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Preface

This is an working draft of a set of lecture notes for a one-semester

terminal course in mathematics aimed at intending humanities, busi-

ness and social science majors. My goal is that even students with

very weak mathematical preparations learn that mathematics can il-

luminate important questions in their everyday lives and that all but

the weakest learn something about how it does so.

My first priority was finding questions that can capture the inter-

est of such students. My second was giving complete explanations

of the answers that combine rigor and accessibility. Together these

have dictated a preference for depth over breadth. All the mathe-

matics I develop deals with either finite probability and statistics or

the time value of money, but these topics are treated thoroughly.

Where my priorities were not mutually compatible, I have sacrificed

completeness by employing mathematical black boxes but these are

clearly identified when used.

This is a draft of September 12, 2010. The most recent draft of the

hypertext version of the notes may be downloaded at:

http://projectivepress.com/math4life/math4life.pdf.

Comments, corrections and other suggestions for improving these

notes are welcome. Please email them to me at morrison@fordham.edu.

Ian Morrison

New York, NY
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Help! Navigating through Math4Life

Overview

This document will teach you how to navigate the Math4Life website

in various ways: via Acrobat™ or your personal favorite pdf reader,

or in your web browser, using a set of standard navigation buttons

of all the pages, and using the network of internal links between

the various section documents in the course. In addition, you’ll learn

how the course numbering system works and what the different type

styles and colors mean so you can use these to help navigate as well.

Links to the subsections which describe each are listed below.

Help! Table of Contents

Overview

Using Acrobat or your browser

Choosing a view

Using the Math4Life navigation buttons

Using links in Math4Life documents

How Math4Life is numbered

What Math4Life’s type styles and colors mean

Using graphs and pictures
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Using Acrobat or your browser

Using Acrobat or your browser

I’m going to assume that you are familiar with the operation of

the Acrobat application which lets you view and work with PDF or

Portable Document Format files. You’ve clearly managed to get hold

of a copy of the application or the plug-in or you could not be read-

ing this file. (If you need a copy for another computer that you use,

you can get the latest version free from the Acrobat Reader web site.)

If you have never worked with PDF files before, you might want to

spend a few minutes looking over the manual which is also included

in the standard Acrobat installation as a file named Reader.pdf. By

the way, you can generally recognize PDF files by their names which

virtually always end in the suffix “.pdf”.

The Math4Life web site is designed to be accessed interactively

through a standard web browser: it works well with almost all ver-

sions (from this millennium) of standard browsers like Explorer, Fire-

fox and Safari. However, the HTML format used by even the latest

browsers doesn’t allow you to view much mathematics: even some-

thing as simple as a fraction like 1
x is currently beyond it. (In the

future a proposed extension of HTML called XML may solve this but

there are currently no good tools for creating XML pages and no

browsers which support displaying complex XML mathematics.) So,

in Math4Life this problem is solved by placing the math inside PDF

files instead, and then using Acrobat to display this mathematical

text. This approach means that to use the site you will need to con-

figure your browser to use Acrobat or the PDFViewer plugin which

is distributed with the Reader to display the PDF files in the course.

Exactly what you need to do to configure your browser varies con-

siderably depending on what browser you use and what platform

(Mac, Windows . . . ) you are working on. Fortunately, very detailed in-

structions for each of the common browser/platform combinations

are available at the Acrobat Reader Support Center page. Once you
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Choosing a view

are correctly configured, you should be able to navigate through the

Math4Life site just like any other except that when you link to a PDF

file you’ll see it in an the Acrobat window. If you find that follow-

ing links to other files causes your browser to begin downloading

the file you requested instead of just displaying it, you are not cor-

rectly configured. Check that you have followed all the instructions

for configuring your browser properly. If the problem persists, ask

your instructor for help.

Choosing a view

You’re probably used to using your browser to view HTML pages

which are delivered at a fixed size. If the page you are viewing fits in

the window you are using, there’s not much point in enlarging the

window. You’ll just see more space. Conversely, if the current page

is larger than your monitor, you can only see part of the page.

Not in Math4Life. Acrobat can display a page from a PDF file at just

about any reasonable size. In fancier terms, PDF images are scalable.

You may have noticed that when you opened this file what you saw

was the entire first page sized to just fit in your current window.

This is how any document here will appear when you first open it.

What happens if you resize the window you are using? The page

also resizes automatically! Now you’ll see it at the largest size that

fits into the resized window. If the window became bigger, so does

the page and all the type on it. You can get the largest type and

make the page easiest to read simply by maximizing the window it’s

in. The proportions of the pages on the site have been chosen so

that when you do this the page will nearly fill the whole monitor

both vertically and horizontally. (The actual aspect ratio—horizontal

to vertical ratio—used is 2:3. The dimensions of pages have been

chosen so that they’ll fit nicely to the format of a standard trade book

(which is 6 inches by 9 inches) and so that they’ll be easy to read on
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Using the Math4Life navigation buttons

a standard early 21st century monitor. If you have a larger monitor,

you can just magnify the pages (all the type scales and they’ll be

easier to read) or use a smaller window as you prefer.

The Acrobat reader also provides several other tools for adjusting

the view which are described in detail in the manual. Its View menu

lets you alter the standard view with which each new page is dis-

played and its magnifying glass tool lets you zoom in to see part of

the page in more detail (and back out again). This last is particularly

handy for looking closely at graphs and other pictures as described

in Using graphs and pictures.

Using the Math4Life navigation buttons

All the pages in the Math4Life website contain a standard set of

buttons—located at the bottom left of each page—to assist you in

navigating through the site and, ultimately, in learning the material

in the course more rapidly and thoroughly. Most pages also contain

more specific links: these are explained in the next subsection of this

document. If you want to return from either kind of link to the page

you came from, just press the Back button in your browser as usual.

The navigation buttons below work just like those in the title bar if

you want to experiment.

?
This is the Help button. Pressing it brings you to this docu-

ment. Use it anytime you want to refresh your memory about

how the site is organized and how to navigate it.

1—
1—
2—

The Table of Contents button takes you to a document

which lists all the section documents in Math4Life and vari-

ous related files. The order in which the sections are listed is the one

I recommend studying them in—the chapters and sections are also

numbered in the this order. However, when you are working in later

sections, you may find you want to go back to earlier ones to review

1—
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Using the Math4Life navigation buttons

a topic which is giving you trouble. If the section you are working

on does not have a link to the one you’d like to review, you can use

this button to find the document you are after. Also, the Table of

Contents is only my suggestion for how to present Math4Life so

do not be concerned if your instructor has omitted some topics and

present others in a different order.

a ·· ·· z

The Index button takes you to an alphabetical index to the

important elements in the course. These include definitions,

notations, formulas, methods and topics mentioned in examples and

exercises. If you want to refresh your memory about any element and

you don’t see a link to it on the page you are reading, you can use

this button to go to the index, find what you’re interested in.

You can then jump to the spots in the course where it is discussed,

because every page number in the index file is a link to the corre-

sponding page. The course sections also contain many links to the

index. Text this color or this lighter shade indicates that an impor-

tant term is being used. Just clicking on the the term itself takes you

to directly either to its definition or to the corresponding entry in the

index. For more help on the using the links to and from the index,

see Using links in Math4Life documents.

�̂� The Mail button is located at the bottom right of each

page rather than at the top. When you press it, it opens

your web browser’s email client to a blank letter addressed to me.

If you have anything you’d like me to hear—things you like or

dislike about Math4Life, suggestions for improvements, questions

the course didn’t answer to your satisfaction or discussions you

found confusing—please write to me. Your feedback will help make

Math4Life better for other students. I am especially interested if you

think you have found a mathematical or factual error in the text. I

have tried to root them all out but your help with any you think you

have found will be greatly appreciated.
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Using links in Math4Life documents

Using links in Math4Life documents

Whenever one section refers to any other part of the course—like

the elements found in the index but also to specific examples, prob-

lems and projects—it provides a link to the corresponding location.

If you want to take another look at what is being referred to, just fol-

low the link. This ability to keep yourself mentally up-to-date in any

discussion is one of the most important innovations in Math4Life.

Use it! : math is a very sequential subject and it’s usually impossi-

ble to understand a new concept well if you don’t understand other

concepts on which it depends. In the Math4Life website, I’ve tried

to make sure that you are never more than a click away from those

other concepts. Please take advantage of all the work that went into

making this possible.

Links are colored, not underlined. Four colors are commonly used.

I’ll first discuss the different kinds and then give some examples of

each.

This color is used for links within a single document. Following these

links is pretty much instantaneous.

This color is used for links for a different document in the Math4Life

site. If you have already opened this document in the current session,

you’ll jump to it right away. However, if you have not worked with

the file to which you are linking, you browser will have to contact

the Math4Life website and download the file for you to work with.

This may cause a small delay—usually no more than a couple of

seconds—in bringing up the material you linked to. The lighter color

warns you that there may be a short delay in making the link.

Let me make one other point about these cross-document links. In

most cases, links to other files take you to a section you’ve already

covered in the course. That’s what I mean when I say math is sequen-

tial. If you find yourself linking back to a previous section often,

you’d be wise to take a break and review it separately. In the long
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Using links in Math4Life documents

run, you’ll find that it’s much faster to get the prior material straight

once than to have to keep going back and reviewing it every time it’s

needed later on. If you don’t, you’ll soon find yourself jumping back

2 or 3 times in a row. Very inefficient.

Links to and from the Index use this color or this lighter shade. The

deeper shade is used to flag the primary occurrence of an important

element—the definition of a new term or the statement of a formula.

So this color marks something that we’ll be referring to frequently

later on and that you should make careful note of. Clicking on the

term will take you directly to its entry in the index.

The lighter shade is used to indicate secondary appearances of an

important term. In such cases, clicking on the term will take you, not

to the index, but directly to its primary occurrence so you can see

what it means immediately. The lighter shade is also used to mark

terms that are indexed but that are not defined in the course—things

like proper names, historical events and so on. You can recognize

that you’re looking at an entry with no definition or primary occur-

rence because when you click on it, you’ll be taken to its index entry.

In the opposite direction, every page number in the Index links you

to the corresponding page in the course. Bold type and arrowheads

are used to indicate what you can expect to find at the end of each

link. Let look at a hypothetical example (not actually in the index)

dealing with the quadratic formula.

quadratic formula, 22ñ, 26, ð31, 35, 44

The page containing the primary or defining use of this term—in

this case, it would be the statement of the quadratic formula—is

indicated by the boldface page number 26. The pages marked with

arrowheads—22ñ and ð31—indicate the start and end of a section of

the course dealing with the quadratic formula. Typically, this section

would contain and introduction to the formula, its derivation, the

statement (on page 26) examples of its use, exercises and so on. If

you want to really master the formula you should read this entire
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How Math4Life is numbered

range of pages and its much easier to just show the start and end

than to include an entry for every page in the range.

Finally, the pages like 35 and 44 point to later uses of the formula

outside the primary discussion, usually applications to something

we’re covering later in the course.

Finally, links to files outside the Math4Life web site have this color.

Like the cross-document links they’ll take a while to load, possibly

quite a while depending on how busy the external site is. Fortunately,

there are only a few of these links mostly to help you in researching

projects in the course.

Here are some examples of the three kinds of links if you want to

experiment. First an internal or in-document link to the Overview

at the top of this file. Next a couple of links to another document in

the course: one to the top of Section 5.1 and one to the main formula

of that section, the Simple Interest Formula 5.1.6. Third, links to

the definition of a periodic rate in the main text and to the index

entry on intermediate balances. Finally links to files outside the site,

to the Acrobat web site mentioned above and to the author’s home

page.

How Math4Life is numbered

The Math4Life course is not only a web site. It’s a book too. Since the

book can’t use links for navigation it has to provide some other way

of letting you refer to important ideas. Mathematicians like to do this

by numbering such ideas. So all important ideas in the course have

a number which is used when the idea is stated—either in the book

or online—and also whenever the idea is referred to in the book or

linked to online.

These numbers aren’t so important online where you can just link

directly to the statement of an idea from a reference to it. But in the
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book they are your only way of tracking down references. To make

this as simple as possible a single numbering system is used for

everything—formulas, figures tables etc. This has the big advantage

that to find a concept with a bigger number you always flip towards

the back of the book and to find one with a smaller number you flip

towards the front. The same applies within sections online: bigger

numbers are forward, smaller ones back.

The numbers used have three parts, the number of the chapter where

the concept is found, the number of the section of that chapter, and a

sequence number within that section. The parts are separated by pe-

riods. Let’s look, for example, at some links to the section on yields.

This is Section 5.4: that is the fourth section of the chapter on inter-

est and the time value of money. The main formula of that section

is the Annualized Yield Formula 5.4.4: this is the fourth element

in that section. I know that the Continuous Yield Formula 5.4.17

comes later in this section because it is element number 17. Like-

wise, I know that Simple Interest Formula 5.1.6 comes in an earlier

section, the first section of this chapter.

What Math4Life’s type styles and colors mean

Colored type is used throughout Math4Life to tell you what kind

of material you are looking at. We’ve already seen the four colors

used for in-document links, cross-document links, index links and

external site links. Here is what the other colors you’ll see signify.

Most of the book is black like this paragraph. This is the color used

for informal discussions, the part of the book you’ll generally be

reading. It’s used in most of the book: when we are introducing a

topic, deriving important ideas, making secondary points about for-

mulas or problems, or dealing with the interactions between the real

world and the subjects in Math4Life.
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When you see this crimson color, pay special attention. It signals

that an important concept, definition, or formula is being stated. To

continue reading the section and do the problems it contains, you’ll

need to have a good grasp of the material in crimson. I’ll go further:

you should try to memorize the crimson material before trying the

problems that use it. Learning math is a lot like learning a foreign

language. The crimson concepts are our vocabulary and grammar.

Working the problems is speaking the language. You can’t expect

to speak the language if you don’t know the grammar and vocab-

ulary. “Haste makes waste.” You may save a few minutes by trying

to skim the crimson material but then you’ll just wind up wasting

hours and getting frustrated trying to do the problems. To help you

check whether you are ready to proceed, we plan to add frequent

self-tests to the next version of Math4Life.

This color is used for worked examples, usually problems just like

those you’ll be asked to do later. These illustrate how to use various

formulas and methods. If you are having difficulty getting started on

a problem, page back. The most recent example will usually provide

a model for solving a very similar problem.

This color means homework. It is used for exercises, problems and

projects that you are asked to work. Usually, I provide solutions

to a few of the problems—in addition to the examples mentioned

above—as models for you to use in working them.

