes from noting that at each point of εi there

will be
(
i
2

)
pairs of sections meeting. Putting the last three formulas

together yields

u∗δ1 =
bg/2c∑
i=2

( i(i − 1)
g − 1

)
εi −

bg/2c∑
i=2

(
i
)
εi = −

bg/2c∑
i=2

( i(g − i)
g − 1

)
εi .

We have thus verified the final claim and and completed the proof of

the Brill-Noether Ray Theorem 2.4.



2.2 Lower bounds: Farkas’ results on Koszul divisors 52

2.2 Lower bounds: Farkas’ results on Koszul

divisors

Questions and answers

When g = 23, Brill-Noether divisors have slope a
birr
= 13

2 . We can there-

fore only conclude that the Kodaira dimension is positive and then

only if we find two Drs ’s that have distinct support (which Eisenbud

and Harris do but we won’t).

For genera g < 23, according to the Brill-Noether Ray theorem, a
birr
<

13
2 and so the first two parts of the Brill-Noether Ray theorem give no

information. For almost 20 years, all known examples suggested that

Brill-Noether divisors minimize this ratio amongst all effective ones

and led Harris and the author, in [31], to the (incorrect!):

Slope Conjecture 2.14 If D is any effective divisor onMg , the ratio
a
birr

≥ 6+ 12
g + 1 .

This is known for g ≤ 9 and for g = 11 (see Theorem 2.19)—but recent

work of Farkas shows that it is false for all g of the form 2s(s + 1)
with s ≥ 2. Earlier Farkas and Popa produced the first counterexample

for g = 10 in [21] and other counterexamples were constructed by

Farkas in genera 16 and 22 [17] and by Khosla in genus 21 [45]. Farkas’

results suggest that the conjecture fails for all sufficiently large g.

For smaller g, these and related constructions have some other nice

consequences. The original genus 10 example in [21] has slope 7 and,

by applying a lower bound we’ll give in a moment shows that s10 = 7.

More strikingly,

Theorem 2.15 [19, Theorem 4.1] There is an effective divisor on M22

of slope 17121
2636 = 6.495 . . .—hence M22 is of general type—and there is

a virtual divisor M23 of slope 470729
72725 = 6.473 . . .1 .

1In the same spirit, [19, Theorem 4.3] lowers the minimal n for which Mg,n is of
general type for many g ≤ 21.
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Definition 2.16: A virtual divisor D is a locus whose expected codi-

mension is 1 but whose actual codimension may be 0.

It’s often possible to calculate the coefficients of virtual divisors

(defined typically as degeneracy loci of a map between vector bundles)

but this yields an unconditional result only if one can show that the

locus in question has the expected dimension (i.e. the bundle map is

generically non-degenerate). This is Farkas’ basic plan. In particular,

he proves:

Theorem 2.17 [18, Theorem 1.5] For any g of the form s(2s + 1)
with s ≥ 2, there is an effective divisor on Mg of slope strictly less than

6+ 12
g+1 .

Ideas behind the constructions

I want to sketch here the beautiful geometric ideas underlying Farkas’

constructions as they subsume essentially all known calculations

of effective divisors of small slope. Filling in the details involves a

technical tour-de-force well beyond these lectures: [19] gives a precis

and [17] and [18] contain the full proofs.

The story starts with the observation in [21] that any divisor of slope

less than 6+ 12
g+1 contains the closure of the locus Kg of genus g curves

lying on a K3-surface. This follows from the Effective Dichotomy 2.2

and the exercise below.

Exercise 2.18: Let X be a K3-surface of degree (2g−2) in Pg that has

Picard group of rank 1 and is embedded by a primitive class and let B
be a Lefshetz pencil of curves lying on X. Show that degB(λ) = g + 1,

degB(δirr) = 6g + 18 and degB(δi) = 0.

Hint: The hypothesis on X makes the last degrees immediate since

the pencil can contain no reducible curves and the second follows

from the classical Lefshetz pencil formula (cf. [29, p.509]).
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Indeed, pencils of this form sweep out a dense locus in the Pg-bundle

of curves of genus g over the irreducible 19 dimension moduli space

of polarized K3-surfaces of degree 2g − 2 and hence have images in

Mg dense in Kg .

This immediately allows us to determine sg for small g as was first

noticed by Tan [61]. Indeed, for 3 ≤ g ≤ 9 and g = 11, a generic

curve of genus g is a hyperplane section of a K3 surface X of degree

(2g − 2) in Pg . The general pencil B of such hyperplane sections

has, by Exercise 2.18, slope 6 + 12
g+1 so this is a lower bound for sg .

On the other hand, except in genera 4 and 6, g + 1 is composite

and there exists a Brill-Noether divisor of slope equal to this bound

by Brill-Noether Ray Theorem 2.4. Chang and Ran ([6] and [5] had

earlier handled these cases and the value of s10 follows from the

computation of K10 below. The upshot is:

Theorem 2.19 For g ≤ 11, sg = 6 + 12
g+1 except in the cases where

(g + 1) is composite when we have s4 = 17
2 , s6 = 47

6 and s10 = 7.

This naturally suggests asking when Kg is a divisor and computing

its class. The expected dimension of Kg is 19 + g so we’d expect it

to be a divisor when g = 23
2 (sic!) but this actually happens when

g = 10 because, by a theorem of Mukai [51], each curve in K10 lies

on a 3-dimensional family of K3s. This divisor was first noticed by

Cukierman and Ulmer [11] who computed its λ and δ coefficients.

Farkas and Popa complete the determination of this divisor as

K10 = 7λ− δirr − 5δ1 − 9δ2 − 12δ3 − 14δ4 − 15δ5

To do this, they successively reinterpret K10 in several ways. The first

description, as the locus of curves C carrying a semi-stable vector

bundle E of rank 2 for which
∧2(E) = KC and h0(C, E) > 7 has a

Brill-Noetherian flavor. The second, as the locus of curves carrying an

“exceptional” g412 for which the multiplication map

Sym2(H0(L)) -H0(L⊗2)
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is not a isomorphism is slightly Petrified2. Using this description they

are able to compute the degrees of K10 on test curves (similar to

those of Example 1.47) obtained by attached a fixed genus (g − i) tail

to a moving point on a fixed curve of genus i and find the class above.

Farkas’ later work depends on further translations and generaliza-

tions of this last interpretation in terms of the Green-Lazarsfeld [28]

properties (Ni) of the projective resolution of the ideal of the model

of C given by the exceptional g412. Let’s briefly recall the setup. If I
is the ideal of the embedding of C in Pr by sections of an invertible

sheaf L, let R =
⊕
m
H0(C, L⊗m) and let

0 -Er+1 -Er -· · · -E2 -E1 -E0 -R -0

be its minimal resolution by free graded S = C[x0, . . . , xr ]-modules,

then (C, L) is projectively normal (i.e. all sections of L⊗n are restric-

tions of homogeneous polynomials) iff E0 = S—this is condition N0. If

this holds then we can view the Eis for i > 0 as giving a free resolution

of I = S/R. Then property (Ni) is said to hold for i > 0 if, for all j ≤ i,
Ej is a direct sum of copies of S(−j − 1). Thus N1 is the classical

condition that C is cut out by quadrics, N2 means that all relations

amongst these quadrics are generated by linear ones and so on. In

terms of the vector bundle M on C defined by

0 -M -H0(C, L)⊗OC -L -0 .

(i.e. M is just the kernel of evaluation of sections of L), one can (cf.

[48]) restate (Ni) as the surjectivity, for all j ≥ 1 of the natural Koszul

cohomology map

(i+1∧
H0(L)

)
⊗H0(L⊗j) -H0

(( i∧
M
)
⊗ L⊗(j+1)

)
.

Farkas shows that it suffices to check surjectivity for j = 1 above

and then globalizes this construction to a map ϕ of vector bundles

2A general curve C of genus 10 carries 42 g412s residual to g16s that are pencils of
minimal degree on C.
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over the compactification Grd by limit linear series of the stack Grd
of grds on smooth curves. He then defines U to be the degeneracy

locus of this map and Z to be the image of U in Mg under the map

τ forgetting L. These choices depend on the choice of an i ≥ 0 as

above and a second parameter s ≥ 1. If, in terms of these, we set

r := 2s + si + i, g := (r + 1)s and d := r(s + 1), then the Brill-Noether

number ρg,r ,d = 0 so we expect the map τ to be finite and the loci U
and Z to be (effective) divisors.

Assuming this, he calculates the class of Z and shows that, for s ≥ 2,

it has slope strictly between 6 and 6+ 12
g+1 . (For the coefficients, which

are quartic polynomials in i, see [19].) Each step in this program

is highly non-trivial. Although the coefficients of Z are computed

by intersecting with test curves determining the necessary degrees

involves computations much more subtle than anything we have done

here.

Two cases deserves brief comments. When s = 1, we have g = 2i + 3,

r = g−1 and d = 2g−2 so that Z is the locus of curves whose canon-

ical bundle fails property (Ni). Applying Voisin’s proof of Green’s

conjecture for generic curves ([64] and [63]), we may identify, at least

set-theoretically, Z with the locus of (i + 2)-gonal curves which is a

Brill-Noether divisor and Farkas’ results recover the slope 6 + 12
g+1

computed in the Brill-Noether Ray Theorem 2.4. When i = 0, Z can be

described as the virtual class of the locus of curves C carrying a grd for

which there is a quadric hypersurface containing the corresponding

embedding. Deepak Khosla [45] had earlier computed the class of this

Z by completely different methods and his recent preprint [44] unifies

and simplifies many such calculations (e.g. that of K10) through the

introduction of tautological classes on spaces of limit linear series.

And, even after all this work, nothing has been proved unconditionally

since no general principle guarantees that ϕ is not everywhere degen-

erate and hence that the virtual divisor Z is not all of Mg . Checking

this for any pair (s, i) involves producing a suitable pair (C, L) curve
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for which property (Ni) does hold. In the original example of [21]

with (s, i) = (2,0) (genus 10) this was done by appealing to earlier

work of Mukai [51]. The cases (2,1) and (2,2) (genera 16 and 22)

were treated in [17]3. Khosla [45] handles the case (3,0) where g = 21
and [18] extends this to (s,0) for any s ≥ 2; this gives an infinite set

of counterexamples to the Slope Conjecture 2.14 with g = s(2s + 1).
In [18, Theorem 1.5], pairs (C, L) with the required properties (the pair

should be Brill-Noether-Petri general and the model should not lie on

a quadric) and are produced by a clever inductive process that I will

not go into here except to say that each step involves attaching an

elliptic component at several points, obtaining a new curve not lying

on a quadric but possibly Petri special, and deforming to a smooth

curve to recover the Petri generality. Clearly, there are more beautiful

surprises waiting in this area.

2.3 Upper bounds: slopes of effective divisors

The author today has the gnawing sense that in posing the Slope

Conjecture 2.14, he was not so much a bit optimistic (naive?) as ass-

backwards. The constructions described in the preceding section

contradict the conjecture but tend to confirm its philosophy sug-

gesting that the conjecture might “almost” hold. As g -∞, Farkas’

divisors have slope 6+ 6
g + terms of order g(−3/2) and arise as loci of

curves carrying a linear series whose free resolution violates property

(Ni) (recalled below) for some i, making it tempting to pose the

Question 2.20: Is the slope of every effective divisor on Mg at least

6? Are divisors with slopes sufficiently close to 6 loci of curves carry-

ing “exceptional” linear series?

3The slope computed in genus 22 for (s, i) = (2,2) is 6.5039 . . . so this Z does not
show that M22 is of general type. Instead a different syzygy condition tailored to this
genus is used to construct the divisor cited in Theorem 2.15.
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In this section, I want to sketch the techniques for finding lower

bounds for sg (and hence upper bounds for NE1(Mg)) for large values

of g in [31]. Here our knowledge is very imperfect and we have to work

hard even for that. Heuristic arguments in [31] lead to the estimate

sg ≥ O( 1g ), which is so weak that no one has ever sat down and made

the argument rigorous4. We remain today in this nearly complete

state of ignorance: it is not known if there is a positive constant s
such that sg ≥ s for all g. All we can say is that such an s cannot be

bigger than 6.