Finally, a few words about type styles. Only one style—called small-

caps—is important to recognize. It is used whenever numbered con-

cepts are used. When a numbered element is introduced, its name

and number are given in bold small-caps like Simple Interest

Formula (2.1.4) or Problem (2.2.23). When such a concept is re-

ferred to, ordinary small-caps are used as in Simple Interest For-

mula (2.2.4) or Problem (2.2.23). Bold type is also used in the index

to distinguish the pages on which the primary or defining occurrence

of a term occurs: see Using links in Math4Life documents for more
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details.

Here are the other type styles used in Math4Life and what they sig-

nal. Don’t worry if the type terms are unfamiliar; it’s the signals that

matter. We use italic type like this both for emphasis and to sig-

nal the informal introduction of a numbered concept which will be

defined carefully later on. As you can see from this file, titles are

given in bold sans-serif type which looks like this. References to

computer files (including web addresses and other URLs) are given

in a monospaced sanserif font as in http://www.fordham.edu or

readme.txt.

Using graphs and pictures

“A picture is worth a thousand words” is a saying which applies of-

ten in mathematics. Throughout the course, you’ll find graphs and

pictures designed to illustrate important points. Often, you’ll want

to look at these in more detail than is available at the relatively low

resolution of a computer monitor. In most web pages you’d be stuck

because graphics have a single fixed resolution, but in Math4Life all

the graphics are scalable and can be drawn at any resolution. Just

select the magnifying glass tool from the Acrobat toolbar and click

on the spot you’d like to zoom in on. To zoom in further, click again.

To zoom out, hold the alt or option key down—you’ll see the plus

sign in the magnifying glass change to a minus—and click. You can

jump back to the standard full page view by choosing the Fit page

command from the Acrobat View menu. Try it out on the shrunken

graphic below—you’ll see this graph at full size Section 5.9.
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Introduction

Goals of the course

This text is aimed at college freshmen, mostly intending to major

in the humanities and social sciences, who are required to take a

semester of college mathematics. For most of you, this is the last

math course you’ll ever take. And probably wouldn’t be taking this

course, if you weren’t required to. As I often put it to my own stu-

dents, I know that given a choice between taking this course and

having a root canal with no anesthetic, you’d be in the dentist’s of-

fice tomorrow morning. Most of you find math boring and irrelevant,

and most of you find it difficult and frustrating.

That bothers me, but not because I think everyone should be a math

major. Rather, it’s because mathematics provides powerful and prac-

tical tools for dealing with important problems that are sure to arise

in your everyday life, and because there’s no good non-mathematical

substitute for these tools in dealing with these problems. If you don’t

have a basic appreciation of these tools, you’ll make poor decisions

that will affect your personal finances, your health, and a host other

areas of your future life.

So the goal of Math4Life is to at least introduce you to some of the

most important—and simplest—of these tools. I don’t expect most

of you to become producers of mathematical solutions. though I

hope a few of you will be inspired by the course to pursue math-
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ematics further. I don’t even expect that you will all learn to be intel-

ligent operators of mathematical tools, though I hope that many of

you will. What I do want every student to take away from this course

is an appreciation for the applicability of mathematical tools to real-

life problems, and a readiness to ask others to help you use tools to

address your problems. In short, I want you all to become intelligent

future consumers of mathematics.

Three questions that affect your life

The hardest task I face is to capture your interest and the best way I

can think of to achieve this is to focus the course on answering ques-

tions you’ll have to face in your everyday lives—questions whose an-

swers are important to everyone. Hence the name of the course. Here

I’ll just give three examples to whet your appetite.

Our first example is a financial one. You’re probably going to have

to be responsible for accumulating almost all of your retirement

savings—I know that as freshmen, your retirement seems like the

remotest of all possible concerns, but one of the most important

lessons we’ll learn is that not confronting this problem when you are

young is a recipe for a world of pain. Few of you will have employ-

ers who provide pension benefits, and the Social Security system will

have run out of money long before you ever qualify. Question one is:

How much will you need to save for your retirement and how should

you do so?

Let’s assume that you hope to earn $100,000 a year in your peak

earning years. Making standard assumptions about retirement in-

come (that it should be about 80% of your peak salary) and optimistic

assumptions about the returns you can hope for on investments (ask

your parents how well they slept during the fall of 2008, if you want

to understand why these are very open to question), you’d need a

nest egg of at least $1,500,000 if you retired today. But you won’t
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retire for another 40–45 years. If we again are optimistic and as-

sume inflation runs at historical averages of 3–4% a year, prices will

quadruple before you retire. That means that you will need to have

saved $6,000,000.1

If you work for 40 years, that means that you’ll need to save—not

earn but save—$150,000 a year! How can you ever do this? This just

doesn’t seem possible. Fortunately it is, but only if you adhere to cer-

tain rules of savings. We’ll learn these rules, and how to meet such a

retirement goal, in Chapter 5 where we’ll also study other universal

financial problems like how to effectively manage consumer credit

and when it’s better to but and when to rent your home.

Our second question is a medical one. Mad cow disease or BSE

(bovine spongiform encephalopathy) causes the gradual degenera-

tion of the brain (encephalopathy) and spinal cord into a spongy

(spongiform) mass—hence the scientific name. People usually ac-

quire the disease by eating meat from infected cattle, hence the com-

mon name The disease often takes a decade or more to declare itself

by progressive dementia (memory loss and hallucinations) and phys-

ical impairment (jerky movements, rigidity, ataxia and seizures) and

another before death ensures. There is currently no cure or effective

treatment for BSE and it’s invariably fatal. Question two is: What are

the chances you’ll catch mad cow disease from the next burger you

eat?2

We know the probability is not very high, but I expect that’s a bit

vague for most of you. Would you eat that burger if you knew the

chance was 1 in a 1000? 1 in a 1,000,000? We need to quantify (that

is give a definite numerical value to) the probability of a burger being

infected before we can make an informed decision about whether or

not we want to risk eating it.

1If your parents are independently wealthy, you can skip to question two.
2Vegetarians can skip to question three.
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It’s the job of the U.S.D.A. to ensure the safety of your food supply

so you’d expect them to be testing cattle for BSE. They are. But I

claim that their testing program is deliberately designed not to an-

swer the question of what fraction of cows have BSE, other than to

say it’s not too high. Feel safe now? Why I think the U.S.D.A. is de-

liberately not trying to answer question two is explained in Section

2.2—in fact, Chapter 2 introduces many other common misconcep-

tions that we’ll try to clarify our study of probability in Chapter 4

where we’ll work out do the mathematical details.

The final example deals with global warming and speaks to our

desire to be responsible citizens and use our votes to influence

public policy. If every year were hotter than the one before for

anthropogenic reasons (that is, because people were adding green-

house gases to the atmosphere), we’d see this trend easily and it

would be hard to claim that temperatures weren’t rising. But the

climate signal is influenced by many factors other than the anthro-

pogenic ones and is very noisy. We observe a mix of hotter and cooler

years and any given year is likely to be warmer in some places and

cooler in others. Even in a single place, we’ll see periods that are hot-

ter than average and others that are cooler. How can we separate out

all this noise and test whether there’s a real trend towards higher

temperatures?

One idea that has been extensively studied is to simply count the

total number of record high and low temperatures reported from all

places throughout the entire year. This approach eliminates a lot of

the non-anthropogenic fluctuations by aggregating all locations and

seasons. If average temperatures are not changing, then we’d expect

roughly as many new lows as highs3 But if temperatures are really

rising, we’d expect to see more new highs than new lows. In fact, the

ratio of the number of new highs to the number of new lows would

3The total number of each decreases, because the longer we keep weather records
the harder is becomes to surpass all our observations.
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give us a rough measure of the strength of the warming trend.

There’s one big catch here. If average temperatures are not changing,

then we can view each new extreme as a coin toss with outcomes of

high or low instead of head or tail. If we toss a coin, say, 100 times,

we expect about 50 heads and 50 tails. But we don’t expect exactly

50 of each because of random variation. In one series of tosses we

might see 45 heads, and then in the next 57, and in the next 52 and so

on. Likewise, even if average temperatures are not changing, there’ll

be years when we see more new highs than lows (and vice versa). So

we might observe such years just due to random deviation and not

because of a warming trend. Suppose we do see a preponderance of

new highs over new lows in one year, or even in a run of consecutive

years. How do we tell if this is due to chance or to a real warming

trend?

The analogous question for coin tossing would be: “How many heads

do I have to see in 100 tosses before I am convinced the coin comes

up heads more often than tails?”. Pretty clearly, we need to see more

than, say, 52 or even 57. But if we saw 100 heads, or even 80, we’d

be pretty convinced the chance of heads on each toss must be bigger

than 50%. So what is the point between observations like 52 and 57

that we attribute to chance and those like 80 and 100 that we think

indicate a coin biased towards heads. An answer to this question can

be applied to highs and lows. If the observed preponderance of highs

or lows is small enough, we attribute it to random effects. But if it’s

big enough, we are convinced there’s trend. The tough question is

then “How big is big enough?”.

This is the kind of question that is answered by statistics. This is a

hugely important subject. Problems of distinguishing between ran-

dom and real effects arise in almost every area of modern research—

think of testing drugs and other medical procedures, or analyzing

surveys and market research to name just two. Really commanding

the ideas of statistics calls for more math than we’ll do here but we
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will cover just enough to answer the questions above dealing with

coin tosses and global warming (and many others) in the final sec-

tion sof Chapter 4.

How to learn mathematics effectively

Even if, as I hope, the preceding questions have convinced that learn-

ing mathematics need not be a total waste of time, I’m sure that most

of you want to get a good grade with the least possible effort. I’ll close

this introduction with a bit of advice for doing so.

The key idea was perhaps best put by Albert Einstein when he said,

“Everything should be as simple as possible, but not simpler than

possible.” Here, what this means is that you must approach learning

mathematics in a fairly disciplined way. In fact, the big difference be-

tween students who find math easy and those who find it hard is not

in their intelligence: it’s in the discipline with which they approach

learning the subject.

You’ll frequently be tempted to save time by cutting corners in the

“simple as possible” process outlined below. If you do so, it’ll be-

come “simpler than possible” and the result will be that you leave

gaps and won’t learn effectively. Even in the short run, you’ll wind

up spending more time than necessary, and you’ll find the subject

much more frustrating. As you proceed, those little gaps add up,

and pretty soon, even topics that should be easy start to seem dif-

ficult. In the long run, your learn less and less efficiently, spending

more and more time, and absorbing less and less. So here’s my four

step plan for learning mathematics as painlessly as possible.

1. Summarize and memorize First, read the text, summarize in

your notebook the new definitions, formulas and theorems you have

encountered, and memorize this summary. You probably will not un-

derstand everything you are memorizing at this stage. Understand-

ing comes through practice in steps two and three. However, if you
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do not have the basic notions at your fingertips you will get stuck

in these steps. As a result you will waste time, become frustrated

and likely never achieve understanding. Most problems in learning

mathematics are due to skipping or short-cutting this step. Remem-

ber Step 1 does not take a lot of time but skipping it can cost a lot of

time.

2. Practice and ask Now begin to understand the ideas you

have seen in Step 1 by working through, first, the examples then, the

solved exercises that use these ideas. You should expect to spend

the largest portion of your time on this step. Because the amount of

practice needed varies greatly from student to student, and—even

for the same student—from concept to concept, it’s hard to say ex-

actly how much time you should spend here. One key point: Start

early!, because, as we’ll see below you may want to break and seek

help.

Begin by reworking examples in the text, checking your answers

against those in the solutions. While doing this you may need to refer

to your summary from Step 1, and to return to the text or class notes

to see how similar problems are worked. Do you find yourself flip-

ping back in the text a lot? That’s a sure sign that you have cheated

on Step 1. Stop right there and go back and review your summary of

the concepts you’re trying to master.

Sometimes you will get stuck: either you cannot see how to do the

problem at all or you cannot get the correct answer. If so, do not

waste a lot of time poring over the problem on which you are stuck.

Give yourself 5–10 minutes to try the problem. Then, if you are still

stuck, make a note to ask me, a friend, or a Help Room tutor about

the problem which you were unable to solve. Taking advantage of

this kind of help is the main advantage of studying mathematics in

a classroom setting. Spending a long time staring at a problem is

usually a waste of your time and a recipe for frustration.

Of course, if you have an assignment due tomorrow—or worse, later
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today—you won’t have time to seek help. That’s why it’s so impor-

tant to start early.

3. Self-test When you have got the hang of these problems, you

should test yourself by trying the solved problems without peeking

at the solutions. You are ready to move on when you can do these

problems and you “know” your answers are right. If you are not sure

about your answers then go back and look again at the worked ex-

amples trying to look only at the questions and develop our own

answers.

Now go back to the solved problems and try to write your own so-

lutions without peeking. Then check your answers. If you are wrong,

you need more practice in Step 2 (and maybe, again Step 1).

If you are getting the solved problems right, try the unsolved

problems—in real life, there are no answers in the back of the book.

Step 3 is complete when you feel confident about your answers to

these unsolved problems too.

4. Validate This is the point of your class homework assign-

ments. These tell you whether or not you have really learned a given

topic. If you have, you will know how to work the problems on

these assignments. If not, you should ask yourself which of the first

3 steps you failed to complete properly. If in doubt, ask your in-

structor for guidance. Don’t just let a topic you did poorly on slide:

next week’s homework will often require you to use ideas from this

week’s. Therefore, it is important to make sure you do not let gaps

in your mastery accumulate as the course goes on.

To summarize, let me emphasize two points. First, Don’t cheat on the

four steps—you’ll only cheat yourself. When learning mathematics,

it is essential to go through all these steps and to do so in the order

shown above. Leave any one out and you will only find attempting

the next one to be frustrating. What’s worse, instead of saving time,

you will waste it.

1—
1—
2—

a ·· ·· z ? 8 Comments welcome at �̂�

mailto:morrison@fordham.edu
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Second, when you do get stuck, Ask! Ask your instructor or go to

your department’s Help Room, or ask a friend when you are having

difficulties. Otherwise, you are missing out on the greatest benefit

of studying math in a organized university setting and you are not

making the best use of the tuition you have paid.
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Chapter 1

Back to Basics

What the topics in this chapter have in common is that they involve

basic notions and skills that we’ll need at many points in the rest of

the course. They form a tool chest we’ll use in our more specialized

projects in the course. You’ll probably have seen most of these topics

in high school and what I’ll say here will just be a review.

One topic merits a special mention. Mistakes with Section 1.1 are by

far the biggest source of dope slapping, “How could I be so stupid?”

errors throughout the course. Even if you think you know this ma-

terial well, please read this section over carefully, try to absorb the

advice it gives in avoiding such errors and work the problems in it.

1.1 Order of operations

Let’s begin this section with very easy multiple choice question.

Brumer’s Problem 1.1.1: Is the quantity −32 equal to:

i) +9; or,

ii) −9.
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1.1 Order of operations

Pencils down please. Are you sure of your answer? The problem is

named after Armand Brumer, an emeritus professor in my depart-

ment. I ask it at the first meeting of every freshman class I teach.

Most years, at least two-thirds of my students answer it incorrectly.

I’ve never had class where two-thirds gave the right answer. Still sure

of your answer? Good.

What’s the issue here? It’s that the expression −32 is somewhat am-

biguous. It’s clear that it involves two operations, a minus and a

square. What’s not clear is the order these should be performed in.

And this order matters!. If we minus first and then square, we get

(−3)2 = (−3)(−3) = +9. If we square first, we get −(32) = −(9) =
−9.

Get the order of operations wrong and, even if you do all the right

operations, you get the answer wrong. Let me repeat what I said at

the start of this chapter. Mistakes with order of operations are by

far the biggest source of dope slapping, “How could I be so stupid?”

errors in freshman mathematics courses of all types.

How can you avoid such errors? The two little calculations above

hide the answer, the most important point of this section. We can

always clarify the meaning of any potentially ambiguous expression

by adding parentheses. In the first calculation, writing (−3)2 made it

clear that I wanted to minus before squaring. In the second, writing

−(32) made it clear that I wanted to square before minusing.

Parentheses Rule! 1.1.2: Any operation(s) enclosed in a pair of

parentheses must be completed before performing any operation(s)

outside that pair of parentheses. So when in doubt, add parentheses!

The moral is clear. Make every effort to train yourself to add paren-

theses whenever you’re the least bit unsure whether an expression

you are writing down is completely unambiguous. I cannot urge

this strongly enough. Parentheses are free. They’re a renewable,

biodegradable resource and emit no greenhouse gases. Learn to use
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1.1 Order of operations

them freely and you’ve eliminated the biggest source of errors. Here

are some problems for practice.

Problem 1.1.3: Each of the following expressions can be interpreted

in two ways corresponding to two different orders of performing the

indicated operations. Show how to obtain each of the two interpre-

tations unambiguously by adding parentheses to the expression and

calculate the value each gives. I have worked the first few to get you

started.

i) 323

Solution
This can mean either 3(23) = 38 = 6561 or (32)3 = 93 = 729.

ii) 14/7+ 7
Solution
This can mean either (14/7) + 7 = 2 + 7 = 9 or 14/(7 + 7) =
14/14 = 1.

iii)
72
6
3

Solution

This can mean either

 72
6


3

= 12
3 = 4 or

72 6
3

= 72
2 = 36.

iv) 23− 17+ 5
v) 16/8× a
vi) −6+ 4/2
vii) 2x2

viii)272/3

ix) 64 − 2
x) 30− 8 · 4
xi) 1+ pT

xii) 8− 4− 4

By the way the answer to Brumer’s Problem 1.1.1 is −9. I know most

of you said +9 and I hope you’ll draw the lesson. No order of oper-

ations error is too easy or stupid to fall into. It’s just so easy to say,
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“OK, minus 3, now square, 9.”. It just happens to be wrong! If you

said −9, I hope you’ll draw the same lesson. You were right this time

but the only reliable defense against order of operations errors in

the future is to use parentheses liberally.

In a better world, this section would end here. Not using parentheses

would be a major felony, recidivists would be rapidly reassigned to

careers in the postal service, and I’d never have to worry about order

of operations errors again. The problem is that even if you resolve

to start putting parentheses under your pillow when you go to bed,

you’re going to run into many ambiguous expressions written by

other people. How do you decide what they mean?

The answer is dangerously simple. For centuries, people who work

with mathematical expressions have used a set of rules that resolve

ambiguities by specifying a preferred order of operations in each

ambiguous case. It’s a simple answer because the rules are simple: a

couple of acronyms pogemdas and bttdltr are all you need to re-

member. It’s a dangerous solution because it’s very easy to ignore

these conventions even if you know them. For example, I’m sure

most of you learned the pemdas rule in high school. From asking

my classes over the years, I know that includes most of those who

violated the e-before-m convention and gave the wrong answer +9 to

Brumer’s Problem 1.1.1. Knowing the conventions is only effective

if you are ceaselessly vigilant about applying them. To make a some-

what vivid but very apposite analogy, pogemdas is to using paren-

theses as abstinence is to using a condom. The Math Help Rooms

of America are filled with students who promised God they weren’t

going to misorder operations before the final.

But we do need to know these conventions so we can correctly eval-

uate other people’s ambiguous expressions. So that I won’t have

to digress once we start to list the precedence rules, I’m first go-

ing to review some Other Grouping operations that we’ll be using

and that are are simply ignored in the pemdas rule that you may
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1.1 Order of operations

have learned in high school. These operations are function like hon-

orary parentheses: they group together other “interior” operations

and they should be done before anything else—except, of course,

operations inside ordinary parentheses.

The four Grouping Operations we’ll see in this course are func-

tions, horizontal bar fractions, superscript exponents and radicals.

Let’s quickly review how each works. As we do so, I’ll point out some

common ways order-of-operations errors arise when working with

them. Sometimes these errors occur when you’re trying to simplify

algebraic expressions on paper. But for most of you, they’ll gener-

ally bite when you are simply using your calculator to evaluate these

expressions.

The function notation f (—) gives us a way to work with any op-

eration that we might find useful by simply giving the operation a

name. In this course, we’ll work most with the natural logarithm and

exponential functions which take a single argument, as in ln( SB ) or

exp(0.01r · y). But we’ll also work with functions having more than

one argument like the combination function C(n, r) and the permu-

tation function P(n, r). And you’ve probably seen lots of other ex-

amples that we won’t need (the trigonometric functions and their

inverses, financial functions, . . . ).

A function f really denotes a rule for calculating a function value

f (x) given an argument or input value x, but, as in the examples

above (where x was S
B or r

100y), you may need to perform other op-

erations to compute this argument. But you need both pieces—the f
and the x—to get the function value. If you separate the parts of a

function expression what you get is nonsense.

A very common mistake of this type when simplifying expressions to

incorrectly write ln(x+y) = ln(x)+ ln(y) by “applying” the distribu-

tive law. Another mistake that’s even easier to slip into occurs when

the rule for f involves algebraic operations. Suppose f (x) = x2 − x.
If you’re smart, you’ll write this f (x) = (x2 − x).
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1.1 Order of operations

What possible point can the parentheses have, since the entire value

of f lies inside them? The answer comes when you try compute an

expression like f (5) − f (2) using a calculator. Let’s try it. A very

common answer is to enter 5ˆ2− 5− 2ˆ2− 2 = 25− 5− 4−2 = 14.

Looks pretty good, but it’s wrong. Adding the parentheses shows

why: now we get (5ˆ2− 5)− (2ˆ2− 2) = 25− 5− 4+2 = 18. In this

case, the parentheses reminded us that we need to distribute the

minus sign in −f (2) across the entire value of f . Putting the minus

and the formula for f (2) side-by-side, as in the first version, doesn’t

achieve this.

Radicals function in much the same way: you must perform any

operations inside or under the radical before you can evaluate it.

The most common is the square root radical, familiar from such ex-

pressions as the
√
a2 + b2 that appears in Pythagoras’ theorem. As

with a function, you can’t separate the radical from its argument.

A common simplification error of this type is to write
√
a2 + b2 =√

a2 +
√
b2 = a + b. We’ll also work with higher radicals. A super-

script y at the left of the radical, as in y
√
S
B , indicates a y th root.

Next, fractions come in two flavors. There’s the numerator-beside-

denominator or slash form, as in 2/3, you use to enter a fraction in

your calculator and the numerator-over-denominator or horizontal

bar form, as in 2
3 . In this book, I only use horizontal bar fractions

(except when illustrating how to enter formulae into a calculator) and

I strongly encourage you to cultivate the same habit. The reason is

that horizontal bar fractions prevent you from making a lot of errors

by forcing you to group any operations that go into the numerator

or into the denominator.

In slash fractions, you need to use parentheses to group these op-

erations or your value will often be wrong. Typical examples is
20−10
5 = 10

5 = 2 and 24
6+2 =

24
8 = 3. You get the right answer by

writing (20 − 10)/5 = 10/5 = 2 or 24/(6 + 2) = 24/8 = 3 but you

must always parenthesize aggressively or you won’t get the answer
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1.1 Order of operations

you want. Since the only way to enter fractions into a calculator is in

slash form, you need to be constantly vigilant that you have added

any necessary parentheses when doing so.

Decades of experience have taught me that if I ask questions that

contain the two calculations above, I will see several answers of 18
and 6. These come from students who used their calculator to do

the calculation and entered 20−10/5 or 24/6+2. The calculator did

what they said not what they meant: it knows pemdas (see pogemdas

1.1.5 below if you don’t) and does the division before the addition or

subtraction. For more, see Example 1.1.8.

Finally, exponentials also come in two flavors. There’s the vertical

or superscript ru form with the exponent above the base that we all

use automatically in handwritten mathematics—for me, at the board

and for you, in your notes—and there’s the base-beside-exponent

form rˆu that you use to enter exponentials in your calculator. As

with fractions, it’s in the transition from the superscript form that

we naturally use to the base-beside-exponent form required by your

calculator that most errors creep in.

In this course, I always write exponentials in superscript form in this

book. Once again, the reason is that in this form any operations that

take place inside the exponent are automatically visually grouped to-

gether. In base-beside-exponent form, any operations that take place

inside the exponent must be parenthesized or your value will virtu-

ally always be wrong. Typical examples are ru+1 and e20·y . These are

not the same as rˆu+1 or eˆ20∗y—for the difference see Example

1.1.8

Calculator Parentheses Rule 1.1.4: When entering an expres-

sion into a calculator:

i) Always include all parentheses present in the formula you are

working with.

ii) Always add parentheses around any function value if they are

not already present.
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1.1 Order of operations

iii) Always add parentheses around the numerator or any fraction

and around the denominator of any fraction if they are not already

present.

iv) Always add parentheses around any exponent if they are not al-

ready present.

Remember, never omit parentheses. When in doubt, add parentheses!

Make these rules a habit early and you’ll save yourself from mak-

ing many mistakes like those discussed above. One last time, make

parentheses your friends. They’re the only reliable protection against

order of operations errors. We’re ready to learn the rules for inter-

preting mathematics written by others who like to live dangerously.

pogemdas 1.1.5: pogemdas is an acronym for Parentheses,

Other Groupings, Exponentiation, Multiplication, Division,

Addition, Subtraction. The order in which the words appear in-

dicates the precedence of the corresponding operations (that is, the

order in which they should be performed).

So first, Parentheses Rule! 1.1.2: perform any operations in paren-

theses before any outside.

Now come the Other Groupings. Evaluate any functions as soon as

the value of the argument inside the function’s parentheses—the “(—)”

above—has been computed. Perform any operation inside a Radical

before taking the Radical. Compute the numerator and denominator

of a Horizontal bar fraction and then take their quotient.

Next, perform any Exponentiations. After these, perform any Mul-

tiplications and Divisions. Finally, carry out any Additions and

Subtractions.

But there’s a catch. pogemdas allows ties of two kinds. First, there

are ties when two operations represented the same letter in pogem-

das are adjacent: which do we perform first? Second, there are two

pairs of different operations that need to be viewed as ties when they

are adjacent to each other. Multiplication and Division have the
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1.1 Order of operations

same precedence; and, Addition and Subtraction have the same

precedence.

We need some convention to break the ties. Once again, the only safe

way is to eliminate the ties by adding parentheses. But when others

have ignored this suggestion, the bttdltr rule comes in.

bttdltr 1.1.6: bttdltr is an acronym for Break Ties Top Down

Left To Right. Ties between operations that are written vertically—

Horizontals and Exponentials—are broken using a conventional

top-down order. Ties between operations that are written horizontally—

between Multiplications and Divisions or between Additions

and Subtractions are broken using a conventional left-to-right or-

der. An informal way of expressing these tie-breakers is that we break

ties by performing the operations in the order in which we encounter

them (at least if we’re using a top-down, left-right script like the Latin

alphabet). This makes breaking ties with bttdltr easy, since it asks

us to break them in natural reading—or, on your calculator, keying—

order.

A few comments. These conventions are a bit intricate. We’ll soon

work a lot of examples that I hope will make everything clear. But,

isn’t using parentheses really a lot easier than using these conven-

tions? You may object that my conventions are a lot more compli-

cated than the ones you were taught in high school. You’re probably

right, but the reason is that what you taught in high school leaves out

many cases. Whole classes of operations (the Other Groupings) are

ignored and breaking ties is treated incompletely or not at all.

Conventions exist so we’ll be able to assign a preferred order to any

set of operations and it’s not a satisfactory solution to resolve only

the easiest or most common conflicts. In my survey of math help

websites, I found none aimed at high school students that give a

complete set of solutions. In surveying, the top 50 or so Google™

hits on “order of operations” the only really complete set of rules I

found was (surprise) in a Wikipedia article.
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1.1 Order of operations

While I am ranting, would somebody please explain to me why it’s

easier to remember “Please excuse my dear Aunt Sally” than pemdas?

I won’t bother trying to work Sally into pogemdas.

OK. On to some examples. Lots of them.

Problem 1.1.7: In Problem 1.1.3, you interpreted each of the fol-

lowing expression in two different ways. Which interpretation was

the “right” one according to the conventions pogemdas 1.1.5 and

bttdltr 1.1.6. I have worked the first few to get you started.

i) 323

Solution
Recall that this might mean 3(23) = 38 = 6561 or (32)3 = 93 =
729. Here we have a tie between two Exponentials which we

break Top Down since these are written vertically. So 3(23) =
38 = 6561 is the right interpretation here.

ii) 14/7+ 7
Solution
Here we have a Division and an Addition. Since the former

has precedence over the latter, (14/7) + 7 = 2 + 7 = 9 is the

conventional interpretation here.

iii)
72
6
3

Solution
Here we have a tie between two horizontal bars which we break

Top Down so

 72
6


3

= 12
3 = 4 is the conventional answer.

iv) 23− 17+ 5
Solution
Here we have a tie between a Subtraction and an Addition

which we break Left To Right so (23− 17)+ 5 = 6+ 5 = 11 is

“right” here.

v) 16/8× a
vi) −6+ 4/2
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1.1 Order of operations

vii) 2x2

viii)272/3

ix) 64 − 2
x) 30− 8 · 4
xi) 1+ pT

xii) 8− 4− 4

Let’s look at some examples that illustrate typical cases where the

Calculator Parentheses Rule 1.1.4 is needed (and where it’s easy

to leave out the extra parentheses needed). Each of the formulae in

Example 1.1.8 below comes up later in the course. In this example,

we’ll see how parentheses that are not needed when formulae are

written with horizontal bar fractions and superscript exponentials

become necessary when we rewrite the formulae using slash frac-

tions and base-beside-exponent exponentials. In particular, you very

often need to add parentheses when making such a conversion.