A positive answer would provide a new approach to the Schottky

problem since Tai, in work [60] that was the inspiration for the

Harris-Mumford Theorem 2.5, proves that there are lots of Seigel

modular forms of slope less than any such s. No such form (viewed

as defining an effective class on the moduli space on a toroidal

partial compactification of the moduli space of abelian varieties)

could restrict to an effective class on Mg (identified in its turn with

the Jacobian locus J) and hence each would have to contain J and

give a “geometric Schottky relation”. One can even speculate that

these might cut out J . As remarked by Beauville, the classical genus 4
Schottky relation can be interpreted in this way. About the shape of

NE1(Mg) outside the λ-δ-plane essentially nothing is known.

Plan of the construction

The basic idea for producing lower bounds is very simple. Produce

effective curves B ⊂ Mg whose deformations sweep out all of Mg and

compute the degrees of λ and the boundary components on B. By

the Effective Dichotomy 2.2, any effective divisor D = aλ− bδ must

have degB(D) = adegB(λ)− bdegB(δ) ≥ 0 and hence

sD := a
b
≥ sB := degB(δ)

degB(λ)
4Although only because game is not worth the candle.
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and since this bound is independent of D it gives a lower bound for

sg as well.

Before sketching the details of how this is worked out, I want to men-

tion one variant of this approach. Instead of looking for a single curve

which deforms to cover Mg , one could look instead for collections

B of curves whose union is Zariski dense. Then lim infB∈B sB gives a

lower bound for sg . In his Harvard thesis(cf. [7]), Dawei Chen works

out this approach using, as a typical test curve, the family of degree

d covers of a fixed elliptic curve B with a single point of ramification

of fixed combinatorial type. For suitable choices of the degree d and

the ramification type, the corresponding collection B and there are

recursive formulae for sB . However, the combinatorics of unwinding

these formulae is daunting and as I write Chen is able to handle

completely only g = 2.

(2.21)

E - SH - SM

G
? π - A

?

F
?

P1 ×H

χ
? ξ- P1 ×M

?
�

ρ
-

IM

H
? ψ -

θ

--

M
?
� JM

Z ⊂ Mg
�

Hk,g
? ϕ- M0,b

?

The strategy for constructing the necessary curves B is summarized

in (2.21) and is, despite appearances, also straightforward5.

5Two caveats are in order. I have tried to keep the notation here consistent with
that in earlier sections so it diverges quite a bit from that in [31]; for the better, I hope,
as the paper contains several embarassing typos, most glaringly the use of the upper
index b g2 c where b k2 c is wanted in the definitions at the top of page 342.
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We begin with any smooth complete curve M , an even number b = 2a,

and, on P1 × M , a b-tuple of sections σi ≡ sM + ci · f with sum

σ ≡ b·sM+c ·f where f denotes the class of a fiber and sM the class of

a horizontal section. Choosing the sections to be general in the sense

that no more than two sections meet at any point, each intersection

is transverse and no more than 1 intersection lies in any fiber, the

0-cycle IM of intersections will consist of IM =
∑
i<j(ci+cj) = (b−1)c

distinct points lying over a reduced cycle JM on M6. We then blow-up

P1 ×M at IM getting a surface SM -M which, viewed as a family of

stable b-pointed curves of genus 0 with IM nodal fibers, gives a map

M - M0,b.

Next fix g, let k = m − g + 1 and let Hk,g be the family of genus g,

k-sheeted, simply branched, admissible covers of b-pointed curves

of genus 0. We then pull back the tower on the right of (2.21) via the

natural covering map (to be recalled in a moment) Hk,g
ϕ- M0,b to

get the tower in the center. In particular, SH is the blow-up of P1 ×H
at the set IH := ξ∗(IM) of singularities of τ := ξ∗(σ) which lies over

JH ⊂ H.

Over the complement of JH , the map SH -H is a nice family of

b-sheeted branched covers of P1 which we would like to complete

to a smooth family G of branched covers of a family A of semi-

stable b-pointed curves of genus 0 over H. Neither of the obvious

extreme approaches to constructing such a family works. The biggest

candidate would have as fiber the admissible cover of the b-pointed

stable curve corresponding to the image of h in Hk,g and the smallest

(smooth) candidate would have as fiber the stabilization of this cover.

The former universal family is shown as E and turns out not to be

smooth and to map only rationally toH. The latter would be F and has

the defect that it is no longer possible to view its fibers as branched

covers of rational curves—i.e. there is no horizontal map to P1 ×H.

6In the rest of this section, we will adopt the convention of using a calligraphic
letter T to denote a combinatorially defined finite set and the corresponding bold
roman letter T to denote its order.
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Both these difficulties can be solved by blowing up the right subset

of JH to obtain G.

Counting covers

To see what this subset should be, we need to recall the standard

description of the data of a simply branched covering. In a fiber

π : C -P1 away from JM , we can do this by choosing a basepoint

P not in the set Pi of branchpoints, and a set of pairwise disjoint

loops γi based at P and having winding numbers δij around the

points Pj . The hypothesis of simple branching means that we can

view the monodromy of π around γi as a simple transposition ti
in the symmetric group Sk of the fiber of π over P . A collection

t := (t1, t2, . . . , tb) of transpositions arises in this way from some

cover if and only if the relation
∏b
i=1 ti = e holds in Sk—because∏b

i=1 γi = e in π1
(
P1 \ {Pi}

)
. This cover is connected if and only if the

subgroup of Sk generated by the ti is transitive and two such covers

are isomorphic if and only if the corresponding transpositions are

simultaneously conjugate in Sk. Indeed, over M0,b, the map ϕ is an

unramified covering whose fiber may be identified with the collection

T of all classes of b-tuples of transpositions up to conjugacy.

The next step is to determine how this covering ramifies over points of

JM where the base curve lies in ∆2, the locus of 2-component rational

curves with b − 2 points on the main component and 2 on the other

component7. The key to this is to understand what happens to T as

we trace a path ΓH in H lying over a path ΓM in M parameterized by

u ∈ [0,1], that loops once around a point of JM where two sections,

say σ1 and σ2, meet. The diagram on the left below shows what is

happening to the points σ1(u) and σ2(u) and that on the right shows

what is happening to the based loops γ1 and γ2.

7This, like most of the geometry in the sequel, is local on M . Variants can be
deduced by allowing σ to have less generic singularities (equivalently, by allowing
singular covers not mapping to ∆2), but these seem to give only weaker estimates.
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Figure 2.22: Branching of H ψ- M

Homotopically, γ1( 12) ∼ γ2(0) and γ2( 12) ∼ γ2(0)−1 ∗ γ1(0) ∗ γ2(0).
Hence iterating γ1(1) ∼ γ2(0)−1 ∗ γ1(0)∗ γ2(0) and γ2(1) ∼ (γ−12 ∗
γ1∗γ2)−1(0)∗γ2(0)∗ (γ−12 ∗γ1∗γ2)(0). In terms of transpositions,

this means that (t1, t2) becomes (t′1, t
′
2) where

t′1 = t2
−1
t1t2 and t′2 = (t2

−1
t1t2)

−1
t2 (t2

−1
t1t2) .

At this point, we need to partition IH into subsets IΠ according to the

conjugacy class Π of the product t1t2 of the pair of transpositions

associated to the branch points which meet at each point. We will have

Π equal to (2,2), (3) or e, when t1 and t2 have, respectively, 0, 1, or

2 letters in common. The preceding computation shows that H -M
is unramified over points of type e and (2,2) and is triply ramified

over points of type (3). If we decompose analogously the collection

T of combinatorial data describing points of fibers of H ψ- M over

points of M0,b, we can summarize this discussion in the equation

Lemma 2.23 IH = Te + T(2,2) + 1
3T(3)
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This decomposition is also the key to picturing the various admissible

covers that arise over ∆2. In these pictures, the 2-pointed component

Figure 2.24: Cover of type (2,2)

is shown on the right (and we’ll refer to it as the right component),

numbered ovals indicate the genera of components of the normaliza-

tion, and numbered rectangles count collections of left-side branch

points not shown individually. Ramification over the node is deter-

mined by the condition that, in an admissible cover of a reducible

curve, the product of the permutations on each side must be trivial.

On the far right, the semi-stable reduction is shown, again with the

genus of each component.

For types (2,2) and (3), a single picture suffices and the semi-stable

reduction is always smooth.

Covers of type e are more interesting because the combinatorics no

longer force the left side to be connected. If it is, we get the picture in

Figure 2.26. But now the left side may have 2 connected components

and the way the genus and the covering degree split between the

components may vary as shown in Figure 2.27.

To count these later, we first partition Te into subsets Uirr and Uj
for 2 ≤ j ≤ b k2c: t lies in Uirr iff the subgroup of Sk generated by t3 to
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Figure 2.25: Cover of type (3)

Figure 2.26: Irreducible cover of type e

tb acts transitively and in Uj iff it acts with two orbits of size j and

(k− j). We then further partition Uj into subsets Uj,i for 0 ≤ i ≤ g:

t lies in Uj,i is the number of tl with support in the orbit of size j
[resp: (k-j)] is 2i + 2j − 2 [resp: 2(g − i)+ 2(k− j)− 2].

For later use in finding degZ(δ), we need to reassemble these parti-

tions “by boundary components”. For 1 ≤ i ≤ b g2 c, let

Vi :=
b k2 c⋃
j=2

(
Uj,i ∪Uj,g−i

)
.
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Figure 2.27: Reducible cover of type e

Finally, to maintain parallelism, let Virr := Uirr and

V := Virr ∪
b g2 c⋃
i=1
Vi .

We summarize this analysis in:

Lemma 2.28 The number of points in any fiber the map H ψ- M
lying over a point of JA that correspond to admissible covers whose

stable model lies in ∆, ∆irr and ∆i respectively, is V , Virr, and Vi . The

semi-stable reduction of every such cover has exactly 2 nodes.

A few comments are in order here. The counting functions we have

been defining have a venerable history and were known to Hurwitz.

They are purely combinatorial in nature and it turns out that recur-

sions for them in terms of values of characters of symmetric groups

can be deduced by standard results in character theory. Recursions

are needed because what the character theory most naturally counts

are the analogues of these functions for covers that are not necessar-

ily connected—that is, with the condition that the transpositions in t
generate Sk removed. I’ll give no details at all here, simply referring

to [31, Section 1].
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Finding the right family

Here we want to understand local coordinate pictures of the covers

in the previous section well enough to see when we must blow up the

corresponding points of IH to get the family G -A in (2.21) and when

we mustn’t. At the same time, we’ll gather the information needed to

compute degλ(Z) in the last subsection.

To prepare for this, suppose that h ∈ JH over which τ1 and τ2 meet

at a point (t, h) ∈ IH on P1 ×H. Let U be a neighborhood of h in H
and V be product neighborhood of (t, h) over U , both chosen small

enough to avoid any other fibers containing singularities of τ . Pick a

coordinate u on U and a fiber coordinate v on P1.

Figure 2.29: Local picture at branch point of type (2,2)

The (2,2)-case is the simplest. Here, although the branch divisor

τ has a singularity the ramification divisor R is smooth. It has a

component Ri over each τi but these lie in two pairs of sheets disjoint

over V . All that’s happening is that two ramification points of the

cover Fy -P1 that are far apart on F happen to line up over t = 0. So

we can just take GU = FU and AU = P1 ×U .

If the equation of τ1 + τ2 in V is u2 − v2, then the equations of the

cover G at the points of R lying over (t, y) will be w2 = u± v . Thus R
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iself will have equation w = 0 and its complement R′ in the pullback

of τ to G will have equation u±w2 = 0. As indicated in Figure 2.29,

R and R′ meet transversally twice over h.

This is also a case in which no extension to a smooth family E of

admissible covers can exist because the cover shown in Figure 2.24

has automorphisms given by exchanging sheets of either degree

two cover. Alternatively, such a cover would have to have an isolated

branch point at the node of the fiber of SH over y . To get an admissible

family would require a base change of order 2 around y to produce

τ1 and τ2 simply tangent at (t, y), followed by 2 blow-ups to separate

them, followed by the blowdown of the first exceptional divisor. But

this would leave a surface with an A1-singularity.

Figure 2.30: Local picture at branch point of type (3)

In the type (3) case, where H is triply branched over M , τ1 and τ2 no

longer meet transversely, but instead have local equations v = ±u3.
However, we again expect from Figure 2.25, that the family F of stable

curves should be smooth and expressible as a branched over of P1×U .