I’ll choose one pair of parentheses in each formula and decide

whether deleting this pair of parentheses from the formula changes

its meaning or leaves it the same, using the conventions pogemdas

1.1.5 and bttdltr 1.1.6.

Example 1.1.8:

i) (1−r (u+1))
(1−r)

Solution
Removing the parentheses in the numerator gives 1−ru+1

(1−r) . This

means the same thing because a horizontal bar fraction always

says to calculate both numerator and denominator before the

division. The effect is the same as if the numerator were paren-

thesized, as in the original formula. For the same reason, re-

moving the parentheses in the denominator leaves the meaning

unchanged.

ii) (1− ru+1)/(1− r)
Solution
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1.1 Order of operations

This is the same formula as in i) but written with the quotient

in slash form. Removing the parentheses in the numerator gives

1− ru+1/(1− r) and this means 1−
(
ru+1/(1− r)

)
because now

the Division must precede the Subtraction to its left. With the

parentheses, the subtraction came first. So these are different, as

we can see by putting everything over a common denominator

and getting

1− ru+1/(1− r) = 1−
(
ru+1/(1− r)

)
= (1−r)·1−ru+1

(1−r) = (1−r−ru+1)
(1−r) .

Likewise, removing the parentheses from the denominator changes

the meaning. Now the subtraction on the right must come after

the division instead of before. In fact, (1−ru+1)/1−r = 1−ru+1−r
has no denominator at all!

iii) r (u+1)

Solution
Removing these parentheses has no effect because in ru+1 the

superscripted exponent groups the addition so that the u + 1
comes before the exponential base r .

iv) rˆ(u+ 1)
Solution
This is the same formula as in iii) but written in base-beside-

exponent form. Now removing the parentheses does change the

meaning. By pogemdas, the Exponential precedes the Addi-

tion so rˆu+ 1 = (rˆu)+ 1. Going back to superscript form—

ru+1 makes the difference clear as does plugging in almost any

values for r and u. For example, if r = u = 2, then rˆ(u + 1) =
2ˆ(2+ 1) = 23 = 8 while rˆu+ 1 = (2ˆ2)+ 1 = 4+ 1 = 5.

v) e(.05·y)

Solution
Removing these parentheses has no effect because in e.05·y) the

superscripted exponent groups the product so that the .05 · y)
comes before the exponential base e.

vi) eˆ(.05∗ y)
Solution
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1.1 Order of operations

This is the same formula as in v) but written in base-beside-

exponent form. Now removing the parentheses does change the

meaning. By pogemdas, the Exponential precedes the Multi-

plication so eˆ.05∗y = (eˆ.05)∗y . Going back to superscript

form—e.05 · y makes the difference clear—the y is no longer

part of the exponent as does plugging in almost any value for

y and u. For example, if y = 20, then eˆ.05∗ y = eˆ.05∗ 20 =
1.051271096∗20 = 21.02542192 while eˆ(.05∗y) = eˆ(.05∗
20) = eˆ1 = 2.718281828.

Moral: when entering displayed formulae containing function values,

horizontal bar fractions and superscript exponents into calculators,

always pay careful attention to the Calculator Parentheses Rule

1.1.4. When in doubt, add parentheses!

Before I give you some calculator problems, there’s one more pro-

cedure we need to recall. What do we do when we have a fraction

in which the numerator or the denominator is itself a fraction—or

both are? There’s are two easy procedures to handle all such cases.

One is to invert the denominator (even if its not a fraction!) and then

multiply by it. The other is to clear any denominators by multiplying

by them both above and below. Here are some practice problem with

the first few cases worked as models.

Problem 1.1.9: Convert each of the fractions of fractions below

to a simple fraction (with no divisions in either the numerator or

denominator) by both the methods outlined above.

i)
6
3
2
4

Solution
This one is a typical worst case. First, you can see that the middle

bar here is both wider and thicker than the bars above and below

it. So it groups it’s numerator and denominator each of which

just happens to be a fraction.

a. Dividing by 2
4 is the same as multiplying by its inverse 4

2 so 6
3
4
2 =

24
6 = 4.
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1.1 Order of operations

b. To clear two denominators—3 and 4—we multiply by them

above and below to get
6
3
2
4
= 3·4 63

3·4 24
. Cancelling the 3s above and

the 4s below, we again get 4·6
3·2 =

24
6 = 4.

ii) 2x+1
1
x

Solution
Again,the larger bar tell us to group the 2x + 1 and the 1

x . This

looks easier as there’s only a fraction in the denominator, but

we need to remember to ensure that the numerator 2x+1 is cal-

culated before any other operations and the only way to ensure

this is to parenthesize it.

a. Dividing by 1
x is the same as multiplying by its inverse x

1 so
2x+1
1
x
= (2x + 1) x1 = (2x + 1)x = 2x2 + x. NOte that if we do

not parenthesize, then we get 2x + 1 x1 = 2x + x = 3x which is

wrong.

b. To clear the x in the denominator, we multiply by it above and

below to get 2x+1
1
x
= x(2x+1)

x 1x
. Cancelling the xs below, we again get

x(2x+1)
1 = (2x+ 1)x = 2x2 + x. Again, not parenthesizing gives an

incorrect answer: x2x+1x 1x
= 2x2+1

1 = 2x2 + 1.

iii)
1
30
n−l
l

.

iv)
S
B
T−i .

Problem 1.1.10:

i) Each of the following expressions is the displayed form a for-

mula we’ll see later in the course with values inserted for the vari-

ables. Translate each expression into a form in which you can enter

it enter your calculator, being sure to add any parentheses necessary

to avoid changing its value.

a. $2400
(
1+ 7.23

100·365
)730

b. 100
((

5000
4000

) 1
3 − 1

)
c. 6.25

100·4 · $1256.74 · 16

d. 101
9
2
8
3
7
4
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1.2 Handling numbers in various formats

ii) Use your calculator to evaluate your version of each expression

in i). If you don’t get the value indicated below, go back and compare

the original expression and your version to see where they differ.

Correct your version and reevaluate it.

a. $2773.345291.

b. 7.721734500
c. $314.1850000.

d. 210.

1.2 Handling numbers in various formats

This section gives recommendations for dealing with complicated

numerical answers. In particular, we’ll see how to answer three ques-

tions involving such answers that arise frequently in the course:

i) How do we handle whole number answers when they get really

big—that is, too big even for our calculators to deal with?

ii) If an computation leads to a fractional answer and the numera-

tor and denominator of the fraction are big, when should with live

with the complicated fraction and when is it better to get our calcu-

lator to give its decimal form?

iii) When do we want to leave decimal answers unrounded, when do

we want to round them, and when we do round, how do we decide

how many decimals to keep in the rounded answer?

Working with big numbers

The answer to the question, “What’s a big whole number?” is rel-

ative. When you were in grade school, you probably thought that

any number greater than, say, 1000 was big. Today you might think

that numbers in the millions or billions are big. The answer is also
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1.2 Handling numbers in various formats

relative because, whatever size you may think makes a number big,

there are numbers a lot bigger. And in this course, we’ll see lots of

operations that lead to really big numbers, even starting from small

numbers. When we deal with ordering sets in Counting orderings,

we’ll want to consider the number of ways of ordering a set of 100
elements, which is denoted P(100,100) or 100! and is the product of

the whole numbers from 1 to 100. I’m sure none of you would say

that the number 100 is big. But I think you’ll also all agree that

100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

is very big (even if the type I have had to use is very small). For the

record, it has 158 digits.

Numbers this big won’t come up too often, not because the topics

we cover don’t lead to problems involving such big numbers, but be-

cause the problems you’ll be asked to work have been carefully cho-

sen to avoid them. When they do come up, however, they pose one

major problem. They’re too big even for your calculator. A typical

calculator today displays numbers to between 10 and 12 digits. That

may seem like a lot but it’s insufficient even to handle many of the

real-world problems we’ll come across in studying mathematics of

finance. For example, when I looked it up on December 19, 2008, the

U.S. National Debt was $10598195081084.56—that 16 digit number

is a little over ten trillion dollars (and your share is about $35,000).

Your calculator can sleaze out on a number like the National Debt by

ignoring the last few digits—what’s a few thousand dollars between

citizens?—and representing the number in scientific notation as

1.05981950811× 1013 or 1.05981950811e13 .

Scientific Notation 1.2.1: A number is represented in scientific

notation to d significant digits by giving a non-zero leading digit, a

decimal point, (d − 1) digits to the right of the decimal (making, with

the leading digit, a total of d digits) and a power of 10 either in the

usual form or in the “calculator” form with an ‘e’ followed by the

exponent.
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The examples preceding the definition are given to 12 places (a lead-

ing digit and 11 decimals). Notice that the last decimal is not the 0
that was the 12th digit of the National Debt, but a 1. That’s because

I rounded at this place and, because the next digit is an 8, I rounded

up to get the 1. (We’ll review rounding in more detail in a moment.)

Of course, I can only correctly round in this way if I somehow am

given at least 1 more digit of the number I’m converting to scientific

form. For the numbers in scientific notation that you’ll get from your

calculator, you won’t need to worry about this because virtually all

calculators today carry a couple of “spare” significant digits in their

internal calculations exactly to ensure that the digits they display are

correctly rounded.

But your calculator has limitations. We’ll see examples where it gives

the wrong answer to apparently straightforward computations when

we look at The continuous approximation. And most calcula-

tors allow only two digits for the exponent in a scientific form, so

they have no way at all of representing 100!. For the record, it’s

9.33262154× 10157.

What’s really called for, when it’s necessary to handle big numbers

like this, is a better calculator. Such calculators are universally imple-

mented as applications that run on your PC. They go by the name of

computer algebra systems or symbolic computation packages: com-

mon ones are Mathematica™, Maple™ and MathLab™. Even though

the CPUs on most PCs can only handle about 27 digits at a time,

these systems can compute with very large numbers by using soft-

ware techniques to break up calculations into pieces that the CPU

can handle and then reassembling a final answer. I used Maple™ to

compute the value of 100! above, and it’s how I computed the other

very large numbers that will occasionally come up to illustrate ideas

in the course.

I should warn you that it’s easy to choke even these algebra systems.

The size of the numbers they can deal with is, in principle, limited
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not by the CPU but only by the amount of memory on your PC. In

principle, because when the numbers get really big—in the millions

of digits, for example—it can take an impractically long time to find

the answer. And sometimes all the memory, even your entire hard

drive, is just too small. None of these systems can find 22!! (the fac-

torial of 22!) for the very good reason that this number has about

1021 digits and even to list these digits, let alone compute them, all

the memory and hard disk storage on all the computers on earth

would not suffice.

Trust me. I’ll warn you when we’re going to look at a number that

might choke your calculator. Otherwise, in this course, you can

pretty much relax. If you ever do need to work with really big num-

bers in another course, there are two options. Invest in a computer

algebra system: Maple has student editions for about the price of

a graphing calculator. Or, if you just need a quick scientific answer

that’s too big for your calculator, you can always just googleit. Try

googling 100! now—just enter it in the search box, or use the link I

have provided—to check the scientific form above. But again a warn-

ing is in order as you’ll see if you compare google’s answers to 170!

and 171!.

Problem 1.2.2: Write down each of the numbers below in scientific

notation as requested:

i) 230 to 8 significant digits.

ii) 28374948973
37647637 to 6 significant digits.

iii) 12345678 to 7 significant digits.

Fractions versus decimals

In a lot of the formulae we’ll deal with later, the answer we’re after is

expressed as a fraction with a whole number numerator and a whole

number denominator. If you’re like most students today, your first

move on seeing such a fraction is to divide the numerator by the
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1.2 Handling numbers in various formats

denominator in your calculator to convert it to a decimal approxi-

mation. In this subsection, I’d just like to point out that you often

lose information in the fraction-to-decimal conversion process. This

loss of information is of two kinds.

The first kind of loss is a loss of meaning. Very often the numer-

ator of a fraction comes to us as the answer to one question and

the denominator comes to us as the answer to a second question.

The vast majority of the probabilities we’ll compute in Chapter

4 will arise in this way with the both numerator and denomina-

tor arising as the answer to a counting or “How many?” question.

For example, the probability of being dealt a full house at poker

is 3744
2598960 . Here 2598960 is the number of possible poker hands

and 3744 is the number of those hands that are full houses. (We’ll

see how to derive these numbers in A Classic Example: Poker

Rankings. Just take them on faith now.) The fraction 3744
2598960 pre-

serves both these answers. As soon as I convert it to a decimal

approximation— 3744
2598960 ' 0.0014405762304922—they vanish. Even

if I cancel common factors and rewrite the fraction in lowest terms—
3744

2598960 =
6

4165—they vanish.

Converting Fractions to Decimals 1.2.3: When you have ar-

rived at the numerator and denominator of a fraction separately, as

the answers to 2 sub-questions in a problem, don’t convert the fraction

to a decimal.

The goal of this recommendation is to preserve the meanings of the

numerator and denominator as long as possible. However, not con-

verting to decimal form often has practical benefits. It’s also very

common for problems to contain many such two-answer fractions

with the same denominator. You can probably guess why: because

these denominators are all the answer to the same question.

For example, the number of poker hands that are flushes is 5148
and the number that are straights is 10240. The probability of be-

ing dealt a flush is 5148
2598960 , the number of flushes over the num-
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ber of poker hands which has decimal form 0.0019807923169268.

What’s the probability of being dealt a straight? Right, 10240
2598960 or

0.0039400375534829. The probability of any being dealt any kind

of poker hand is a fraction with denominator 2598960 for the same

reason. If we later need to do arithmetic with these probabilities, we

can just work with the numerators since the denominators are all

the same. It’s a lot easier to work with the numbers 3744, 5148 and

10240 than with the decimals

The second kind of loss is a loss of accuracy. Whole-number-ratio

fractions are exact representations of an answer. What we get when

we convert to decimal form is just an approximation to this answer

except in rather special cases. This loss of accuracy is usually harm-

less but it can become important, especially if, as is all too common,

intermediate answers are rounded to just a few places.

Rounding

This brings us to one of the simplest, but also one of the most im-

portant, rules in the course.

First Rule of Rounding 1.2.4: Don’t!
More precisely, never round an intermediate answer.

The Second Rule of Rounding 1.2.6 tells us how to round final an-

swers, but this is much less important. Before, we turn to it, here are

a few examples to illustrate why heeding the First Rule of Round-

ing 1.2.4 is so important.

Problem 1.2.5: Carry out each calculation below in four ways:

a. keeping the answer in fractional form at all times, then convert-

ing the final answer to decimal form.

b. converting the fraction on the left to decimal form and then com-

pleting the calculation using the all the decimals that your cal-

culator gives.
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c. converting the fraction on the left to decimal form and then com-

pleting the calculation using only the first 6 decimals that your

calculator gives.

d. converting the fraction on the left to decimal form and then com-

pleting the calculation using only the first 4 decimals that your

calculator gives.

i) 67500−
(
285
7

)3
Solution

a. To keep the calculation in fractional form is a bit of work.

First the cube is 285·285·285
7·7·7 = 23149125

343 . Then to do the subtrac-

tion, we need to put everything over the common denomina-

tor 343 getting 67500∗343−23149125
343 = 3375

343 . In decimal form, this

is 9.839650146.

b. I kept everything here to 14 places to simulate a typical graphing

calculator. First, 285
7 = 40.714285714286, then we cube this to

get 67490.160349856, and finally

67500− 67490.160349856 = 9.839650144 .

Notice that even though we kept our intermediate answers to 14
places, our final answer was off by 2 in the 14th place. This kind

of rounding error (it wasn’t we who rounded but our calculator,

behind our backs so to speak) is usually not important. But not

always, as we’ll see later in Problem 5.3.8. And we have no way

of knowing how badly we’ve been bitten by an error of this type

other than to check against an answer found in some other way

(above, by using fractions rather than decimals).

c. Now I round 285
7 = 40.714285714286 to 6 places getting

40.7143. That seems like lots of places in this problem. Cubing

this gives 67490.231392153 and finally

67500− 67490.231392153 = 9.768607847 .

Now our answer is off by about 0.07, meaning we can only expect

1 or 2 place accuracy, even though we kept 6 places. This much
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error will frequently be enough to render an answer useless (or

even downright misleading) in an application.

d. Now I round 285
7 = 40.714285714286 to 4 places getting 40.71.

Cubing this gives 67468.849911 and an answer of

67500− 67468.849911 = 31.150089 .

This answer is total garbage, but there’s again no way to tell

because all those (incorrect) decimals make it look pretty good.

ii)
(
10000
1111 − 9

)
∗ 102.478

All approximate calculations run the risk of losing accuracy. That’s

what happened in part i)b above. There’s an entire branch of math-

ematics, numerical analysis, devoted to understanding and eliminat-

ing or at least controlling the sources of such errors. That said, I have

tried hard to ensure that the questions I ask are ones your calculator

will be able to answer accurately.

Let me emphasize, however, that it was the decision to round an

intermediate result—not our calculator—that was solely responsible

caused the much more serious inaccuracies in the answers in i)c and

i)d. In those parts, the calculator was keeping 14 places as best it

could. But once we’d rounded the intermediate answer most of those

places became useless. Rounding essentially hits your calculator on

the back of the head with a frying pan, dazing it for the rest of the

calculation. Notice also how rounding aggravated the tendency to

leak accuracy during an approximate calculation. Instead of losing 1
place as happened when we did not round, we lost 4 or 5 when we

did.

In some sections of the course, in particular, throughout the chap-

ter Chapter 5, failing to heed the First Rule of Rounding 1.2.4

and rounding intermediate answers is one of the primary causes of

incorrect final answers.

What about those final answers? Why not just let the First Rule of

Rounding 1.2.4 cover them and leave them unrounded? The issue

1—
1—
2—

a ·· ·· z ? 32 Comments welcome at �̂�

mailto:morrison@fordham.edu


1.2 Handling numbers in various formats

here is not one of mathematical accuracy, but rather one of provid-

ing accurate information to someone reading your answer. There’s a

universally agreed convention about how this should be done.

Second Rule of Rounding 1.2.6: In a final answer, give all sig-

nificant digits of whose correctness you are reasonably confident, but

no more.

In other words, readers are entitled to trust the accuracy of all the

significant digits you include in a final answer. And they’re entitled to

assume that you are not sure of any further digits. The final answer

you show should tell the reader exactly how accurate the answer

being offered is.

Remember that to be sure of the number in one place you need to

know that the actual error is less than 5 units in the next place.

For example, when I write that the products of the reaction weighed

1.34kg, I am implying that I measured them as between 1.335kg

and 1.345kg. When I estimate that there are 2.70 million students

in parochial schools in the United States, I am implying that my data

assures me that there are at least 2695000 such students and at most

2705000. Notice also that, for this reason, I’m saying something dif-

ferent if I say there are 2.7 million students in parochial schools.

Even though both “expand” to the number 2700000 the latter fig-

ure has a bigger margin of error—there are between 2650000 and

2750000 students. By writing 2.7 million, I have warned you that my

information about the students is less accurate.

Most violations of this rule involve giving more digits in an answer

than you really know. This is a pretty cheap lie, but unfortunately

it often achieves its goal, that of making the reader think that you

have a more accurate understanding than you really do. You should

always be on the lookout for this kind of dishonesty in the media,

and sadly, you’ll often see it even in scholarly publications.

It can be easy to catch. When a pollster announces that 37.8% of

Americans favor the death penalty, it’s pretty safe to be a bit skep-
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1.2 Handling numbers in various formats

tical. To keep the cost reasonable, most polls are based on samples

of at most a few thousand heads. As we’ll see when we look at sta-

tistical tests later on, with such a there’s typically an uncertainty of

about 2% either way, even if the survey methodology is perfect. In

actual surveys, accuracy of ±4% is considered good.

But catching such lies can also be hard. Using unjustified extra places

makes any author seem to know more. The hope is often to snow

you into accepting a weak argument with a flurry of decimals. Your

only defense is to read the work in detail to assess both whether

the arguments are sound and whether the data justifies basing such

accurate conclusions on them.

Example 1.2.7: In each of the calculations below, find an unrounded

answer. Then give a suitable rounded final answer.

i) If a rod that is 3.3 feet long is made of material that weighs 1.2
pounds per foot, how much does the rod weigh?

Solution
Finding the answer is easy: 3.3× 1.2 = 3.96. What’s not so clear

is how to round this. Why not just leave the answer as 3.96
pounds? Well, notice that both the ingredients that went into

the calculation were given to us to 2 place accuracy. If, as care-

ful readers, we believe that accuracy, then we should expect our

answer to be accurate to two places. So we should round the

answer as 4.0 pounds.

The rule here is one worth noting although we won’t need to

formalize it. Answers usually have at most the accuracy of their

least accurate component. That “at most” is really a necessary

proviso. In our example, the worst cases for our calculation are

3.25×1.15 = 3.7375 and 3.35×1.25 = 4.1875. So we really know

only that the weight is 4 pounds to the nearest pound. These are

the kind of things those numerical analysts get paid to worry

about. I won’t ask you to take this much care.

ii) If 1 gallon of paint will cover 220 square feet of wall, how many
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gallons will I need to paint a house with 2140 square feet of wall

space?

Solution
Again, finding the answer is easy: 2140220 = 9.7272727272727. Here

the rounding is dictated by even more common sense considera-

tions. We don’t have much choice because it’s hard to know how

accurate to think those areas are. It “smells" like we have 2 place

accuracy in the figure 220 (although 3 is possible) and 3 in the

figure 2140. If so, we can expect 2 figure accuracy in the answer

so we’ll need 9.7 gallons. But since paint is sold in whole gallons,

all this is moot: we’ll need 10. Note that I could have helped the

reader by using scientific notations. If I had written 2.2×102 and

2.14 × 103, I’d have mode it clear that these were 2 and 3 place

figures.

Probably the best answer to this problem, is the common sense

one, “You’ll need a bit less than 10 gallons of paint”.

Problem 1.2.8: In each of the calculations below, find an un-

rounded answer. Then give a suitable rounded final answer.

i) If 2.34 × 1016 atoms of hydrogen react with 1 × 1016 atoms of

oxygen, how many molecules of water (H2O) will be produced?

ii) If 46% of American voters are Republicans and 52% of Repub-

licans are women, what percent of American voters are Republican

women?

1.3 Sums and series

Summation notation

One type of computation that comes up in many contexts is that of

adding up or summing a sequence of terms—values obtained from
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a single formula by plugging in a range of different values of the

variable. The range may be finite in which case we have a summa-

tion or infinite–these are usually called series. The variable in such

a sequence of terms is called an index of summation and the lowest

and highest values it takes on in the sum are called the lower and

upper limits of summation. Rather than write out all the terms (bor-

ing when there are a large number and impossible when there are

an infinite number), we save time and energy by using a shorthand

summation notation for such sums.

Summation Notation 1.3.1: The summation notation
∑u
i−l f (i) is

a shorthand for the sum for the formula f (i), starting with lower limit

i = l and increasing i successively by 1 until we reach the upper limit

i = u—or forever, if u = ∞. That is,

u∑
i=l
f (i) = f (l)+ f (l + 1)+ f (l + 2)+ · · · + f (u− 1)+ f (u) ,

and ∞∑
i=l
f (i) = f (l)+ f (l + 1)+ f (l + 2)+ f (l + 1)+ · · · .

Example 1.3.2: Since all the sums we’ll need for here have lower

index l equal to either 1 or 0, these are the only kind of examples I’ll

give now. Later, when we deal with expected values in probability,

we’ll look at more general cases.

i) (Arithmetic summations) Sums in which the formula f(i) is

linear—a constant times i plus another constant—are called arithmetic.

As a first example, consider a case when f (i) = i:
10∑
i=1
i = 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10 = 55 .

As a second, with f (i) = 3i − 2, consider
∑5
i=0 3i − 2 = (3 · 0 − 2) +

(3 · 1 − 2) + (3 · 2 − 2) + (3 · 3 − 2) + (3 · 4 − 2) + (3 · 5 − 2) =
−2 + 1 + 4 + 7 + 10 + 13 = 33. Note that there’s no real need to

mention the function f : we just write the formula for the terms to
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the right of the summation sign
∑

. Infinite arithmetic series almost

always total infinity so are seldom seen.

ii) (Finite geometric summations) Sums in which the formula f (i) is

exponential—a constant times the ith power of a fixed base r called,

for historic reasons, the ratio—are called geometric. You might think

power summation might be a more mnemonic term, but, while this

is sometimes used, the term geometric is the standard one. As a

first example, consider
∑6
i=0 3i = 30 + 31 + 32 + 33 + 34 + 35 + 36 =

1 + 3 + 9 + 27 + 81 + 243 + 729 = 1093. As a second
∑5
i=1

(
1
2

)i
=(

1
2

)1
+
(
1
2

)2
+
(
1
2

)3
+
(
1
2

)4
+
(
1
2

)5
= 1

2 +
1
4 +

1
8 +

1
16 +

1
32 =

31
32 .

iii) (Infinite geometric series) Infinite geometric series may or may

not give a finite total. The series
∑∞
i=1 3i does not because, as you can

see from the summation above, the individual terms get bigger and

bigger, and so does their sum. But the terms in the series
∑∞
i=1

(
1
2

)i
are getting small quite quickly. In a moment, we’ll have a formula

that will tell us that this series sums to exactly 1 but it’s not hard to

guess this answer. Notice that the sum 31
32 of the first 5 terms in ii)

can be rewritten 1− 1
32 The next term after those summed in ii) is 1

64
corresponding to i = 6, and if we add this to the summation we get
31
32 +

1
64 =

63
64 = 1 −

1
64 . You can check that the next term is 1

128 and

that adding it gives the summation 1 − 1
128 . Each summation is less

than 1 by the last term added, and since these terms go to 0 when i
goes to ∞, the summations go to 1.

When mathematicians are faced with making long computations they

are usually just as unhappy as most of you. The difference is that,

instead of giving up or plowing away, a mathematician’s reaction is

to ask: “If I think hard and come up with the right clever idea, can’t I

find some way to get the answer to this calculation without doing all

the work?” The power of mathematics is that when you do think hard

the answer is often, if not always, “Yes!”. In computing summations

and series, the way to get an answer without all the arithmetic is to

find a summation formula, that is, a formula for the total of all the
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terms that eliminates the index of summation and gives an answer

only involving the limits of summation. Such a formula is also often

called closed form for the summation.

Finding a closed form formula usually calls for more machinery—

mostly from calculus—than we want to include here. Fortunately,

geometric summations and series are the only kind that comes up

frequently in this course and a little algebra is all it takes to find a

closed form for these.

Geometric summation and series formulae

Let’s start with finite geometric summations. In this case, the clever

idea is an easy one based on difference of squares factorization, (1+
r)(1 − r) = 1 − r2. Why aren’t there more terms? If we expand out,

we see that (1+r)(1−r) = 1(1−r)+r(1−r) = 1−r+r−r2 = 1−r2.
The two r ’s cancel because of the opposite signs. The clever idea has

two parts. First, let’s think of (1+ r) as r0 + r1 as we did above and

view the factorization as

(r0 + r1)(1− r) = 1− r2 .
Second, let’s ask what happens when we add an r2. We find

(r0 + r1 + r2)(1− r)
=r0(1− r)+ r1(1− r)+ r2(1− r)
=r0 − r1 + r1 − r2 + r2 − r3

=1− r3 .
There are 2 cancellations this time and we still have only two terms

in the final right hand side. Adding a r3, we find

(r0 + r1 + r2 + r3)(1− r)
=r0(1− r)+ r1(1− r)+ r2(1− r)+ r3(1− r)
=r0 − r1 + r1 − r2 + r2 − r3 + r3 − r4

=1− r4 .
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This time there are 3 cancellations this time and we still have only

two terms in the final right hand side. Once again, a pattern is clear.

The only thing that changes when we add another power is that the

exponent of r on the final right hand side goes up by 1. If we go up

to the uth power what we find is:
u∑
i=0
r i = (r0 + r1 + · · · + ru−1 + ru)(1− r)
= r0(1− r)+ r1(1− r)+ · · · + ru−1(1− r)+ ru(1− r)
= r0 − r1 + r1 − r2 + · · · + ru−1 − ru + ru − ru+1

= 1− ru+1 .

This is the basis of the Geometric Summation Formula 1.3.3 which

I hope you have already seen. To get the formula, we just divide both

sides by (1− r) leaving just the series on the left side.

Geometric Summation Formula 1.3.3: For any integer u ≥ 0,
u∑
i=0
r i = r0 + r1 + · · · + ru−1 + ru = 1− r

u+1

1− r .

Problem 1.3.4: Use the Geometric Summation Formula 1.3.3 to

evaluate the sums
∑6
i=0 3i and

∑5
i=1

(
1
2

)i
from ii) of Example 1.3.2.