To confirm this, rescale so that the local equation of τ1 + τ2 in V
becomes 27v2 − 4u6 Then, in terms of an additional coordinate w , F
has local equation w3 − u2w + v = 0 which defines a smooth surface

whose fiber over u = 0 has the required triple branch point at the

origin v = 0. Again, we can just take GU = FU and AU = P1 ×U .
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Here, the ramification divisor of G -A has local equation

∂v
∂w

= −3w2 + u2 = 0

so consists of two smooth arcs meeting transversely and the com-

plement R′ of R in the inverse image of the branch divisor τ has

equation

27v2 − 4u6
(−3w2 + u2)2 =

27(−w3 + u2w)2 − 4u6
(−3w2 + u2)2 = 3w2 − 4u2

so in neighborhood on F of the point u = w = 0 consists of two

smooth arcs meeting the 2 arcs of R transversally, as shown in Figure

2.30.

Here again no smooth family E of admissible covers exists. This time

no base change is necessary. Were one made, we’d need to blow up

P1 × U three times to separate τ1 and τ2 and then blow-down the

first two exceptional divisors which would leave an A2-singularity.

Figure 2.31: Local picture at branch point of type e
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Finally, at points of type e, we can complete the family of branched

covers ofH\JH to a familyG′ -P1×H -H. But then, over V ⊂ P1×U
we will have k−2 smooth sheets and a component with local equation

w2 = v2−u2—in other words, the total space G′ has an A1-singularity.

However, if we blow up the point (t, h) ∈ V and its inverse image

in G′ we arrive a family of admissible covers EU -P1 × U -U , as

in Figure 2.31, with fibers as in Figure 2.26 and Figure 2.27 and with

smooth total space.

Here we take GU = EU and AU to be the blowup of P1 ×Y at (t, y). To

get the corresponding semi-stable family F , we must blow down all

the rational components on the right hand side except the exceptional

divisor, and, in the reducible cases of type (j,0) or (j, g), we must

also blow down first the genus 0 component of the left hand side

(which meets the rest of the cover in only 1 point) and then the

exceptional curve.

Degree calculations

We’re now ready to get estimates for sg by computing the degrees of

λ and δ on the curve Z of (2.21).

Theorem 2.32 [31, Theorems 3.1 and 3.14] The degrees of λ and δ
on Z are

degZ(λ) =
c
12

(
(b−1)(3Te+

1
3
T(3))−3T

)
and degZ(δ) = 2(b−1)cV .

Hence,

sZ =
72(b − 1)V

(b − 1)(9Te + T(3))− 9T
.

We’ll outline the calculation for λ below. The claim for δ is immediate

from Lemma 2.28, Remark 1.43 and the fact that I = (b − 1)c (which

also shows that degZ(δi) = 2(b − 1)cVi) and the claim for sZ then

follows from those for λ and δ using Lemma 2.23.
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Estimates for sg follow by taking k bigger than b g+32 c. In this range, the

Brill-Noether theorem says that deformations of Z are dense in Mg

allowing us to apply the Effective Dichotomy 2.2. Mild assumptions

about the distribution of the set T—for example, that the proportion

of ts with any initial pair (t1, t2) of transpositions is independent of

the choice of the tis to first order in k—then lead to the estimate

sg = O( 1g ).

The unconditional results for small g mentioned at the start of this

section are obtained by brute force computations of values of the Ts

and Vs use the recursions for these counting functions in [31, Section

1] to which I refer for all details. When g >> k, these recursions also

give unconditional asymptotic estimates the most striking of which is

Corollary 2.33 If g >> k ≥ 2, then any effective divisor on Mg of

slope less than 72
2k+5 contains the k-gonal locus.

For small k, we can relax the assumption that g >> k.

Corollary 2.34 Let g ≥ 3 and D be an effective divisor on Mg .

1. If sD < 8, then D contains the hyperelliptic locus.

2. If sD < 7+ 6
g , then D contains the trigonal locus.

In particular, the hyperelliptic and trigonal loci are in the base local

of all pluricanonical divisors. The bound for the trigonal locus is an

improvement due to Tan [61, Theorem 4.1] who uses the classical fact,

due to Petri, that trigonal curves C are trisections of rational ruled

surfaces Fk and shows that suitable blowups of general pencils in the

linear series |C| give curves filling the trigonal locus and having the

indicated slope.

Let’s recall our setup in streamlined form.
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(2.35)

G
π - A

F
?

P1 ×H

χ
? ξ- P1 ×M

ρ
-

Mg ⊃ Z � H
? ψ -

θ

--

M
?

Since H maps finitely to Z, we can compute degZ(λ) on H where

we’ll use Mumford’s Formula 1.44. The last step is to find ω2 where

ω := c1(ωG/H) and most of the necessary work has been done in the

preceding subsection.

Recall that A is the blowup of P1 ×H at the (b− 1)cTe points of type

e. Denote by E the exceptional divisor of this blowup so that

(2.36) E2 = −(b − 1)cTe .

Next let τ̂ be the proper transform of χ∗(τ) on A. Note that τ̂ =
χ∗(τ)− 2E so that

(2.37) τ̂2 = (χ∗(τ)− 2E)2 = ρ∗(σ)2 + 4E2 = 2Tbc + 4E2

and that π∗(R) = τ̂ where R is the ramification divisor of the k-
sheeted branched cover θ.

To begin with,

ω = π∗(ωA/H)+R = π∗
(
χ∗(ωP1×H/H)+E

)
+R = π∗

(
−2χ∗(sH)+E

)
+R

where sH is a horizontal section of P1×H. Let’s set L = π∗
(
−2χ∗(sH)+

E
)

so that we can write ω2 as L2 + 2L · R + R2 which we’ll compute

term-by-term.

First

(2.38) L2 = deg(π)
(
−2χ∗(sH)+ E

)2 = kE2
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since E is orthogonal to the image of χ∗. Next, by push-pull and the

fact that τ passes doubly through each point of Te

2L · R = 2(−2χ∗(sH)+ E) ·π∗(R)
= 2(−2χ∗(sH)+ E) · τ̂
= 2(−2χ∗(sH)+ E) · (χ∗(τ)− 2E)
= −4(sH · τ + E2)
= −4(deg(ξ) sM · σ + E2)
= −4(Tc + E2)

(2.39)

The last term is a bit tricker. To compute it, we use the decomposition

of the inverse image of the branch divisor of the covering π as

π∗(τ̂) = 2R + R′, the fact that π∗(R) = τ̂ and the equation

(2.40) R · R′ = (b − 1)c(2T(2,2) +
4
3
T(3)) .

This last follows from the local descriptions of the preceding section

which show that R and R′ are disjoint except over points of IH of

types (2,2) and (3) where they intersect with multiplicities 2 and 4
respectively, and Lemma 2.23 showing that over each of the b(c − 1)
points of JM , there lie T(2,2) points of type (2,2) and 1

3T(3) of type

(3). Then,

R2 = R · 1
2
(
π∗(τ̂)− R′

)
= 1
2
(
τ̂2 − R · R′

)
= Tbc + 2E2 − (b − 1)c(T(2,2)

(2.41)

by applying (2.37) and (2.40).

Finally, degA(δ) = k(b−1)cTe since the fibers of G over A are smooth

except over the points of type e where each fiber contains k nodes.

The claim for degZ(λ) now follows by using this, (2.38), (2.39) and

(2.41) to compute 1
12

(
ω2
G/A + degA(δ)

)
and then simplifying using

(2.36) and the tautological relation T = Te + T(2,2) + T(3).
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2.4 Known effective cones in genus 0

The preceding sections indicate how far we are from understanding

even the intersection of the effective cone with the λ − δ-plane for

Mg . To my knowledge, there are not even any conjectures about

generators for the entire cone NE1(Mg) or NE1(Mg,n) either in terms

of geometric loci spanning the extremal rays (assuming these cones

are [locally] polyhedral) or in terms of coordinates of these rays in the

bases of the Theorem 1.31. However, there are a few cases in genus 0
in which a complete answer is known and in this section I’d like to

briefly review these.

The starting point is a paper of Keel and McKernan [43] that must

now be the most quoted unpublished work in algebraic geometry

and whose ideas inspire many of the results of the next lecture. In

it, they consider the space M0,ñ that is as the quotient of M0,n by the

natural action of Sn induced by permuting the marked points. The

boundary ∆̃ of M0,ñ has components ∆̃i that are simply the images

(cf. Exercise 2.13) of the loci εi on M0,n of reducible curves with i-
points on one side and (g − i) on the other. Now that there is no

risk of confusion with classes in Mg we will write ∆i for εi and, to

simplify notation, adopt the convention in the rest of this section

that if explicit indexing is omitted then sums are to be taken over i
running from 2 to b g2 c.

The key result is then the beautiful

Lemma 2.42 Every Sn-invariant, effective divisor class D on M0,n is

an effective sum of the ∆i

where by an effective sum of a set of vectors (usually either over a

set of effective divisor or over one of effective curve classes), I mean

a linear combination of these classes with non-negative coefficients.

This immediately implies
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Corollary 2.43 The effective cone NE1(M0,ñ) is simplicial, and is

generated by the classes ∆̃i .

Proof of Lemma 2.42: Any Sn-invariant D is clearly a linear com-

bination
∑
bi∆i so the point is to show that, if D is effective, then

we can take the bi all non-negative. We do this by induction using

test curves. We may assume that D contains no ∆i since proving the

result for the D′ that results from subtracting all such contained

components will imply the result for D.

As a base for the induction, pick an n-pointed curve (C, [pi , . . . , pn])
not in the support of D and form a test family with base B � C by

varying pn, fixing the other pi . Since C is not in D, B must meet D
non-negatively. On the other hand, B · ∆2 = (n − 1)—there is one

intersection each time tn crosses one of the other ti—and is disjoint

from the other ∆i . Hence, b2 ≥ 0.

Now assume inductively that bi ≥ 0. Choose a generic curve

C = (C′, [p′1, . . . , p′i])∪ C′, [p′′1 , . . . , p′′n−i])

in ∆i in which q′ on C′ has been glued to q′′ on C′′ and form the

family B � C′′ by keeping q′ and the marked points on both sides

fixed but varying q′′ (Example 1.47 is a model here). As above B·D ≥ 0,

B ·∆j = 0 unless j is either i or i+1. And, as above, B ·∆i+1 = (n− i)
(one intersection each time q′′ crosses a p′′k ), but now B lies in ∆i so

to compute B ·∆i we use Lemma 1.42. On the left side, the family over

B is C′ × C′ and the section corresponding to q′ has self-intersection

0. On the “right”-side, the family is C′′×C′′ � P1×P1 blown up at the

points where the constant sections corresponding to the p′′k meet the

diagonal section corresponding to q′′ and hence the proper transform

of that section has self-intersection (2− (n− i)). The upshot is that

B ·D = (n− i)bi+1 − (n− i − 2)bi completing the induction.

In fact, this proof shows quite a bit more. It immediately gives the

first inequalities in Corollary 2.44 and the others follow by continuing

the induction and using the identifications ∆i = ∆n−i .
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Corollary 2.44 [43, Lemma 4.8] If D =
∑
bi∆i is an effective class

whose support does not contain any ∆i (or, if D is nef), then (n −
i)bi+1 ≥ (n − i − 2)bi for 2 ≤ i ≤ b n2 c − 1 and ibi−1 ≥ (i − 2)bi for

3 ≤ i ≤ b n2 c.

It’s natural to hope that we might be able to replace the twiddles

in Corollary 2.43 with bars with a bit more work. That we cannot

for the first statement, for any n ≥ 6, is shown by an example of

Vermeire [62]. For n = 6, work of Rulla [57] and, independently,

Hassett and Tschinkel [37] gives the corrected answer. It’s necessary

to add the components of the loci Fσ of curves fixed by σ ∈ Sn where

σ runs over all products of three disjoint transpositions8. We’ll look

more closely at the second question for M0,n in the next lecture.

I want to close with another Corollary of Lemma 2.42 also due to

Keel and kindly communicated to me by Jason Starr. This describes

the effective cone of the Kontsevich moduli space M0,0(Pd , d). It’s

probably in order to recall, at least telegraphically, a few relevant

definitions and facts first. Because it’s the only case I’ll touch on, I’ll

stick to maps from curves of genus 0 to Pd . The notes of Fulton and

Pandharipande [22] are the best place to start to learn about these

now fundamental objects in more generality.