Partial Solution: I’ll do the second sum. There’s one small point to

overcome here: this sum has lower limit 1 and the Geometric Sum-

mation Formula 1.3.3 gives a closed form for sums with lower limit

0. There are several potential solutions. Perhaps the first that comes

to mind is to find closed form when the lower limit is 1. What’s wrong

with this approach? If we try to write down a new formula every time

we have a slightly different problem, pretty soon we’ll have as many

formulae as problems and it’ll be impossible to remember them all.

A key art in mathematics is to find a way to understand lots of prob-

lems with a very few ideas: the possibility of doing this is what makes

mathematics such a powerful tool.

Here’s an easy solution that has this flavor. Instead of adjusting the

formula to fit the sum, adjust the sum to fit the formula. We do know
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what
∑5
i=0

(
1
2

)i
is. The Geometric Summation Formula 1.3.3 gives

1−ru+1
1−r = 1− 1

2
5+1

1− 1
2
=

63
64
1
2
= 63

32 . But this sum differs from
∑5
i=1

(
1
2

)i
only

by the 0th term
(
1
2

)0
= 1. Subtracting this term, we get the total 31

32
found in Example 1.3.2.

Problem 1.3.5: Use the Geometric Summation Formula 1.3.3 to

evaluate the sums by relating each to a summation covered by the

formula:

i)
∑7
i=2 2i

ii)
∑6
i=0 5 · 10i

Hint: Since every term in the last sum has the common factor 5 in

it, this is the same as 5
∑6
i=0 10i . This idea comes up a often so make

note of it.

Finding closed forms for series is usually even harder than finding

them for summations. For one thing, it’s often tricky just to decide

whether it makes sense to total an infinite summation or series—if

so, we say the series converges; if not, it diverges. The terms had

better approach 0 or the sum can never settle down but when the

terms do approach 0, the total may or may not make sense. Consider,

for example, the series
∞∑
i=1

1
i
= 1
1
+ 1
2
+ 1
3
+ · · · + 1

i
+ · · · .

This series, so famous it has a name—the harmonic series—is diver-

gent (cannot be summed). More precisely, if you add enough terms,

you can make the sum as big as you like. But this sum gets big ve-

e-e-ry slowly, so slowly that, even with a computer, you can’t add

up enough terms to make it clear that the sum really does go off

to infinity. For example, the sum of the first 1,000,000,000 terms is

only about 21.30. Even when you can sum a series strange things can

happen. The alternating harmonic series
∞∑
i=1

(−1)i−1
i

= 1
1
− 1
2
+ 1
3
− 1
4
+ · · ·
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converged to the sum ln(2) ' 0.693 . . . . But, you can also make this

converge to any number you like if you’re allowed to choose the or-

der in which you add up the terms. If you don’t believe this, try

asking your instructor to rearrange it to sum to your Social Security

number.

Geometric series
∑∞
i=0 r i are one important exception. The size of

the ratio r determines, in an easy way, whether or not the series

converges or diverges. If |r | ≥ 1 then |r i| ≥ 1 for any i. In other

words, the terms stay big and the summations never settle down.

If |r | < 1, the |r i| goes to 0 as i goes to ∞. In fact, the terms r i

go to 0 quite fast and the series converges. We can see this more

directly, and get a formula for the sum of such series by looking

at what happens to the summations in the Geometric Summation

Formula 1.3.3 for
∑∞
i=0 r i when the upper limit u goes to ∞. The

only place u appears in the formula 1−ru+1
1−r is in the power ru+1. If

|r | < 1, then as u goes to ∞, this power goes to 0. The resulting

formula for geometric series is thus, surprisingly, even simpler than

for geometric summations.

Geometric Series Formula 1.3.6: If |r | < 1, then the sum of the

geometric series with ratio r is given by the formula
∑∞
i=0 r i = 1

1−r .

Example 1.3.7: We can now check the guess we made in Example

1.3.2, that
∑∞
i=1

(
1
2

)i
= 1. We use the same trick as in ii) of Problem

1.3.4. The series
∑∞
i=0

(
1
2

)i
= 1

1− 1
2
= 1

1
2
= 2 and the series

∑∞
i=1

(
1
2

)i
differs from it by the term

(
1
2

)0
= 1.

Problem 1.3.8: Use the geometric series formula to find the sums:

i)
∑∞
i=0

(
5
11

)i
ii)

∑∞
i=0

(
5
36

)2 ( 25
36

)i
Hint: Use the same idea as in Problem 1.3.5.

iii)
∑∞
i=0

(
4
36

)2 ( 26
36

)i
The last two sums will come up when we look at the odds of winning

at the game of craps in Analysing the game of Craps.
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1.4 Logarithms and exponentials

Challenge 1.3.9: Use the Geometric Summation Formula 1.3.3

to evaluate the sum s =
∑∞
i=0 i ·

(
1
2

)i
.

Hint: This is a challenge because that factor if i in the terms changes

with each term so there’s no way to factor it out as in ii) of Prob-

lem 1.3.5. Write 1
2s as a series using the series for s. Then take the

difference s − 1
2s as a difference of series. To see why this helps, try

writing out the first few terms of each without computing the values

of the powers of 1
2 .

There’s much more to be said, whole theories of summations and se-

ries. Entire books have been devoted to such subjects as finding for-

mulae for different types of series, and finding ways to squeeze sums

so that they fit formulae. Fortunately, you won’t need very much of

this technology. We’ll say a bit more about summations when we

discuss probabilities and I’ll wait until then to introduce the further

ideas we’ll need.

1.4 Logarithms and exponentials

Don’t look down!

First, an explanation of the title. Watch the segment of Zoom and

Bored—a classic Road Runner™ cartoon from 1957—that runs from

about 0:45 seconds in 1:20 in. From about 0:55 seconds in, Wile E.

Coyote, is suspended in mid-air after having run off the edge of a

cliff while in a cloud of dust. He remains suspended even after he

suspects that he’s in mid-air and starts feeling with his paw for the

ground. It’s only when he looks down and, as the dust clears, knows

that he’s in mid-air that, at about the 1:15 mark, he actually falls.

In this section, I’d like to run you off a cliff with a simple question.

Then we’ll feel around for the ground for a while while I convince
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1.4 Logarithms and exponentials

you we’re suspended in midair. Don’t worry, you’ll be fine. Just don’t

look down! Then in the remainder of this section I’ll walk you back

onto terra firma and, in the process, we’ll learn the basic facts about

logarithms and exponentials that we’re going to need in the rest of

the course.

Surprisingly, the path back depends, not on a lot of algebra, but on

a few easy pictures. The story is one of the most elegant in basic

mathematics, usually reserved for advanced calculus courses, but,

as we’ll see, it doesn’t even require any algebra: you just have to

draw the right few easy pictures. Eventually we’ll find out the simple

answer to the simple question. Let’s begin with the question.

Simple Question 1.4.1: What is 10
√
2?

If I put this on a midterm, I expect that most of you would just reach

for your calculators, type in 10ˆ 2nd x22 ) ENTER—at least on a

standard TI-8x—get back 25.95455351947, or however many of the

digits of that decimal your calculator gives you, and go on to the

next question. From one point of view—that of giving a good decimal

approximation to the number 10
√
2, this answers my question.

But it does not answer it in the sense in which I want to pose it: What

number are we talking about when we write down the expression

10
√
2? To get a feel for the issue, let’s ask

Even Simpler Question 1.4.2: What is
√
2?

This question is simpler for a couple of reasons. Once again, I’m

not interested in answers like 1.4142135623731 that your calcula-

tor might give you. But now it is easy to answer the question as I

intend it: What number are we talking about when we right down the

expression
√
2? By

√
2, we mean the positive number whose square

is 2. The number −
√
2 also has square 2 so how do I know I can

write that italic the: How do I know there’s only one positive number

whose square is 2? Well, because if a < b then a2 < b2. If x is any

positive number Then either x <
√
2 and then x2 < 2 or x >

√
2 and

then x2 > 2.
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1.4 Logarithms and exponentials

If you’re really alert, you may be asking a less simple question. How

do we know that there’s any such number? Why couldn’t every posi-

tive number either have square less than 2 or square greater than 2?

For the number
√
2, I can sleaze out by appealing to the

The Pythagorean Theorem 1.4.3: If c is the length of the hy-

potenuse of a right triangle and a and b and c are the lengths of the

other two sides, then a2 + b2 = c2.

1

1

√
2

Figure 1.4.4: A right triangle with sides 1, 1, and
√
2.

So, in Figure 1.4.4, where a = b = 1, c2 = 12 + 12 = 2—so c =
√
2.

This is the first, but not the last time a picture will come to our

rescue.

Why did I say that I was sleazing out with this explanation? Well,

what if a asked

Not Quite So Simple, Question 1.4.5: What is 3√2?

Problem 1.4.6: Show that there is at most one “ 3√2”—that is, at

most one number whose cube equals 2. Hint: Just replace the squares

with cubes in the argument that there’s only one
√
2.

Now, however, Pythagorus deserts us when we ask why such a num-

ber has to exist. The reason one does exist intuitively easy: “The real

number line R has no holes”. Let’s take this on faith, and not much

faith is needed, since our mental picture of the real number line as

the x-axis in the plane is that it’s a barrier dividing the (x, y)-plane

into upper and lower halves. You can’t go from below the x-axis to

above it without either crossing it or “jumping” over it.
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6

5

4

3

2

1

0

−1

1.2 1.4 1.6 1.8 2.0

Figure 1.4.7: Graph of x3 − 2 showing the root at 3√2

Look at the picture above of the part of the graph of the function x3−
2 for x between 1 and 2. The graph starts below the x-axis at (1,−1)
and ends above it at (2,6). It doesn’t jump over the axis anywhere

so there must be a point c (close to 1.25992104989487 if you must

know) where the graph crosses. At this point, c3 − 2 = 0 so c3 = 2
and c = 3√2.

That’s all completely clear, isn’t it? Well, yes and no. Everything I

have said is intuitively obvious—clear to our geometric intuition.

Mathematicians soon realized, however, that some further argument

was required to justify the claim that a function like x3 − 2 has no

jumps. These arguments are straightforward—they’re mentioned (if

not actually taught) in the first weeks of any calculus course—and

I’ll just take them for granted here.

What’s astonishing is that 200 years went by before any mathemati-

cian said, “Wait a minute. How do we really know there are no holes

in the real line? Why couldn’t there be a infinitesimal pinhole, too

small to see even with an electron microscope, right at 3√2?” Wile E.

Coyote could have told them what a big mistake asking this was: they

looked down! Well, once they had asked the question and looked

down, it turned out to be quite tricky to get back to the edge of the
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1.4 Logarithms and exponentials

cliff. Only math majors ever learn how, and not all of them. You,

however, can relax: there aren’t any holes in the real line. And we’re

going to be satisfied with our intuition that this is so, without worry-

ing about any of the technicalities needed to confirm this intuition.

Whew! OK, let’s recap. We know what number
√
2 is: it’s the unique

positive number whose square is 2 (and we know that such a

number does exist). Why is this answer better than the answer

1.4142135623731? Because the answer 1.4142135623731 is wrong!

You can check that

1.41421356237312 = 2.00000000000001400410360361 .

So 1.4142135623731 may be close to the number whose square is 2
but it is not the number whose square is 2: it’s the number whose

square is 2.00000000000001400410360361.

Picky, picky, picky. No! Not at all. There’s a right answer—one

and only one right answer—to the Even Simpler Question 1.4.2:√
2 is the number whose square is 2 and that number is not

1.4142135623731.

OK, we were off by a 1 in the 14th decimal place. Probably all we

need to do is compute
√
2 to a few more places. Not so! The number

1.4142135623731 is a rational number. It’s the ratio of whole num-

bers 14142135623731
10000000000000 . Any more accurate decimal approximation to

√
2

like say 1.41421356237309504880168872 is also a rational number.

You just multiply above and below by a power of 10 that clears the

decimal point: in this case, 141421356237309504880168872100000000000000000000000000 . And, no matter

how you do this, you won’t get a number whose square is 2 because
√
2 is Irrational 1.4.8:

It must be Greek day today because this insight goes back to

Euclid. What does saying that
√
2 is irrational mean? Just what

I claimed above. No rational number—that is, no number that

can be written as a fraction a
b with a and b whole numbers

1—
1—
2—

a ·· ·· z ? 46 Comments welcome at �̂�

mailto:morrison@fordham.edu


1.4 Logarithms and exponentials

can be the number
√
2. Not just that the better approximation

1.41421356237309504880168872 is not
√
2. Though let’s note that

it isn’t:

1.414213562373095048801688722 = 1.9999999999999999999999999880931757675816219237752384 .

No, it means that no matter what a and b we try we’ll never have(
a
b

)2
= 2. Why not? Computing with examples will show nothing. The

fact that the two rational numbers above do not square to 2 tell us

nothing about what might happen with the next rational number we

try. No matter how many examples we try we can never be sure that

we haven’t simply failed to check the right rational number amongst

the infinitely many possibilities.

Actually, Euclid’s argument is much simpler, depending on nothing

more than the fact that a whole number cannot be both even and

odd. More precisely, we can only have a solution of
(
a
b

)2
= 2 if

there’s a whole number that’s both even and odd, and since we can’t

have the latter, we can’t have the former either.

Here’s how it goes. If a and b are both even we can cancel a factor

2 from both, reducing the size of both, without changing the ratio
a
b—and hence preserving the equation

(
a
b

)2
= 2. If they’re still both

even, we can cancel another 2. Since each time we do this a and b
get smaller, we must eventually wind up with one, or perhaps both,

odd.

Now multiply the equation
(
a
b

)2
= 2 by b2 getting a2 = 2b2. The

right side of this equation is even, hence so is the left side. But the

square of an odd number is odd, so a must be even. This means two

things. First, since we know a and b are not both even, b must be

odd. Second, since a is even, we can write a = 2c with c another

whole number.

Plugging in a = 2c our equation becomes 4c2 = 2b2, or cancelling a

2, 2c2 = b2. Now the left side is even (because of the 2) and the right

side is odd (because b is odd and hence so is b2). Our rational form
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1.4 Logarithms and exponentials

for
√
2 has led to the impossible whole number that is both even and

odd.

OK, so
√
2 is irrational: so what? So the only way we have of an-

swering the Even Simpler Question 1.4.2 is the way I answered it

above:
√
2 is the unique positive number whose square is 2. Because

we can’t nail
√
2 with any rational number, we cannot nail it with any

decimal. The only way to describe it is by what it does—turn into 2
when squared.

Now we can start to think about how we might answer the Simple

Question 1.4.1. If we’re lucky, 10
√
2 might be rational. No such luck.