Consider maps f : (C, [p1, . . . , pn]) -Pd from a connected n-pointed

nodal curve of genus g whose image in to Pd is a curve of degree β and

say that a second such map f ′ : (C′, [p′1, . . . , p′n]) -Pd is isomorphic

to f if there is an isomorphism τ : C -C′ of pointed curves such

that f = f ′ ◦ τ . Then f itself will have finitely many automorphisms if

and only if any component of C collapsed to a point by f contains at

least 3 “special” points (i.e. marked points or nodes) in which case we

say that f is a stable map. So long as they collapse no components,

maps can be stable even if their source has no marked points. Such

8The loci Fσ may also be identified with the pullbacks from M3 of the hyperlliptic
locus under the map which identifies each pair of transposed points.
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maps have a projective Kontsevich moduli stack M0,n(Pd , β) and a

coarse moduli space M0,n(Pd , β). The simplest example is the space

M0,0(Pd ,1) which is nothing other than the Grassmanian of lines in

Pd .

The only such space I will consider here is the spaceM0,0(Pd , d) which

is studied further in recent work of Coskun, Harris and Starr ([9] and

[10]). A general point of this space has a smooth source curve C with

linearly non-degenerate image f (C) ⊂ Pd of degree d and hence is

nothing more than a rational normal curve. The philosophy is to

see M0,0(Pd , d) as the natural compactification of the family of such

curves. For example, M0,0(P2,2) has an open stratum consisting of

plane conics. One boundary divisor arises when the curve C becomes

reducible, the map f has degree 1 on each component and image

consists of a pair of transverse lines. But there is a second in which

the map f degenerates to a double cover of a line in which the image

is “virtually marked” with the two branch points. These intersect

in a locus of maps from a pair of lines to a single line in which

only the image of the point of intersection is “virtually marked”.

This generalizes: Pic(M0,0(Pd , d)) is generated by effective classes Γi ,
the closure of the locus whose generic map has a domain with two

components on which it has degrees i and d − i with 1 ≤ i ≤ b d2 c ,

and a class G, the locus where f (C) is degenerate and lies in a proper

subspace of Pd .

Lemma 2.45 A class D = aG +
∑
biΓi is effective if and only if a ≥ 0

and each bi ≥ 0.

All we need to show is that effective classes have positive coeffi-

cients. We start with a. Choose a general map g : P2 -Pd for which

g∗
(
O(1)

)
= O(d) (i.e. a generic d + 1-dimensional vector space V of

degree d polynomials). Then g sends a general pencil B of lines in

P2 to a pencil of rational curves of degree d. The image of a general

element of this pencil will be a rational normal curve of degree d,
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hence non-degenerate, so g(B) Æ G and hence g(B) · G ≥ 0. No ele-

ment of the pencil will be reducible, hence g(B) · Γi = 0. Since we can

make any rational normal curve a member of the pencil by suitably

choosing V and B, this family of test curves must meet any effective

divisor, in particular, D, non-negatively. So a ≥ 0.

To handle the bi , we use a remark of Kapranov [39] that the set K
of maps f ∈ M0,0(Pd , d) whose image contains a fixed set of d + 2
linearly general points is disjoint from G (by construction) and may

be identified with M0,d+2 (by using the points as the markings) so that

points of Γi ∩K correspond to those of ∆i+1. We can choose K not to

lie in D by taking the (d + 2)-points to lie on a rational normal curve

not in D so K must induce an effective class DK onM0,d+2. But K does

not depend on the ordering of the d + 2 points so DK is Sn-invariant

and non-negativity of the bi follows from Lemma 2.42.

I have only touched on [10]. The reader will find in it a different

proof of the result above, sharper in the sense that it produces

moving curves dual to the effective classes that are needed in most

applications, a stability result for effective cones of M0,0(Pr , d) for

r ≥ d and intriguing new computations of sg for 3 ≤ g ≤ 6.

Exercise 2.46: Another important effective class on M0,0(Pd , d) is

the locus H of maps whose image meets a fixed codimension 2 linear

subspace L ⊂ Pd . In fact, the first determination of the Picard group

of M0,0(Pd , d) by Pandharipande [54] showed that it is generated by

H and the ΓI . Show that

(d + 1)H = 2dG +
b d2 c∑
i=1
i(d − i)Γi .



Chapter 3

Cones of Ample Divisors

This lecture reviews what is known about the ample and nef cones

(and, dually, the Mori cone) of the spaces Mg,n. Here, we at least know

what we’d like to prove and in many cases we have proved it: the

F-Conjecture 3.15 says that all effective curves are combinations of the

most obvious ones, the one dimensional strata of the stratification

by topological type discussed at the end of Section 1.1 and this is

known when g + n ≤ 6 or if n = 0 and g ≤ 25. Section 3.2 discusses

this material.

These results depend on more classical ampleness results for Mg

dealing mainly with when combinations of λ and δ are ample. To

start, let’s recall a few of the earliest results. Historically, the first were

due to Arakelov [1] who showed that κ = 12λ−δ is ample and that λ is

nef. (Exercise 3.10 shows that λ is not ample). The GIT construction of

Mg using Hilbert points of n-canonical models—which works for any

n ≥ 5—realizes it a the Proj of a ring of invariants and hence comes

equipped with a natural projective embedding. By tracing through the

construction, Mumford [52, Section 5]. showed that this embedding is

given by a multiple of n(12λ− δ)− 4λ. The best result—that aλ− bδ
is ample if a ≥ 56

5
b ≥ 0—is given by taking n = 5. On the other

hand, 11λ− δ has degree 0 on the curves in Example 1.51. The small
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gap between these results was filled in by Cornalba and Harris who

showed that 11λ− δ is nef1. This result and the basic inequality for

the degrees of λ and δ on which it depends will be the main object of

Section 3.1 which also briefly reviews some sharpenings by Moriwaki.

3.1 A basic inequality

Suppose we’re given a proper flat family π : X -B of varieties, and a

family of line bundles on the fibers Xb = π−1(b) of the family—that

is, a line bundle L on X , considered modulo pullbacks of line bundles

on B. If L is sufficiently ample, its direct image π∗L will be a vector

bundle E of some rank r +1: we’ll assume this from now on. We begin

with a theorem that lets us move some of this positivity information

down to B. If k is the dimension of the fibers of π , then we set

D = (r + 1)c1(L)−π∗c1(E) ⊂ X and F = π∗
(
Dk+1

)
⊂ B .

Theorem 3.1 Assume that B is one dimensional, and that for a

general point b ∈ B the line bundle Lb = L Xb is very ample and

embeds Xb as a Hilbert stable variety in Pr . Then deg(F) ≥ 0, i.e.,

(r + 1) ·π∗
(
c1(L)k+1

)
≥ (k+ 1) ·π∗

(
c1(L)k

)
· c1(E).

A few words of explanation of the setup here are in order. The class D
is chosen to be invariant under tensoring L with the pullback of a line

bundle on B, hence to give an invariant of L modulo such pullbacks.

Taking the (k+ 1)st power of D gives a class of codimension k + 1
on X so that the push down F is a divisor class on B. Also, since

B is one-dimensional, it suffices to exhibit one value of b for which

h0(Xb, LB) = r + 1, Lb is very ample and ϕLb(Xb) is Hilbert stable. In

general, if we assume that these conditions are met for every b ∈ B
(or for all but a finite number), we may deduce that F has nonnegative

1Recall that this means that it intersects every effective curve non-negatively.
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intersection number with every curve in B and hence that F is nef

(lies in the closure of the cone of ample divisors on B).

Cornalba and Harris apply the theorem in the simplest way: given

a one-parameter family π : X -B of stable curves, with the general

fiber Xb smooth and nonhyperelliptic, we take L = ωX/B . Since the

degree of L on the fibers of π is 2g − 2 and the degree of L on X is

the degree of the line bundle κ on B, we have

gκ ≥ 2(2g − 2)λ.

On the other hand, we know that κ = 12λ− δ; plugging this in and

collecting terms gives:

Corollary 3.2 If π : X -B is any one-parameter family of stable

curves, not all hyperelliptic or singular, then the degree of λ and δ on

B satisfy

degB(δ) ≤
(
8+ 4

g

)
· degB(λ) .

Because Corollary 3.2 and its consequence Cornalba-Harris Theorem

3.9 are such keys result in this chapter, I am going to reproduce the

proofs of them given in Section 6.D of Moduli of Curves [32]. We begin

with a few reductions. First, for any cover B′ -B, the divisor class F ′

associated to the pullback of L to the pullback family X′ = X ×B B′ is

just the pullback of F to B′. It’s thus sufficient to prove the inequality

after such a base change; in particular, we may assume, if we like,

that the first Chern class c1(E) is divisible by r + 1. Next, since the

divisor class F was specifically chosen to be invariant under tensoring

L with pullbacks of line bundles on B, we may choose a line bundle M
on B with first Chern class c1(E)/(r + 1) and replace L by L

⊗
π−1M∨.

Thus we may assume that c1(E) = 0 and then what we have to show

is that c1(L)k+1 ≥ 0.

Now consider the natural map

ϕ : Symm(E) -π∗ (Lm) .
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For sufficiently large values ofm, Symm(E) and π∗(Lm) will be vector

bundles of ranks Or (m) =
(
r+m
m

)
and P(m) respectively where P =

PXb is the Hilbert polynomial of the fiber Xb of π and the map ϕ will

be generically surjective. We thus have an induced map

ψ : W = ΛP(m)
(
Symm(E)

) -ΛP(m)(π∗(Lm))
which is likewise generically surjective: since the right-hand side is a

line bundle this simply means the map isn’t identically zero.

Fix a point b ∈ B such that on Lb is very ample on Xb and embeds this

fiber as a Hilbert stable variety2 Xb ⊂ Pr = P(E∨b ), and consider these

maps just over that point. The kernel of ϕb is just the mth graded

piece of the ideal of Xb so the kernel of ψb, viewed as a point in the

projective space P
(
Wb
)

is just the Hilbert point [Xb] of Xb in

G
(
P(m), Symm(Eb)

)
⊂ P

(
Wb
)
.

Now, by the hypothesis that Xb is stable, there exists a homogeneous

polynomial fb of some degree n on the vector space V := W∨b , with

the properties that

i. fb is invariant under the action of the group SL(Eb) on Symn(V);
ii. fb([Xb]) ≠ 0.

The first of these properties states that: there is a global holomorphic

section f of the bundle Symn(W) whose value at b is fb. To see this,

observe that, because the vector bundle E has zero first Chern class,

we can choose a collection of trivializations ϕα : EUα
�-OUα whose

transition functions gαβ take values in SL(n,C) rather than GL(n,C).
Such trivializations induce trivializations on all the multilinear algebra

relatives of E; in particular, we get trivializations ϕ̃α of Symn(W)
whose transition functions g̃αβ preserve f . Thus, if b ∈ Uα we can

simply take f to be given in each coordinate patch by the constant

polynomial fα = ϕ̃α(fb) and the compatibilities fβ = g̃αβfα on the

overlaps are automatic.

2For an introduction to Hilbert points, see Section1.B of Moduli of Curves [32]. The
background in G.I.T. and stability needed in what followsis reviewed in Section 4A.
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The second property above says simply that the image of the section

f under the map

Symn(ψ) : Symn(W) -Symn
(
ΛP(m)

(
π∗(Lm)

))
is nonzero at the point b. In particular, Symn (ΛP(m) (π∗(Lm))) has a

nonzero global holomorphic section and hence

c1
(
Symn(ΛP(m)(π∗(Lm)))) ≥ 0.

This is all we really need to know. To start with, this implies that

c1
(
ΛP(m)

(
π∗(Lm)

))
= c1

(
π∗(Lm)

)
≥ 0.

What is this last quantity? We can try to estimate it by applying the

Grothendieck-Riemann-Roch formula to the line bundle Lm on X .

Of course, this formula describes, not the Chern class of the direct

image, but the alternating sum

c1
(
π!(Lm)

)
=
∑
i
(−1)i · c1

(
Riπ∗(Lm)

)
.

In the present circumstances, though, the higher cohomology of Lm

vanishes on every fiber of X -B, so that the higher direct images of

Lm are zero. Grothendieck-Riemann-Roch then tells us that

c1
(
π∗Lm

)
=
[
π∗
(
td(X/B) · ch(Lm)

)]
1

= π∗
([

td(X/B) · ch(Lm)
]
k+1

)
= π∗

(
c1(Lm)k+1

(k+ 1)! +
c1(Lm)k

k!
· td1(X/B)+ · · ·

)
= π∗

(
mk+1

c1(L)k+1

(k+ 1)! +m
k c1(Lm)k

k!
· td1(X/B)+ · · ·

)
.

This last expression is a polynomial inm so, if it’s nonnegative for all

sufficiently large m, then the leading coefficient must be nonnegative.

Thus, as desired, we see that

c1(L)k+1 = deg(f ) ≥ 0.

Exercise 3.3: Show that applying the theorem to a general family

π : X -B of n-pointed stable curves by applying this theorem to
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ωX/B(Σ) where Σ is the usual sum of the n marked sections of π
gives the inequality

(g + n− 1)degB(δ−ψ) ≤ (8g + 10n+ 8)degB(λ) .

Why does setting n = 0 in this inequality not yield Corollary 3.2?

Exercise 3.4: Find the inequalities on the degrees of λ and δ you

get for an arbitrary family X -B of stable curves by applying this

theorem to higher powers of the relative dualizing sheaf and show

they are weaker than Corollary 3.2.

Remark 3.5: The argument leading to Corollary 3.2 actually shows

a bit more. Suppose b is a point of the base B where the fiber Xb
decomposes into two subcurves C and C′ meeting at a point p in a

node of type δi . Then a differential on C not vanishing at p may be

viewed as a section ofωX/B C vanishing simply at p. This section then

extends locally over B to a section s of ωX/B vanishing on C′. If X
looks locally like xx′ = tn near p with x and x′ local equations for C
and C′, then locally s = x′s′ with s a section of ωX/B not vanishing

at p. Tracing this refinement through the argument above gives, the

sharper inequality

degB(δirr + 2
b g2 c∑
i=1
δi) ≤

(
8+ 4

g

)
· degB(λ) .

See [8, (4.4)] for details.

The Cornalba-Harris Theorem

The indirect way the proof of Theorem 3.1 brings in the stability

hypothesis on the generic fiber makes it natural to wonder if this

hypothesis is really needed. The answer is yes as is shown by an

example in [8]. So, it might seem that there’s no hope of extending

this inequality to families of hyperelliptic curves where the hypothesis

fails. By a minor miracle, however, a completely different analysis
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yields the same inequality for such families. I have omitted this very

pretty part of the story and simply refer to Section 6.C of Moduli of

Curves [32] where it is recounted in detail. In the next subsection,

we’ll look briefly at a completely different approach to this inequality,

due to Moriwaki, which (almost) handles both cases simultaneously.

Here, we’ll assume this result and see how to use it to get similar (but

weaker) inqualities for families with singular general members.

To set this up, let X -B be a family of stable curves whose general

fiber has d nodes. By way of terminology, we’ll call those nodes of a

fiber Xb that are specializations of the nodes on a general fiber the

general nodes of Xb, and call those nodes of Xb that aren’t limits

of nodes on nearby fibers the special nodes of Xb. Thus, every fiber

will have exactly d general nodes and a finite number will have some

special nodes as well.

Let Y -X be the normalization of the total space of X: that is, Y -B
is the family whose fiber Yb over any b ∈ B is the partial normaliza-

tion of Xb at its general nodes. After making a base change, we can

assume that there are 2d sections σ1, . . . , σ2d : B -Y whose images

Γl meet a fiber Yb in the points lying over the general nodes of the

corresponding fiber Xb. Note that the general fiber Yb of Y -B will

be reducible if the general fiber of X -B is. If so, then after a further

base change we may assume that Y itself is the disjoint union of a

collection of families Yi -B with connected fibers. The exercise below

shows that any fiber of one of the Yi , together with those marked

points σi(b) lying on it, is a stable pointed curve. Finally, we replace

each Yi by its minimal desingularization (so that now each fiber of Yi
is a semistable pointed curve).

Exercise 3.6: Let (C, p1, . . . , pn) be a stable n-pointed curve. Let

πS : C̃S -C be the partial normalization of C at a set S of nodes.

Make each connected component D of C̃S into a pointed curve by

marking the points on D that map under π to either a marked point

of C or a node lying in S. Show that each such component D is then
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stable as a pointed curve .

We’re now ready to describe the degrees of the divisor classes λ
and δ on B associated to the family X -B in terms of the corre-

sponding classes λi and δi associated to the families Yi -B and the

self-intersections (Γl)2 of the images of the sections σl : B -Yi . We

have

deg(λ) =
∑
i

deg(λi) and deg(δ) =
∑
i

deg(δi)+
∑
l
(Γl)2 .

Given this, what is the largest possible ratio of deg(δ) to deg(λ)?
The first thing to notice is that components Yi -B whose general

fiber has large genus gi do not help maximize this ratio: for such a

component we’ll have deg(δi) ≤ (8+4/gi) ·deg(λi), and the sections

Γl lying on Yi will have negative self-intersection, bringing the total

degree of δ down further. Components Yi with fibers of genus 1 do

better: we have

deg(δi) = 12 · deg(λi);

and while we do have to have at least one section Γα lying on Yi , its

self-intersection will be simply −deg(λi). We can thus make up a

family of any genus g with

deg(δ) = 11 · deg(λ) :

just take a constant family C×B -B of smooth curves of genus g−1,

with constant section Γ = {p}×B, and attach any family of semistable

curves of genus 1 as in Example 1.47.

Can we do better than 11? Clearly, we can do this only by including

components Yi whose general fiber is rational; so we have to digress

a moment to investigate the contributions of these.

Lemma 3.7 If S -B is a family of rational curves with smooth total

space and such that each singular fiber contains exactly two compo-

nents equipped with n pairwise disjoint sections Γl . Define dj to be the



3.1 A basic inequality 86

number of singular fibers with j of the sections passing through one

component and (n− j) passing through the other. Then,

(n− 1) ·
∑
l
Γ 2l = −

∑
0≤j≤bn/2c

j(n− j) · dj .

This argument is a variant on the one used to prove 2. of the Pullback

Lemma 2.9. Define a P1-bundle T -B by blowing down the compo-

nent of each singular fiber meeting the smaller number of sections—if

both meet n
2 pick either to blow down—and let Gl be the image of

Γl on T . Each singular fiber of type dj in S gives a fiber of T with j
sections meeting. Hence,∑

l<m
GlGm =

∑
0≤j≤bn/2c

j(j − 1)
2

· dj .

But on a P1-bundle, the difference Gl −Gm of two sections is numer-

ically equivalent to a sum of fibers so has self-intersection 0. Thus,

G2l +G2m = 2Gl ·Gm and plugging into the preceding inequality gives

(n− 1) ·
∑
l
G2l =

∑
0≤j≤bn/2c

j(j − 1) · dj .

Passing back to S, each blowup in a fiber of type dj reduces the

self-intersection of the j sections which meet at the point by 1. Hence,

(n−1)·
∑
l
Γ 2l = (n−1)·(

∑
l
G2l −

∑
0≤j≤bn/2c

j·dj) = −
∑

0≤j≤bn/2c
j(n−j)·dj .

Exercise 3.8: Show that the relation in Lemma 3.7 holds even if the

family S -B has singular points as follows. Suppose that, at a point

p ∈ Sb, S has local equation xy − tk. Check that:

1. after blowing down the component of Sb containing j ≤ g + 1 of

the points σl(b), the resulting surface will be smooth at the image of

p;

2. the corresponding sections Γl will meet pairwise with intersection

number k, contributing k · j(j − 1) to the sum of the intersections

Γl · Γm; and,
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3. to recover the original surface S we must first blow up k times to

separate the sections Γl passing through the image of p, and then

blow down the first (k − 1) exceptional divisors lowering from the

sum of the self-intersections Γ 2l by k · j2.

Returning to our family, suppose Yi -B is a component with rational

general fiber and that ni of the disjoint sections Γl lie on Yi . Lemma

3.7 gives

(ni − 1) ·
∑
l
Γ 2l = −

∑
0≤j≤bn/2c

j(ni − j) · dj

where dj is the number of singular fibers with j of the ni sections

passing through one component and ni − j passing through the

other. By stability, however, each ni ≥ 3, so that the sum of the

self-intersections of the sections Γl is less than or equal to minus the

number of singular fibers. A component Yi -B with rational fiber

thus contributes nothing to λ and a negative quantity to δ. The upshot

is that the ratio of 11 obtained by having elliptic tails is the best we

can do. We have thus proved the:

Cornalba-Harris Theorem 3.9 For any positive integers a and b,

the divisor class aλ− bδ is ample on Mg if and only if a > 11b.

The following exercise is a warning against the temptation to conclude

that λ itself is ample on Mg : that, in other words, we can let b = 0
above.

Exercise 3.10: Let Y -B be the family of stable curves obtained by

identifying a fixed point on a fixed smooth curve C1 of genus g1 with

a variable point on a fixed curve C2 of genus g2 = g − g1. Show that

degB(λ) = 0 and hence that the linear system given by any multiple

of λ contracts the image of B in Mg .
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Moriwaki’s refinements

In this section, I’d like to describe briefly a sharpening of the Theo-

rem 3.1 due to Moriwaki [50] which provides necessary and sufficient

inequalities for a divisor class D to meet curves in Mg with smooth

generic fiber effectively. I should disclaim, however, that all we’ll do

here is sketch a toy version of his setup and record a few conse-

quences: you’ll have to go to Moriwaki’s series of papers leading up

to [50] to see the general case and the proofs.

To get a first idea of how Moriwaki’s setup works, fix a family of

complete curves π : X -B over a not necessarily complete base B
with smooth general fiber and a vector bundle E of rank r on X such

that the restriction of Eb to the general fiber of π is a semi-stable

bundle. (Recall that E is called semi-stable if the maximum of the ratio
deg(F)
rank(F) as F runs over all subbundles of E is achieved by taking F = E.)

Bogomolov’s inequality [4] then asserts that 2rc2(E)− (r − 1)c1(E)2
has non-negative degree on X and hence that π∗

(
2rc2(E) − (r −

1)c1(E)2
)

has non-negative degree on B.

Where can we find a bundle E to apply this inequality to? In general,

given a family π : X -B and a line bundle L on X such that the rank

of H0(Xb, L Xb) is constant—say equal to h, we get a bundle E of rank

(h− 1) by taking the kernel of evaluation of sections of L. In other

words, E is defined by the exact sequence

0 -E -π∗π∗
(
L
) -L -0

which will restict on fibers to

0 -Eb -H0(Xb, L Xb)
⊗
O -Lb -0 .

Moriwaki’s idea is to take L to be the relative dualizing sheaf ωX/B
and use the following result of Paranjape and Ramanan [55, Corollary

3.5].

Exercise 3.11: Show that, on a smooth fiber Xb, Eb has rank (g − 1)
and degree (2g − 1). Then use Clifford’s theorem to show that any
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sub-linebundle L has deg(L)
rank(F) ≤ 2 with equality if and only if Xb is

hyperelliptic. Conclude that Eb is semi-stable—in fact, Eb is even

stable if Xb is not hyperelliptic.

Using the Grothendieck-Riemann-Roch formula, it’s then straightfor-

ward to unwind the inequality. The rank r of E is (g−1). By definition,

c(ωX/B) = 1+ γ and c
(
π∗(ωX/B)

)
= 1+ λ (there are no higher terms

since the base B is one-dimensional). Using multiplicativity,

c(E) = (1+π∗(λ))(1+ γ)−1 = (1+π∗(λ))(1− γ + γ2 + . . .)

from which we find immediately that c1(E) = π∗(λ) − γ, c1(E)2 =
γ2 − 2π∗(λ)γ, and c2(E) = γ2 − π∗(λ)γ. We have π∗(γ) = κ by

definition and π∗
(
π∗(λ)γ

)
= (2g−2)λ because γ has degree (2g−2)

on each fiber. Plugging all these evaluations in we find that

π∗
(
2rc2(E)− (r − 1)c1(E)2

)
= 2(g − 1)(κ − (2g − 2)λ)− (g − 2)(κ − 2(2g − 2)λ)
= gκ − 2(2g − 2)λ .

This should look familiar: it’s the same quantity that lead, by plugging

in Mumford’s Formula 1.44, to the Cornalba-Harris inequality (cf.