But we can still hope to pin down 10
√
2 as we did

√
2, by describing

what it (and only it) does. To get a feel for how we might do this, let’s

ask

Some Really Simple Questions 1.4.9: What are

i) 104,

ii) 10
1
3 , and

iii) 10
4
3 ?

Answering these involves nothing more than recalling what we mean

by an exponential like 10x. Such an exponential tells us to multiply

the base—in this case the 10—by itself x times. For example, we can

say immediately that 104 = 10 · 10 · 10 · 10 = 10000. Let’s note right

away that the rules of exponents all follow from this. For example,

10x · 10y tell us to multiply 10 by itself x times and y times, or

x + y times in all. But so does 10x+y . So 10x · 10y = 10x+y ; likewise,

10x · 10y · 10z = 10x+y+z and so on.

We need to pause for a moment over 10
1
3 . How do I multiply 10 by

itself
(
1
3

)rd
of a time? But if we remember that 3√2 = 2 1

3 , then we find

the answer to this question above. For 10
1
3 · 10 1

3 · 10 1
3 = 10 1

3+
1
3+

1
3 =

101 = 10. Thus 10
1
3 is the number whose cube is 10 just as 3√2 was

the number whose cube was 2. Even the argument that there’s only

one such number is the same.
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We can see another familiar rule of exponents in this last calculation(
10x

)z = 10x·z : there are x 10s in each 10x and z 10xs in
(
10x

)z
for a

total of x · z 10s in all: this is just 10x·z . Turning this around lets us

identify 10
4
3 as

(
10

1
3

)4
.

There is, of course nothing special about 3 and 4. If we understand

xth powers 10x and y th roots 10
1
y , we understand all rational powers

10
x
y since 10

x
y =

(
10

1
y

)x
. In fact, there’s nothing special about 10

either. Let’s just record the properties we have checked.

Rules of exponents 1.4.10: If b is any positive base and x, y and

z are any rational exponents, then the following rules of exponentials

hold

i) bx · by = bx+y and bu
bv = bu−v .

ii)
(
bx
)z = bx·z , and

Problem 1.4.11: OK, so I didn’t check that b
u

bv = bu−v . You check it.

Hint: If you multiply both sides by bv , you get bu on the left side.

To see what you get on the right, try setting x = u − v and y = v in

Rules of exponents 1.4.10.i).

Fine, so now we have a head of steam where does that leave us with

the Simple Question 1.4.1? In a cloud of dust, standing on nothing

more than thin air, having just run off the side of a cliff. We un-

derstand all rational powers 10
a
b perfectly. But those are the only

powers 10x where there’s any hope of “multiplying the base by itself

x times”. All the rules involve powers in which the exponents are re-

lated by arithmetic operations like addition and multiplication. From

rational pieces, those recipes can only turn out other rational expo-

nents. Since the number
√
2 is not rational, we have no way to make

sense out of 10
√
2! No, we’re not missing something.

It gets worse. Now let me ask

Another Simple Question 1.4.12: What is the meaning of the

function log10(x)?
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I hope you remember that the standard answer is that log10(x) is

the number y such that 10y = x. What does that mean if y is not

rational? We no longer know since we’ve realized that we standing

on thin air with exponentials having irrational exponents.

In Infinities and an argument from The Book, we’ll see that most

real numbers—almost all, in a precise sense—are not rational. The

upshot is that we know what a few logarithms and exponentials

mean—those where we get (very) lucky and y is rational—but have

no idea what most of them are.

The dust has cleared and we are standing on thin air. It’s OK. Take a

deep breath. Whatever you do, don’t look down until you’ve read the

rest of this section! Once you do you’ll be safe.

The natural logarithm

Before we can answer the Simple Question 1.4.1, we’ll need to un-

derstand logarithms. And since we now realize that we don’t under-

stand what most exponentials mean, we need to find some other

way to think about logarithms. Our solution applies the same tech-

nique we used to understand Even Simpler Question 1.4.2, “What is√
2?”: draw a picture that represents this number. The pictures we’ll

eventually draw to understand logarithms involve areas rather than

lengths but are in some sense even simpler; we don’t need any fancy

hardware like The Pythagorean Theorem 1.4.3. In the final subsec-

tion, we’ll make sense of exponentials by simply reflecting the graph

of a logarithm function. To get warmed up, let’s go back to the first

applications of logarithms. These had little to do with their relation

to exponentials.

Logarithms were probably discovered by a Swiss clockmaker names

Joost Bürgi in about 1588. Bürgi was man of wide interests—he dab-

bled in mathematics and astronomy, and his horological inventions

enabled him to greatly improve the accuracy of mechanical clocks,
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1.4 Logarithms and exponentials

Figure 1.4.13: The First Books on Logarithms

allowing them to be used for the first time for accurate astronomical

observations. Constructing these clocks involved making extensive

calculations and it was to simplify the multiplications these necessi-

tated that he devised logarithms. As we’ll see in a moment, you can

multiply numbers by taking logarithms—until recently tables of val-

ues were used to do this—and adding. The great astronomers Tycho

Brahe and Johannes Kepler, with whom Bürgi worked, also realized

the enormous benefits of logarithms. They speed up calculation so

much that the great French mathematician and astronomer, Pierre

Simon Laplace is said to have remarked that logarithms, “by short-

ening the labors, doubled the life of the astronomer”.

Credit for discovering logarithms commonly goes to the Scottish

mathematician, physicist and astronomer John Napier who pub-

lished the first book on logarithms in 1614. His approach was a bit

clumsy but Henry Briggs and he devised an improved version which

was described in books published by Briggs in 1617 and 1624, the
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latter with extensive tables.

After the appearance of Napier’s book, Kepler convinced Bürgi to

publish his ideas—he appears to have done a considerable amount

of the writing as well—in 1620. In 1624, Kepler published his own

work on logarithms, giving the first completely transparent expla-

nation of their properties and he included his own 8 place tables

of logarithms in his Rudolphine Tables. This compilation of the as-

tronomical observations of Brahe and himself accurately predicted

the future positions of the planets and, by doing so, was perhaps

the biggest factor in gaining general acceptance for the Copernicus’

heliocentric theory.

The key property on which all this depends is the following:

Logarithm Property 1.4.14: A function ln has the logarithm

property and is called a logarithm if the ln of a product is the sum

of the lns of the factors:

ln(a · b) = ln(a)+ ln(b) .

In other words, a logarithm is a function that converts products of

inputs into sums of outputs.

Let’s suppose, for a moment, that we can find such a function and

compute its values. We produce two tables, a forward table in which

we can look up ln(a) given a and a reverse table in which we can

look up c given ln(c) The strategy for finding the product c = a · b
is then clear. Look up ln(a) and ln(b) in our forward table. Find the

sum d = ln(a) + ln(b). The Logarithm Property 1.4.14 then says

d = ln(c) so we can fid c by looking up d in our reverse table.

Example 1.4.15: Let’s work two simple examples. I’ll just tell you

the necessary table values—to 8 places—but soon we’ll see how to

get more accurate ones from our calculator.

i) First, we multiply 2 times 3. We look up ln(2) = 0.69314718
and ln(3) = 1.0986123 and sum to get 1.7917595. Then we find that

the number whose ln is 1.7917595 is 6.0000002. Basically, OK, but
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why is there that 2 at the end. It’s because the function ln(d) grows

much more slowly than d. In fact, every d between 5.9999999 and

6.0000004 has 8-place ln equal to 1.7917595. So we should just be

prepared to lose some accuracy in the reverse lookup phase, as we

did here.

ii) Next, let’s show that
√
3 is about 1.73 by finding 1.73 · 1.73. We

look up ln(1.73) = 0.54812141, add it to itself to get 1.0962428, and

perform a reverse lookup, finding that, if ln(d) = 1.0962428 , then

d = 2.9928999. Here we lose no accuracy, since the right answer is

1.73 ·1.73 = 2.9929 ' 2.99 to 3 places. This is as close as we can get

to
√
3 with a root to 3-places because 1.74 · 1.74 = 3.02.

In the author’s youth, this method was implemented without tables

in quaint analog calculating devices called slide rules. Instead of ta-

bles, a slide rule used ruler-like scales to perform a variety of calcu-

lations. For performing multiplications, it’s only necessary to look at

the D and C scales in the pictures below. When the slides are aligned,

the number on the C scale opposite a on the D scale is ln(a). So to

look up logarithms, we just read across from the D scale to the C

scale. To go in the other direction, we lookup ln(d) on the C scale

and read across to find d on the D scale. The use of such slides has

particularly nice feature: we do not even need to do any addition to

multiply two numbers. We just move the 1 on the C scale opposite

one of the factors on the D scale—this is 2 in the top picture—and

then move down the C scale to the other factor—3 in the top picture.

The number on opposite this on the D scale is the product—here 6.

Figure 1.4.16: Multiplying 2 by 3 on a slide rule
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1.4 Logarithms and exponentials

The second picture shows how the calculation 1.73·1.73 ' 3 goes. As

you can see, one defect of slide rules is that accuracy is very limited.

Figure 1.4.17: Finding
√
3 on a slide rule

Problem 1.4.18: Using Figure 1.4.17:

i) Find 1.73 · 2.65. The blue cursor should prove helpful.

ii) Find 1
1.73 . Hint: what number do you get when you multiply 1.73·

1
1.73?

Problem 1.4.18.ii) suggests that you can also use logarithms for di-

vision. Likewise, Example 1.4.15.ii) suggest that they can be used to

take powers. Both hunches are correct and follow easily from the

Logarithm Property 1.4.14. The rules are

Other Logarithm Properties 1.4.19:

i) ln(1) = 0.

ii) ln( 1b ) = − ln(b).
iii) ln(ab ) = ln(a)− ln(b).
iv) For rational c, ln(bc) = c · ln(b).

Let’s see why these hold. First note that ln(1 · 1) = ln(1) + ln(1)
by Logarithm Property 1.4.14: subtracting ln(1) from both sides

gives ln(1) = 0.

Next ln(b · 1b ) = ln(b)+ ln( 1b ) by Logarithm Property 1.4.14. Since

b · 1b = 1 and ln(1) = 0, this shows ln(b)+ ln( 1b ) = 0 which is ii).

Now a
b = a ·

1
b so by Logarithm Property 1.4.14, ln(ab ) = ln(a · 1b ) =

ln(a)+ ln
( 1
b

)
= ln(a)− ln(b).

A bit more work is needed for iv). The footwork is exactly the same

as that used to answer Some Really Simple Questions 1.4.9. First
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handle whole numbersm, then Egyptian fractions—those that are of

the form 1
m—and finally general rational fractions c = m

n .

First, ln(b2) = ln(b · b) = ln(b) + ln(b) = 2 · ln(b). Next, ln(b3) =
ln(b2 ·b) = 2 · ln(b)+ ln(b) = 3 · ln(b). Continuing in this way shows

that ln(bm) = m · ln(b) for m a positive whole number. But, b−m =
1
bm and ln

( 1
bm
)
= − ln(bm) by ii). Putting these together ln(b−m) =

− ln(bm) = −m ln(b) which is iv) for negative integers.

Using Rules of exponents 1.4.10.ii),
(
a

1
m

)m
= a 1

m ·m = a1 = a. Tak-

ing ln of both sides gives and using whole number case from the

preceding paragraph, ln
((
a

1
m
)m) = m · ln

(
a

1
m

)
= ln(a). Dividing by

m now gives ln
(
a

1
m

)
= 1
m ln(a). In other words, part iv) is correct for

inverses of whole numbers too.

Finally, if c = m
n , then bc = b mn =

(
b
1
n

)m
. So by the “whole number”

and “inverse of whole number” cases of iv):

ln(bc) = ln
((
b
1
n
)m) =m·ln(b 1

n

)
=m·1

n
·ln(b) = m

n
·ln(b) = c·ln(b) .

This handles rational c and, for the moment, those are the only c
we understand how to use as exponents. But iv) will also apply to

general real exponents once we understand what such exponentials

mean.

To sum up, the whole package of familiar properties of logarithms

really just boils down to the single Logarithm Property 1.4.14: ln

converts multiplication of inputs into addition of outputs. But we’re

still no closer to understanding why any function with this key prop-

erty exists.

In fact, it was half a century before the way we’re now going to show

that a logarithm function actually exists was discovered. I’ll explain

this part of the history at the end of this section, but, since we define

ln(a) not as a number but as an area, our definition is clearly one

that calls for a fair bit of hindsight. Not that’s its complicated; quite

the contrary.
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1

1
a

x = 1 →

y = 1
x↓

y = 0↑

← x = a

(1,1)

(a, 1a )

1 a

Figure 1.4.20: The area defining ln(a)

Area definition of ln 1.4.21: For a > 1, we define ln(a) to be the

area between the curve y = 1
x and the x-axis y = 0 and between the

vertical lines x = 1 and x = a, as shown in Figure 1.4.20.

For 0 < a < 1, we define ln(a) to be the negative of this area.

The function ln is called the natural logarithm and we read the value

ln(a) as “natural log of a”, or, more concisely, as “ell-en of a”.

The area in Figure 1.4.20 is certainly a perfectly good, if somewhat

unusual, way to define the number ln(a). But when you first see it, it

seems crazy. Let me respond to the two most obvious objections to

it. First, where are the exponents? Nowhere. Let me emphasize that

ln(a) is an area but that this area must be the right definition of a

logarithm if we can show that it has the Logarithm Property 1.4.14

that ln(a · b) = ln(a) + ln(b). That’s remarkably easy to see from a

few simple variations on Figure 1.4.20. Let’s stick for the moment

to pictures where a > 1.

Let’s start with an example, and try to see that ln(2)+ ln(3) = ln(2 ·
3) = ln(6). Using the Area definition of ln 1.4.21, this means we

are asking the:

Key question 1.4.22: Do the areas in Figure 1.4.23 and Figure

1.4.24 sum to the area in Figure 1.4.25?

The first thing to notice is that the region in Figure 1.4.24 whose

area equals ln(3) is the left end of the region in Figure 1.4.25 whose

area equals ln(6). This is shown in Figure 1.4.26. So if we cancel

this common area, we can restate the Key question 1.4.22: does the
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1

1
2

x = 1→

y = 1
x↓

← x = 2

(1,1)

(2, 12 )

1 2

Figure 1.4.23: The area defining ln(2)

1

1
3

x = 1→

y = 1
x↓

← x = 3

(1,1)

(3, 13 )

1 3

Figure 1.4.24: The area defining ln(3)

1

1
6

x = 1→

y = 1
x↓

← x = 6

(1,1)

(6, 16 )

1 6

Figure 1.4.25: The area defining ln(6)

area on the left of Figure 1.4.27 (copied from the picture of ln(2) in

Figure 1.4.23), equal the area on the right of Figure 1.4.27 (copied

from the right side of the picture of ln(6) in Figure 1.4.25)?