Corollary 3.2) (
8g + 4

)
· degB(λ) ≥ g degB(δ) .

Thus Moriwaki’s approach can be used to recover the Cornalba-Harris

Theorem 3.9 without the special analysis of curves lying in the closure

H of the hyperelliptic locus. However, the sharper results I am about

to quote require essentially all of this extra analysis (in particular, the

expression for the restriction of λ to H in terms of natural classes on

that locus): see the last paragraph of this subsection.

Exercise 3.12: Generalize the calculation above to generically smooth

families in Mg,n. More precisely, show that if we take L = ωX/B(Σ)
where Σ is as usual the sum of the canonical sections Σi giving the

n marked points, then the corresponding E again has semistable
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restiction to smooth fibers, and that Bogomolov’s inequality recovers

the inequality

(g + n− 1)degB(δ−ψ) ≤ (8g + 10n+ 8)degB(λ) .

of Exercise 3.3.

It’s at this point that Moriwaki really begins to work. He modifies

the bundle E over the locus of reducible curves with a single node,

essentially replacing it by the subsheaf F which maps to 0 in the

E’s of both components, shows this F is still locally free, and then

unwinds Bogomolov’s inequality for F to see in [50, Theorem 3.2] that:

Theorem 3.13 Define the Moriwaki divisor MD on Mg by

MD = (8g + 4)λ− gδirr −
b g2 c∑
i=1
i(g − i)δi .

ThenMD has non-negative intersection with any curve inMg not lying

entirely in the boundary.

This leads to the main result ([50, Corollary 4.3]) that we’ll need in

the next section:

Theorem 3.14 [Moriwaki’s Theorem] A divisor class

D = aλ− birrδirr −
b g2 c∑
i=1
biδi

has non-negative intersection with every effective curve inMg not lying

in the boundary if and only if:

1. a ≥ 0.

2. a ≥ 8g+4
g birr.

3. a ≥ 2g+1
i(g−1)bi for i = 1, . . . , b g2 c
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A divisor D satisfying the inequalities can be decomposed as a posi-

tive multiple of the Moriwaki divisor MD plus an effective combina-

tion of boundary classes. The MD-term meets curves not lying in the

boundary effectively by the previous theorem. The contribution from

the boundary terms involves the proper intersection of an effective

divisor and an effective curve hence must also be non-negative.

To prove the reverse implication, Moriwaki constructs, for each bound-

ary component, a curve B lying in the closure of the hyperelliptic locus

which meets that component effectively and avoids all the others.

Moreover, for each such curve, the general fiber of the corresponding

family is smooth and the special fibers all have a single node. He

then shows that the condition that D · B ≥ 0 is given by inequalities

2. (for δirr) and 3. (for the higher δi) by applying Cornalba and Harris’

analysis of divisors on the hyperelliptic locus3.

3.2 Mori and nef cones

This section reviews what is known and what is conjectured about

the full cone of nef divisors on Mg,n and its dual, the Mori cone of

curves. Tackling this problem may seem like a pretty big stretch given

how hard we had to work above just to understand the intersection

of the nef cone of Mg with the λ− δ-plane. But this is one of those

cases in which generalizing a problem has the effect of making it

easier in many ways. The first key novelty is a conjectural geometric

description of the extremal rays of the Mori cone, the F-Conjecture

3.15. The second is that the form of this conjecture allows us to make

the inductive structure of the set of all these spaces as expressed

in the forgetful and glueing maps a powerful tool. Essentially, the

general case can be reduced to statements in genus 0; unfortunately,

these statements seem to be quite hard.

3This is why their analysis is still needed even if Corollary 3.2 can be proved
without it.
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Almost all the reductions and general statements given here are

proved in the joint work of Angela Gibney, Seán Keel and the au-

thor [25]. These lead, via a computer assisted attack, to unconditional

descriptions of the nef and Mori cones for small g and n that are

contained in later work of Gibney (see [24] and the joint paper [20]

with Farkas).

Conjectures, reductions, consequences, and open

problems

The F-Conjecture 3.15 is motivated by a question originally asked by

Fulton only in the case g = 0 and whose analogue for n = 0 was later

considered by Faber [15], whence the name. Recall from Section 1.1,

that Mg,n has a stratification whose strata are indexed by topological

type (or equivalently, by the graph isomorphism type of the dual

graph)—though only curves in the open cell of each stratum have

exactly this type. We will abuse language slightly and use the term

curve stratum to refer to the closure of a 1-dimensional stratum. Any

nef [ample] divisor class on Mg must, by Kleiman’s criterion, meet

any curves stratum non-negatively [positively]. Greed thus makes it

tempting to conjecture:

F-Conjecture 3.15 Every extremal ray ofMg,n is spanned by a curve

stratum. Equivalently, every effective curve in Mg,n is numerically

equivalent to an effective combination of curve strata; or, a divisor on

Mg,n is nef [ample] iff it has non-negative [positive] intersection with

all curve strata.

With this conjecture in view, it’s convenient to make a few working

definitions

Definition 3.16: The Faber cone of curves is the subcone of the

Mori cones spanned by the curve strata. The Faber cone of divisors

is dual to the Faber cone of curves. A Faber curve or Faber divisor is
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one that lies in the corresponding cone. When the context makes it

clear whether curves or divisors are involved, we simply refer to the

Faber cone.

The definitions above are deliberately vague about what space is

involved so that we can apply them to any space M that has a natural

stratification: in the sequel these will be various subloci and quotients

of Mg,n. We then say that F1(M) holds if very extremal ray of M is

spanned by a curve stratum and speak of Faber curves and divisors

on M .

Before stating what’s known, I want to make a series of elementary

remarks that turn out to have important consequences in the sequel.

Remark 3.17: 1. The existence of the glueing maps of Definition 1.20

implies that the pullback to ∆i,I of any line bundle is numerically

equivalent to a tensor product of unique line bundles pushed forward

from the two factors being glued. The given line bundle is nef on ∆i,I
iff each of the line bundles on the factors is nef.

2. Dually, let B be any curve contained in ∆i,I , and let B′ and B′′ be

its images on the two factors (with multiplicity for the pushforward

of cycles) which we also view as curves in Mg,n by gluing on a fixed

curve as usual. Then, B and B′ + B′′ are numerically equivalent.

3. The generic fiber Cb of the family of curves C -B associated to any

curve B ⊂ Mg,n must consist of components whose modulus varies

with b—we call these the moving components of B and their union

the moving subcurve—and components which have fixed modulus—

we call these the fixed components of B and call their union the

fixed subcurve. Arguing inductively using 2, it follows that every B is

numerically equivalent to an effective combination of curves whose

moving curves are generically irreducible.

4. Finally, if θ : Mg′,n′ -Mg,n is obtained by by gluing a fixed curve

and B′ is any curve stratum in Mg′,n′ , then B = θ(B′) is numerically
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equivalent to a curve stratum of Mg,n. Moreover, if D is any divisor on

Mg and D′ is its pullback to Mg′,n′ , then D · B = D′ · B′. In particular,

if D is a Faber divisor, then so is D′.

The first nice surprise is how easy it is to describe the curve strata

of Mg,n—at least up to numerical equivalence—and to compute the

degrees of the standard divisor classes on them. By Proposition 1.23,

the closure of every stratum is the finite image of a product of spaces

Mgi ,ni . But only only M0,3 is 0-dimensional and only M0,4 and M1,1

are 1-dimensional so we must have one factor of the latter type

and several of the former. This still leaves an enormous number of

combinatorial possibilities for the dual graph but we can effectively

ignore these by viewing curve strata B as test curves in which a

moving component (either M0,4 or M1,1) is attached to a fixed curve

(the various M0,3s). Applying the Attachment Lemma 1.27 and Basic

Dictionary 1.40, we see that the numerical equivalence class of B is

unchanged if we replace the fixed curve by any smoothing of it at the

set of nodes not on the moving component.

Thus, in the M1,1-case where the moving component C has genus

1, we can assume that the fixed component is a smooth curve of

genus g − 1 and that we are in the situation of Example 1.51 with

n additional marked points on the fixed curve. This gives case 1. in

Faber Inequalities 3.19 below by applying the degree calculations for

that example. We denote the corresponding curve stratum, which

sweeps out ∆1,�, by E.

In theM0,4-case, things are a bit more complicated. Now the numerical

type of the stratum depends on the genus of and marked points lying

on each connected component of the fixed curve and the number

of points at which each is attached to the moving component. The

connected components of the fixed curve thus determine one of the

5 partitions of the 4 marked points. These are shown schematically

on the left of (2) to (6) of Figure 3.18 along with the genera for which

each occurs, the possible types of the components (shown in the blue
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i,I j,J

i+j,I∪J

Figure 3.18: Curve strata and their degenerations

boxes as a lower case genus and an upper case set of marked points)

and the boundary component corresponding to each node (shown

in the red boxes except when the node is of irreducible type). The

pictures on the right show the 3 special fibers (with multiplicities

where 2 or more are numerically equivalent).

The convention, from Chapter 1, of writing ∆0,{i} for −ψi to simplify

and uniformize statements is used again here and, without comment,

in the sequel (although we will also sometimes want to refer to the ψ
classes explicitly). In particular, when one of the curves shown is not

stable it is to be replaced by its stabilization. Thus, one possibility

subsumed in case (3) is that the curve on the left is of type (g − 2,n \
{i}) and the “curve” on the right is collapsed to the ith marked point.

The class ψi will then have degree −1 on this curve in the 3. of the

Faber Inequalities 3.19.
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To avoid having to continually “normalize” indices, we define Ig,n to

be a set that indexes the boundary components ofMg,n whose generic

element is reducible (plus our pseudoboundaries ∆0,{i} = −ψi) and

allow ourselves to denote elements of Ig,n by pairs (i, I) with the

understanding that (i, I) and (g − i,n \ I) denote the same element.

These 5 cases then give the corresponding cases in the Faber Inequali-

ties 3.19 by a straightforward application of Basic Dictionary 1.40 and

the generalization to its components of the description of the class δ
in Lemma 1.42.

Faber Inequalities 3.19 Fix a divisor class D = aλ − birrδirr −∑
Ig,n bi,Iδi,I onMg,n with the convention that δirr = 0 if g = 0. Consider

the inequalities

1. a− 12birr + b1,� ≥ 0.

2. birr ≥ 0.

3. bi,I ≥ 0 for 0 ≤ i ≤ g − 2.

4. 2birr ≥ bi+1,I for 0 ≤ i ≤ g − 2.

5. bi,I + bj,J ≥ bi+j,I∪J
for i, j ≥ 0, i + j ≤ g − 1, I ∩ J = �.

6. bi,I + bj,J + bk,K + bl,L ≥ bi+j,I∪J + bi+k,I∪K + bi+l,I∪L
for i, j, k, l ≥ 0, i+ j +k+ l = g, and I, J,K, L a partition of n.

Then D is a Faber divisor if and only if

• when g ≥ 3, all of 1.–6. hold;

• when g = 2, 1. and 3.–6. hold;

• when g = 1, 1. and 5.–6. hold;

• when g = 0, 6. holds.

We now review various partial results in the direction of proving that

Faber divisors are nef. All are reductions of an inductive character.

We begin with the most important technical result. We say that a

divisor meeting all curves B lying in ∆ effectively is log-nef.
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Faber and log-nef implies nef 3.20 If g ≥ 2 or g = 1 and n ≥ 2,

a Faber divisor D in Pic(Mg,n) is nef if and only if its restriction to ∆ is

nef.

Using this, the F -conjecture for general g reduces to genus 0 in

several ways. The first involves a space which generalizes the space

M0,ñ considered in Section 2.4. Define M0,n+g̃ to be the quotient of

M0,n+g by the action of Sg on the last g marked points. A point of

M0,n+g̃ has n ordinary ordered marked points and g unordered (that

is, symmetrized) marked points.

We get a map fg,n from M0,n+g̃ to a locus Fg,n in Mg,n by attaching

a fixed pointed curve of genus 1 at each of the g unordered points

and the map fg,n is the normalization of image Fg,n. Following the

terminology of [12] and [13], we call Fg,n the flag locus and call curves

whose moduli points lie in it flag curves. Figure 2.8 gives a diagram

of such a curve when n = 0.

Theorem 3.21 A divisor D on Mg,n is nef iff D has non-negative

intersection with all curve strata and and its restriction to Fg,n is nef.

Conversely, every nef line bundle onM0,n+g̃ is the pullback of a nef line

bundle on Mg,n. In particular, F1(M0,n+g̃) is equivalent to F1(Mg,n).

The proof produces a nef divisor class D on Mg which has degree 0
on all curve strata of type 6 (in fact is trivial on Fg,n) and has strictly

positive degree on all other curve strata and thus shows that the Mori

cone of Fg,n is a face of the Mori cone of Mg,n.

For g + n ≤ 6 or g ≤ 11 and n = 0, F1(M0,n+g̃) was known by work of

Keel and McKernan [43] so this provided some unconditional evidence

for the conjecture in low genus. Recent work of Gibney [24] combines

this reduction with numerical techniques for verifying F1(Mg) to

extend this range when n = 0, in particular, showing that the F-

Conjecture 3.15 holds in cases where Mg is of general type.

Theorem 3.22 F1(Mg) holds when g ≤ 25.
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Curves B whose moving components are not rational generate a

subcone N of Nef(Mg). We can sharpen Theorem 3.21 as follows:

Theorem 3.23 For g ≥ 1, the subcone N is generated by the curve

stratum E of type 1. and those curve strata of types 2.–5. defined in

genus g. Equivalently, NE1(Mg,n) = N + (fg,n)∗
(
NE1(M0,n+g̃)

)
.

Next, let us say that, somewhat abusively but with no risk of confu-

sion, that a curve in Mg,n is rational if all its the components of its

normalization are rational. These form a locus Rg,n ∈ Mg,n which, by

Lemma 1.8, is the closure of the locus of irreducible g-nodal curves

and is the image of the quotient of M0,n+2g by the group G ⊂ S2g of

permutations commuting with the product (12)(34) · · · (2g − 12g)
of g transpositions by the map rg,n which identifies the corresponding

pairs of marked points (and again normalizes Rg,n). By degenerating

all the fixed components, we can find representatives of all the curve

strata in 2.–6. of Figure 3.18 lying inside Rg,n. Hence,

Corollary 3.24 A divisor D on Mg,n is nef iff its restriction to Rg,n
and to E is nef.

However, there is no converse here, nor do the curve classes in Rg,n
form a face of NE1(Mg,n).

The proofs of these reductions also lead to a few unconditional results

of a more ad-hoc nature.

Proposition 3.25 Let D = aλ− birrδirr −
bg/2c∑
i=1
biδi be a Faber divi-

sor on Mg such that, for each i either bi = 0 or bi ≥ birr. Then D is

nef.

In particular, an extremal ray of the Faber cone satisfying these

hypotheses must be an extremal ray of the nef cone. Two extremal

rays that can be identified in this way are 12λ−δirr for which the Faber
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Inequalities 3.19 of types 1. and 3. are sharp4 and form a maximal

independent set and 10λ − 2δ + δirr for which a supporting set of

inequalities are given by 1., 3.i for i > 1 and 4.i for i = 15. Averaging

these, we recover the Cornalba-Harris Theorem 3.96—the class 11λ−δ
is nef—but with the ironic insight that this class does not span an

extremal ray. All the classes computed by Faber in small genus in [15]

satisfy the hypothesis of the Proposition but there are extremal rays

of the Faber cone that do not: for example, 30λ− 3δirr − 6δ1 − 6δ2 −
2δ3 − 4δ4 − 6δ5 on M10.

The same methods also shed light on morphisms from Mg,n. Recall

that a divisor is called semi-ample if some positive multiple is base-

point free—such a divisor is necessarily nef. If D is nef, a subvariety

Z is exceptional for D if its D-degree is 0, or equivalently if the re-

striction of D to Z is not big. The exceptional locus E(D) of D is the

union of all D-exceptional subvarieties; if D is semi-ample and big,

this is the exceptional locus of the birational map associated to the

linear series |D|. In her thesis [23] (see also [25]), Gibney showed that

Nef dichotomy 3.26 If g ≥ 2 [resp: g = 1] and D ∈ Nef(Mg,n) then

either D is big and E(D) ⊂ ∆ or D is the pullback of a nef divisor on

Mg,n−1 by the map π forgetting the last marked point [resp: D is the

tensor product of pullbacks of nef divisors on M1,P and M1,n\P by the

corresponding forgetful maps πP,n and πn\P,n].

This has some pretty corollaries:

Corollary 3.27 If g ≥ 2, then Mg does not fiber over any projective

variety and any such fibration of Mg,n factors through a forgetful map

πP,n.

4Those of types 5. and 6. are also sharp.
5This answers affirmatively the question of p.5 of [15].
6Let me emphasize that this does not reprove this result since it is used in an

essential way in the proof of the Proposition 3.25.
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Corollary 3.28 If Mg,n -X is any birational morphism to a pro-

jective variety X, then the exceptional locus of f lies in ∆. In particular,

X is again a compactification of Mg,n.

Corollary 3.29 For g ≥ 5, the blowdown of the elliptic tails is the

only divisorial contraction f : Mg,n -X of relative Picard number one

with X projective.

We will see in the last lecture that on M3 there is a second divisorial

contraction, first studied by Bill Rulla [56], associated to the unique

extremal ray of type 4. in Figure 3.18.

Next, since E(λ) = ∆, we get the most speaking consequence:

Corollary 3.30 Any automorphism of Mg must preserve ∆.

The reductions above make it natural to ask how one might attack

F1(M0,n). A natural question is:

Question 3.31: Is every Faber divisor D on M0,n an effective sum of

boundary divisors?

This would imply the F -conjecture for M0,n and hence for every

Mg,n by an induction which is perhaps the simplest and most telling

illustration of the power of the inductive structure of the set of

all spaces Mg,n. Indeed, a positive answer would, by the Effective

Dichotomy 2.2 reduce showing that a Faber divisor D is nef on M0,n

to showing that D is nef on every boundary component ∆0,P . By

Proposition 1.23, each ∆0,P is the finite image of a product of M0,i ’s

with i < n. On the other hand, by 4. of Remark 3.17, D would restrict

to a Faber divisor D′ on each factor which by induction on n would

be nef. Hence D itself would be nef.

Moreover, this question is purely combinatorial and seems, at first,

amenable to a computer assisted attack. The combinatorial formula-

tion is
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Question 3.32: Let V be the Q-vector space that is spanned by

symbols δT for each subset T ⊂ {1,2, · · ·n} subject to the relations

1. δT = δT c for all T ;
2. δT = 0 for |T | ≤ 1; and
3. For each 4 element subset {i, j, k, l} ⊂ {1,2, · · ·n}∑

i,j∈T , k,l∈T c
δT =

∑
i,k∈T ,j,l∈T c

δT

.

Let N ⊂ V be the set of elements
∑
bTδT satisfying

bI∪J + bI∪K + bI∪L ≥ bI + bJ + bK + bL,
for each partition of {1,2, · · ·n} into 4 disjoint subsets I, J, K and L
and let E ⊂ V be the set of non-negative linear combinations of the

δT .

Is N ⊂ E?

Two warnings may be offered against too much optimism. First,

by [62] not every effective D can be written as a sum of boundaries.

Second, the complexity of the combinatorial problem above grows

very rapidly with n. The case n = 6 can be handled by Porta in a few

seconds on a fast PC but attacks on the case n = 7 all seem to crash

after periods ranging from hours to weeks depending on the machine

chosen.

In [24], Gibney formulates7 the:

G-Conjecture 3.33 Every Faber class D on M0,n is can be written

as D = cKM0,n + E where c ≥ 0 and E is an effective sum of boundary

divisors.

Since KM0,n =
∑bn/2c
i=2

(
i(n−1)
(n−1) −2

)
∆i , this is a considerably weaker combi-

natorial assertion than that posed in Question 3.32 but Gibney shows

that the G-Conjecture 3.33 for M0,n implies F1(M0,n) (see the last sec-

tion of this chapter for details). The numerical results of Theorem

3.22 are attained by verifying this one ray at a time.
7Calling it, infelicitously I think, the MF-Conjecture.
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Ideas behind the main reductions

We begin with a proof that Faber and log-nef implies nef 3.20 assum-

ing that g ≥ 3. Fix a divisor class D = aλ − birrδirr −
∑
Ig,n bi,Iδi,I on

Mg,n. I claim that:

Lemma 3.34 If g ≥ 1 and D meets all curve strata of types 1.–5. that

are relevant for g effectively, then D · B ≥ 0 for any curve B not lying

in ∆. If g = 1, then such a D is linearly equivalent to an effective sum

of boundary divisors.

First, we deal with g = 1. In this case, using the relations discussed

following Theorem 1.31, we can assume a and all the b0,{i} (coefficients

of ψi) are 0. Then applying the inequalities of type 5. inductively, it

follows immediately that b0,I ≥ 0 for any I and hence that D is

equivalent to an effective sum of boundary divisors.

Now assume g ≥ 2 and define an associated class D′ on Mg by

D′ := aλ− birrδirr −
b g2 c∑
i=1
βiδi where βi :=max

I⊂n
bi,I

Observe that—because we take the β’s to be maxima—if the coeffi-

cients of D satisfy any one of the sets of Faber Inequalities 3.19 of type

1.–5. for Mg,n, then the coefficients of D′ satisfy the corresponding

inequalities for Mg . For example in case 5., if I is the subset which

computes βi+j , then βi+j = bi+j,I ≤ bi,� + bj,I ≤ βi + βj .

Using the relation ψi =ωi +
∑
i∈I δ0,I from Exercise 1.30 and writing

ci for b0,{i} to simplify notation, we can reexpress D as

(3.35) D =
∑
i∈n
ciωi +π∗(D′)+ E

where π is the forgetful map to Mg and E is the effective sum of

boundary divisors given by

E =
( ∑

I⊂n
#I≥2,#Ic≥2

((∑
i∈I
ci)− b0,I

)
δ0,I

)
+

∑
(i,I)∈Ig,n
i>0

(βi − bi,I)δi,I .
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I claim all three terms in (3.35) meet a curve C ⊂ ∆ effectively. The

classes ωi are nef by a theorem of Keel [41]. The exercise below

handles the middle term.

Exercise 3.36: Show that every Faber class on Mg satisfies the in-

equalities of Theorem 3.14 and hence is log-nef8.

Finally, the sum defining E is effective. The non-negativity of the

coefficient of δ0,I in E again follows from an induction using the

inequalities of type 5. and ci = b0,{i} and that of δi,I for positive i
from the definition of D′. This proves Lemma 3.34.

From this, Corollary 3.24 follows by an easy induction. We must show

that any class D satisfying the inequalities of types 1.–5. must meet

effectively any curve B whose moving components are not rational

and we proceed by simultaneous induction on g and n. When g = 0 or

g = 1 and n = 1 there is nothing to prove so we may suppose g ≥ 2
or g = 1 and n ≥ 2 and by Lemma 3.34 we may assume that B lies

in ∆. First suppose the component containing B is some ∆i,I . As in 4.

of Remark 3.17, this induces a decomposition of both B and D and it

suffices to show that D′ · B′ ≥ 0. But D′ is again a Faber divisor and

B′ again has no rational moving component. If B ⊂ ∆irr, we apply the

same argument to the normalization at one of the irreducible nodes.

Finally, suppose that D is also nef restricted to Rg,n. In order to

see that we can repeat the induction above maintaining this extra

hypothesis with respect to the pullback of Rg,n via the glueing maps

involved, we simply have to observe that in 4. of Remark 3.17 we can,

by degenerating, choose the fixed curve B′′ that we attach to have

all components rational without changing its numerical equivalence

class.

Next, let’s sketch the proof of the reduction to the flag locus, Theorem

3.21. Here the key technical result is

8This also follows from the inequality of Remark 3.5 and the analogue for hyperel-
liptic families. For details, see [25, Lemma 3.5].
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Lemma 3.37 IfD is a divisor class satisfying the hypotheses of Lemma

3.34 and let S is a stratum of Rg,n whose generic member is a curve

with no disconnecting nodes, then D S is linearly equivalent to an

effective sum of boundary divisors and nef divisors.

Corollary 3.38 If D is a divisor class on Mg,n meeting effectively

all curve strata of types 1.–5. and B is a curve on Mg,n whose general

member has no moving component that is smooth and rational, then

D · B ≥ 0

The corollary follows by induction as in the argument proving Corol-

lary 3.24 above. Applying 3. of Remark 3.17, we may assume that

the general member of B is irreducible and applying Corollary 3.24

that all components are rational. Then Lemma 3.37 applied to the

smallest stratum S whose closure contains B (so that B does not lie

in the boundary of S) expresses D as a sum of classes that meet B
effectively. Applying Remark 3.17 again, the corollary yields Theorem

3.23.

The proof of Lemma 3.37 proceeds in two steps. As in the proof of

Lemma 3.34, we can write

D =
∑
i∈n
ciωi +π∗(D′)+ E

where π is the forgetful map to Mg and E is now an effective sum of

boundary divisors of reducible type9. Thus, it suffices to prove the

lemma replacing D by D′ and S by its image under π and we may

assume n = 0. The image of S is a point if g = 1 and is either a point

or a curve stratum of type 4. if g = 2 (since there are, generically, no

disconnecting nodes) so we can assume that g ≥ 3.

Let C be the stable curve corresponding to a general point of S and let

C′ be a component of C. By hypothesis, C′ comes from a point in the

open stratum of some M0,k by a glueing map. The k marked points

9So E is empty in genus 1.
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come equipped with a partition P whose parts are the pairs of points

lying over nodes of C′ and the subsets lying on the intersection of C′

with each connected component of C \ C′—at least two points lie in

each such subset since there are no disconnecting nodes. Observe that

each boundary class δi on Mg will pull back on M0,k to an effective

sum of classes δI where I is a union of parts of P—we’ll write I � P .

The coefficient birr of δirr in D must be non-negative by inequality 2.

If it is 0, we are done by applying Faber inequalities 3. and 4. If it is

positive, we may rescale D so that it equals 1. Then writing Mumford’s

Formula 1.44 as −δirr+12λ = κ+
∑
i>0 δi and recalling that λ is trivial

on M0,k, we see that D pulls back to

κ +
∑
I�P
aIδI

with each aI ≥ −1. Using the second relation in Exercise 1.35, this can

be rewritten as∑
I�P

( |I|(k− |I|)
k− 1 − 1+ aI

)
δI +

∑
I 6�P

( |I|(k− |I|)
k− 1 − 1

)
δI

This expression is almost effective as it stands— |I|(k−|I|)
k−1 ≥ 2 except

when |I| = 2 and we get 2− 2
k−1 or when |I| = 3 and k = 6 when we

get 2− 1
k−1—and the second step in the proof it to use the Four Point

Relations 1.34 to massage it into effective form. This is a lengthy but

purely combinatorial argument so I will not give it here, referring

instead to [25, Lemma 4.4].

To get the converse, consider the class

D = aλ− birrδirr −
∑
(i,I)

(
g + n− (i + |I|)

)(
i + |I|

)
δi,I

on Mg,n in which the ψ classes again appear in the sum (with indexes

(0, {i}). Elementary algebra shows that the intersection of D with

any stratum of type 6. is 0. These strata are exactly those inherited

fromM0,n+g , and since, by [40], the strata ofM0,n+g generate its Chow

group, this shows that D has trivial pullback to M0,n+g and hence to
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M0,n+g̃ . If we now require that a > 12birr − (g + n− 1) then D meets

strata of type 1. positively, and if we also require that birr >
(
n+g
2

)2
,

then it meets strata of types 2.–5. positively. By Theorem 3.21, such a

D is nef.

To see that every nef bundle on M0,n+g̃ comes from one on Mg,n,

first note that, by computations of Faber in [16], the pullback map

f∗g,n : Pic(Mg,n) -Pic(M0,n+g̃) is surjective and, by construction, D has

trivial pullback. Given a class G ∈ Pic(M0,n+g̃), choose a class E on

Mg,n and such that G = f∗g,n(E). If G is nef then, for large m, E +mD
will meet any effective curve not pulled back from M0,n+g̃ positively

(because D does) and hence must itself be nef.

Going a bit further, I claim that D · B = 0 if and only if every moving

component of the family B is smooth and rational. Since such a B
is equivalent to a stratum of the flag locus, this shows that D⊥ ∩
NE1(Mg,n) = NE1(M0,n+g̃). Since we already know that D is trivial on

curves coming from the flag locus, the claim follows from

Lemma 3.39 If θ : Mh,p -Mg,n is a factor of the product decomposi-

tion of a stratum ofMg,n not arising from a smooth rational component

of the general member of the stratum, then the exceptional locus of

θ∗(D) lies in the boundary of Mh,p.

This lemma depends on Corollary 3.27 from Gibney’s thesis [23] and

leads in turn into the other results on exceptional loci quoted above

and I will once again simply reference the proof there or in [25, Lemma

4.8].

Gibney’s numerical results

In this subsection, I’ll sketch the strategy behind Gibney’s numerical

attack on the F-Conjecture 3.15 for low values of g + n. The key idea

goes back to the paper [43] of Keel and McKernan. Consider a sum

G =
∑
bI∆I
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of boundary components of M0,n such that 0 ≤ bI ≤ 1 for all I and

some bI > 0. In other words, both G and ∆−G are effective sums of

boundaries: I’ll say such an G is a modest boundary.

F-Ray Theorem 3.40 If G is as above and R is an extremal ray of

NE1(M0,n) for which (KM0,n +G) · R < 0, then R is spanned by a curve

stratum.

I’ll prove this in a moment. First, let’s see what consequences it has.

Corollary 3.41 If the G-Conjecture 3.33 holds on M0,k for k ≤
N then the F-Conjecture 3.15 holds on M0,k for k ≤ N and hence,

by Theorem 3.21, on Mg,n whenever N ≥ g + n.

Recall that the G-Conjecture 3.33 asserts that every Faber class D
on M0,k can be written as D = cKM0,k + E where c ≥ 0 and E is an

effective sum of boundary divisors. The plan is clear: assume that

a Faber divisor D with the shape given in the conjecture meets an

extremal ray R negatively and derive a contradiction. We do this by

induction on k.

To begin with, choose 0 < d < c so that G = d
c E is modest and set

E′ = 1−d
c E which is again an effective sum of boundaries. Then

D = (cKM0,k + E) = c
(
(KM0,k +G)+ E′

)
.

If D · R < 0, then R is not a Faber ray and we must, by the F-Ray

Theorem 3.40, have (KM0,k +G) · R ≥ 0. It follows that E′ · R < 0.

Now suppose that the ray R is spanned by a curve B. This curve must

lie in one of the boundary components in the support of E′ which is,

via a glueing map, the image of a product of spaces M0,j with j < k.
But the pullback of D to these factors will again be a Faber divisor

and hence by induction will be nef. If R is not spanned by a curve, we

can choose a curve class B close enough to R that E′ · B < 0 and then

repeat the argument above.
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The plan of Gibney’s calculations is then straightforward to summa-

rize in principal. First feed the conjectural description of the Faber

cone of Mg as an intersection of halfspaces implied by Faber In-

equalities 3.19 into a package like lrs and have it produce the dual

description in terms of rays. Then attempt to verify the G-Conjecture

3.33 for each ray: this stage is carried out by a software package called

Nef Wizard written by Dan Krashen. In practice, to get beyond very

low values of g, it’s necessary to pullback the calculation to M0,ñg,

On this space, heuristics that use previous experience about how

earlier nef classes were expressed as sums of boundaries are used

to guide the verification for others and certain symmetric averages

also streamline the verifications for many D. This work takes up

two-thirds of [24] to which I refer to further details.

Now back to the F-Ray Theorem 3.40. The proof here follows the

original plan of Keel and McKernan [43, 2.4–2.6] as modified by Farkas

and Gibney [20, Theorem 4] and uses some more technical results

from minimal model theory that I will just quote. The key step is

to show that R lives on some boundary component. Suppose not.

Then R · ∆I ≥ 0 for every I and hence R · KM0,n < 0. Now κ is an

ample class with support the full boundary ∆. By an application of

the Cone and Contraction theorems [47], the ray R must be spanned

by a contractible curve C not lying in ∆, the associated contraction

f : M0,n -X must be finite on ∆ and the relative Picard number of

f must be 1. Moreover, by [40] each ∆I has anti-nef normal bundle—

∆I · B ≤ 0 for any curve B ⊂ ∆I .

In this situation, I claim the exceptional locus of f must be the curve C.

Given this we reach a contradiction if n ≥ 7 by applying [46, Theorem

1.14] which estimates the dimension of the space of deformations

of C inside Hilb(M0,n) as −KM0,n · C + n − 6 ≥ n − 6 and shows that

C moves in M0,n: deformations of C must also lie in the exceptional

locus of f . Of the remaining cases, n = 4 and n = 5 are trivial and

n = 6 is handled in [20] by a direct verification that the Faber and



3.2 Mori and nef cones 109

Mori cones coincide using the approach of Question 3.32.

To see the claim, assume instead that some irreducible surface S
gets mapped by f onto a curve or point. Since ∆ has ample support

and f ∆ is finite, T := ∆∩ S is non-empty and each TI := ∆I ∩ S is an

effective Q-Cartier divisor in S which is either empty or a union of

components of T . Furthermore, f T is finite and f contracts S to an

irreducible curve U ⊂ f (T). Now choose an irreducible component

B of T lying in a maximal number of ∆I . Since the ∆I have anti-nef

normal bundles and ∆ has ample support, there must be a ∆J not

containing B and such that ∆J · B > 0. If B′ is a component of ∆J ∩ S,

then one of the ∆I that contains B must, by maximality for B, not

contain B′. Now ∆I and ∆J both meet fibers of f so for a suitable r we

must have ∆I − r∆J pulled back from X. Now let V :=
(
∆I − r∆J

)
E .

Our choices mean that V · B < 0 and V · B′ ≥ 0. But V is pulled back

from U and B and B′ are multisections of f so this is a contradiction.

Now that we know that R is pulled back from some glueing map

θ : M0,I∪l -M0,n, we replace G by the modest divisor G′ = G +
(1 − bI)∆I . Since ∆I has anti-nef normal bundle, (KM0,n + G′) · R is

again non-positive. Applying Lemma 1.26, θ∗(G′) = G′′ −ψl where

G′′ is again modest and by adjunction θ∗(KM0,n) = KM0,I∪l + ψl so

θ∗(KM0,n +G′) = KM0,I∪l +G′′. Since (KM0,I∪l +G′′) · R ≤ 0 we can now

conclude by induction that R is Faber.



Errata to Moduli of Curves

If only Joe and I had devoted to one more reading for content the

time we spent just before submission on the copy-editor’s concerns

over style issues like “red, white, and blue” versus “red, white and

blue”. Sigh . . .

Thanks to those who took the trouble to point out errors. If you find

others, a note to me at morrison@fordham.edu would be appreciated.

Page 102, line -10: Replace “gth Fitting ideal” with “(g − 1)st Fitting

ideal”.

Page 156, line 2: Replace γ
2 with γ2

12 .

Page 158, line 13: Replace γ2 with γ2
2 .

Page 212, line 5: Replace (p − 1) with (p − i)..

Page 235, line 2: Replace “open” with “locally closed”. Lemma 3.34

shows that the locus U of nodal curves is open in the Hilbert scheme

but K̃ is closed in U ..

Page 235, line 22: Replace OD(1) Dη with OD(1).

Page 259, line -9: Replace (d − σ)E with (d −α)E.

Page 267, line -1: Replace “ramification” with “vanishing”.

Page 303, line 20: The index in both summations should be α not i.

Page 304, line -11 and -3: We pulled but we forgot to push. Adding

the missing π∗’s, these two displays should read

mailto:morrison@fordham.edu
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(r + 1)k+1π∗
(
c1(L)k+1

)
− (k+ 1)(r + 1)kc1(E)π∗

(
c1(L)k

)
and (r + 1) ·π∗

(
c1(L)k+1

)
≥ (k+ 1) ·π∗

(
c1(L)k

)
·c1(E).

Page 333, line 12: Replace “for such (composite) g” with “when g + 1
is composite”.

Page 336, line 19: This display should read

(VY , p) = (rs + r − 3, . . . , rs + r − 3, rs + r − 2, rs + r − 1) .

Page 338, line 12: Replace “Theorem (5.49)” with “Theorem (5.45)”.

Page 341, line 2: Replace “codimension 2” with “codimension 1”.
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