1
3

← x = 3

(3, 13 )

3

1

1
6

x = 1→

y = 1
x↓

← x = 6

(1,1)

(6, 16 )

1 6

Figure 1.4.26: Showing ln(3) inside ln(2 · 3)

1

1
2

1
1

y = 1
x↓

1
2

(1,1)

(2, 12 )

1 2

1
3

1
3

(3, 13 )

3

1
6

y = 1
x↓

1
6

(6, 16 )

1 61 3

Figure 1.4.27: Checking that ln(2 · 3)− ln(3) equals ln(2)

In Figure 1.4.27, the lengths of the straight sides of the two regions
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1.4 Logarithms and exponentials

are shown in red. To each point (x, y) on the left, there corresponds

a point (3x, y3 ) on the right, and vice versa. For example, the corner

(1,1) goes to the corner (3, 13), the corner (2, 12) on the left goes to

the corner (6, 16). What’s more, y = 1
x is the same as xy = 1 and this,

in turn, is the same as (3x)
( y
3

)
= 1 so points on the left portion of

the graph get sent to points on the right portion.

Sending (x, y) to (3x, y3 ) stretches the region on the left of Figure

1.4.27 horizontally by a factor of 3 and simultaneously squishes or

compresses it vertically by a factor of 3. All the horizontal lengths

on the right are 3-times the corresponding horizontal lengths on the

left, and all vertical lengths on the right are 1
3 of the corresponding

vertical lengths on the left. The horizontal stretch multiplies areas

by 3 and the vertical squish divides them by 3 so the overall effect

is to leave areas unchanged. So the areas on the left and right of

Figure 1.4.27 are indeed equal!

So much for the Logarithm Property 1.4.14 in the special case a =
2 and b = 3. But there’s absolutely nothing special about this case!

We can see this by redrawing figures Figure 1.4.26 and Figure 1.4.27

with each 2 replaced by an a and each 3 replaced by a b as shown in

Figure 1.4.28 and Figure 1.4.29.

1
b

← x = b

(b, 1b )

b

1

1
a·b

x = 1→

y = 1
x↓

← x = a · b

(1,1)

(a · b, 1
a·b )

1 a · b

Figure 1.4.28: Showing ln(b) inside ln(a · b)

1

1
a

1
1

y = 1
x↓

1
a

(1,1)

(a, 1a )

1 a

1
b 1

b

(b, 1b )

b

1
a·b

y = 1
x↓

1
a·b

(a · b, 1
a·b )

1 a · b1 b

Figure 1.4.29: Checking that ln(a · b)− ln(b) equals ln(a)
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1.4 Logarithms and exponentials

Once again “stretching and squishing”—but this time by a factor of

b instead of 3—takes the left region in Figure 1.4.29 to the right

region and leaves the area unchanged.

Now’s a good time to tackle values of ln(a) with 0 < a < 1. Let’s

put b = 1
a so b > 1 and recall that in Area definition of ln 1.4.21,

we set ln(a) or ln( 1b ) equal to the negative of the area under y = 1
x

for x between a = 1
b and 1. First, note that a negative is forced on

us by the rule ln( 1b ) = − ln(b) from Other Logarithm Properties

1.4.19.ii). Since we have the signs straight, what we need to check, to

verify this property, is that the area under y = 1
x for x between 1

b
and 1 is equal to the area under y = 1

x for x between 1 and b. This

follows by the same “stretch and squish” argument that we used to

show the Logarithm Property 1.4.14. I’ve made it a problem for

you to practice with.

Problem 1.4.30:

i) Show that the area on the left of Figure 1.4.31 equals the area on

the right of Figure 1.4.31 by “stretching and squishing” by a factor

of 2.

2

1

1
2

211
2

← y = 1
x

( 12 ,2)

(1,1)

(2, 12 )

Figure 1.4.31: Checking that ln
(
1
2

)
= − ln(2)

ii) Once again, there’s nothing special about 2. Show that the area

on the left of Figure 1.4.32 equals the area on the right of Figure

1.4.32 by “stretching and squishing” by a factor of b.
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b

1

1
b

b11
b

← y = 1
x

( 1b , b)

(1,1)

(b, 1b )

Figure 1.4.32: Checking that ln
(
1
b

)
= − ln(b)

OK, so the Area definition of ln 1.4.21 has the Logarithm Prop-

erty 1.4.14. Are there others?

Uniqueness of ln 1.4.33: If log(x) is any function that has the Log-

arithm Property 1.4.14, then log(x) = ` · ln(x) for some constant

`. In other words, up to taking constant multiples, the only function

with the Logarithm Property 1.4.14 is ln.

Showing this takes some work, and, since we won’t need this fact,

I won’t digress to give any details. I just want to note that it tells

us that, strange as the Area definition of ln 1.4.21 may appear,

it is essentially the only way to define a logarithm function. But we

can use it to answer Another Simple Question 1.4.12: “What do we

mean by the function log10(x) ?”.

Problem 1.4.34: Why do we expect log10(x) to have each of the

following properties?

i) The Logarithm Property 1.4.14: log10(a · b) = log10(a) +
log10(b).

ii) log10(10) = 1.

By Uniqueness of ln 1.4.33, property i) tells you that log(x) =
` · ln(x) for some `. Use property ii) to show that ` = 1

ln(10) and

conclude that log10(x) = 1
ln(10) ln(x) ' 0.4342944819 ln(x).
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1.4 Logarithms and exponentials

In other words, even if we only wanted to use logarithms base 10,

we’d still need to understand the natural logarithm because log10 is

just a multiple of ln. Fine, but why not take such a multiple like log10?

Why do we call ln the natural logarithm? Because, while we could

have studied log10(x) =' 0.4342944819 ln(x), to do so we’d have

had to draw pictures of areas under y = 0.4342944819
x . Aside from the

nuisance of that 0.4342944819, this would make it much harder to

see the “stretch-and-squish” pictures behind the Logarithm Prop-

erty 1.4.14. We’ll see another example of why it’s just easier to work

with ln in Bernoulli’s Limit for ln 1.4.42.

Now let’s turn to a question that I hope many of you have been won-

dering about. What does checking that the Area definition of ln

1.4.21 has the Logarithm Property 1.4.14 buy us, if, as it appears,

there’s no way to calculate the number ln(a). Once again, first im-

pressions are misleading. It’s actually quite easy to use the Area

definition of ln 1.4.21 to calculate approximate values of ln(x). The

area definition makes it clear that ln(1) = 0: just look at the picture

in Figure 1.4.35.

1

1

Figure 1.4.35: The “area” defining ln(1)

But we can go a lot further. We can estimate ln(b) for any b by simply

“counting the squares”. By this, I mean that we plot the region whose

area gives ln(b) on some “graph paper” ruled with squares of a fixed

size. I’ve done this for b = 2 in Figure 1.4.36 using squares of side
1
4 (and area 1

16 ).

We then just outline, as I have also done, those squares that lie

completely under the graph and those that lie completely above the

graph, getting a region underneath whose area— 9
16 since it contains

9 of the squares—is definitely less than ln(2) and another above
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1.4 Logarithms and exponentials

1 2

← y = 1
x

Figure 1.4.36: Estimating ln(2) with squares of side 1
4

whose area— 14
16—is definitely greater than ln(2). In other words we

find that 0.56 ' 9
16 < ln(2) < 14

16 ' 0.88.

Problem 1.4.37: By counting squares in Figure 1.4.38, where each

1 2

← y = 1
x

Figure 1.4.38: Estimating ln(2) with squares of side 1
10

square has side 1
10 = 0.1 and area 1

100 = 0.01, show that 0.63 <
ln(2) < 0.77.

It’s clear that, by taking small enough squares, we can get lower and

upper bounds for ln(2) (or any other logarithm value) that are as

accurate as we like. For example, in Section 5.4, we’ll use the ap-

proximate value ln(2) ' 0.693 a lot, and if we ever needed some-

thing very accurate, we could compute the better approximation

0.6931471805599453. But it’s also clear that we would not want to

have to get these answers by counting the squares, because to get

such accuracy you need too many squares. Even with 100 squares,

we weren’t able to completely nail the first place in ln(2) and it turns

out that to get the value ln(2) ' 0.693 you need to use squares with

side 0.0005—and there are 4,000,000 of these to check.

Much better ways of calculating logarithms are provided by calculus—

there’s even a separate subject called numerical analysis that specif-
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ically studies fast ways to get such approximations. Fortunately, we

can get all the values of ln that we’ll ever need from our calcula-

tor. You’ll notice that it has a key labeled LN, and to get a value like

ln(2) ' 0.69314718056 you just type LN 2 ENTER—on other calcu-

lators you may need to reverse the order and type 2 LN ENTER. Try

to find ln(2) on your calculator now so you’ll know how to compute

values when we need them.

Problem 1.4.39: Using the Logarithm Property 1.4.14, the Other

Logarithm Properties 1.4.19 and the values

ln(2) = 0.69314718056 and ln(3) = 1.0986122887

to predict what each of the values of ln below should be. Then, use

your calculator to check you prediction.

i) ln(6)

ii) ln( 13)

iii) ln( 23)

iv) ln(9) Hint: 4 = 22.
v) ln(0.125) Hint: 0.125 = 1

8 .

vi) ln(
√
2)

Problem 1.4.40: Find ln(2.718281828459).

Now that we’ve seen how to use the area definition of ln to compute

approximate values, I have a small confession to make. Right after

I have the Area definition of ln 1.4.21, I said it was “certainly a

perfectly good way to define the number ln(a)”. Don’t look down,

but let me now ask, “Is that really so certain ?” Once again, we have

an intuitive feel for areas, based on working with simple regions like

rectangles, triangles and circles, and we expect them to have certain

properties. For example: “The sum is the whole of the parts”—if we

cut up a region into pieces the area of the region as a whole is the

sum of the areas of the pieces we cut it into; or, “Stretching horizon-

tally by a factor of 3 and squishing vertically by a factor 3 leaves the
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area of any region unchanged”. I mention these properties because

we used both of them to see that ln had the logarithm property.

How do we know that areas inside “curvy” regions, like the region

under the graph of y = 1
x , have these same properties? When we

come right down, to it, “How do we know exactly what number we

mean when we speak about the area of a curvy region ?”—like the

ones associated to ln(2) or ln(3) in Figure 1.4.23 and Figure 1.4.24.

Once again, the fact that we can compute approximate areas like

ln(2) ' 0.69314718056 does not mean we can stick a fork into the

exact area ln(2). So, how do we know exactly what number an area

like ln(2) stands for? Ahem. Er, well, um. OK dammit, we don’t.

But I have some good news for you and some better news. The good

news is that it’s not hard to answer this question. The better news is

that I’m not going to make you learn the details of the answer. Not,

I emphasize, because the answer is hard, or because its not impor-

tant and interesting. In fact, in every one of the physical and social

sciences, quantities that can be viewed as areas are all the time, and

understanding how to recognize and compute such areas is a basic

skill. But because we will not need to work further with areas in the

course and I’d rather spend the time on our central topics, I’ll just

sketch the basic idea.

Once again, the answer is something that is part of any freshman

calculus course, and comes directly from the idea of approximat-

ing areas by “counting the squares”. Let’s take ln(2) as an example.

Whatever we mean by this number, it had better be bigger than any

of the “areas of the squares completely under” and smaller than any

of the “area of the squares completely above” the graph of y = 1
x .

What needs to be checked is that, if we take small enough squares,

then we can make the difference between the areas of the squares

“completely under” and “completely above” the curve as small as we

like. Because “there are no holes in the real number line”, this tells us

that there is a number—and only one—that is both bigger than all the
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1.4 Logarithms and exponentials

“areas completely under” and smaller than all the “areas completely

above”. That’s the number we mean by ln(2).

There’s even a simple picture that makes it clear we can make that

difference as small as we like. All we need to do is use rectangles

instead of squares. In the picture below, I’ve shown the area defin-

ing ln(2) divided into 10 small strips, and in each strip, I’ve shown

the largest rectangle “completely under” and the smallest rectangle

“completely above” the graph of y = 1
x .

1 2

1

1
2

←→1
10

Figure 1.4.41: Stacking up the differences for ln(2) using strips

The differences between these areas are shaded. Notice how the bot-

tom of one difference is the top of the next. Because of this, I can

stack up all the differences as shown in the “extra” strip on the right.

This means that the differences fit into a rectangle of height 1 and

width 1
10 so they total at most 1

10 . To see that I can make the dif-

ferences less than 1
100 , I’d just need to use strips of width 1

100 ; to

see they can be made smaller than 1
1000000 is just choose strips of

width . . . Right, 1
1000000 ! And so on. The general case is not really

any harder but, once again, since we’re just going to agree that we

“understand” areas and promise that we won’t look down, I’ll just

move on.

Next, we state a formula that plays a central role in the mathematics
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of finance and that we’ll use a lot in Chapter 5.

Bernoulli’s Limit for ln 1.4.42: As n gets larger and larger—we

say that n goes to infinity and write n -∞—the product n · ln
(
1+ 1

n

)
approaches 1. In fancier language, the limit, as n goes to infinity, of

n · ln
(
1+ 1

n

)
is 1.

By Other Logarithm Properties 1.4.19.iv), a consequence is that

as n -∞, ln
((
1 + 1

n

)n) -1. The picture that explains these limits

also shows that, in both cases, the numbers we get are always slightly

smaller than 1.

Before we explain this limit, let’s note that it provides another typical

example of how it’s easiest to work with the natural logarithm ln. If

we had chosen to work with log10(x) ' 0.4342944819 ln(x), we’d get

a result like Bernoulli’s Limit for ln 1.4.42—but a lot messier: the

limit would be 0.4342944819 not 1.

1

1− 1
n

y = 1x -→

1 1+ 1
n

← 1
n →

↑
1
n
↓

Figure 1.4.43: Estimating ln
(
1+ 1

n

)
Once again, Bernoulli’s Limit for ln 1.4.42 becomes clear when

we draw the right picture, in this case, Figure 1.4.43. What are the

coordinates of the right endpoint on the graph of y = 1
x marked with

a green dot? Since the x-coordinate is 1+ 1
n , the y-coordinate is

1
1+ 1

n

= n · 1
n ·

(
1+ 1

n

) = n
n+ 1 .
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The key observation is that this y-coordinate is—as the figure

indicates—greater than 1 − 1
n =

n
n −

1
n =

n−1
n . To see this, we just

compute the difference:

n
n+ 1 −

n− 1
n

= n · n− (n+ 1)(n− 1)
(n+ 1)n = n

2 − (n2 − 1)
(n+ 1)n = 1

(n+ 1)n > 0 .

What this observation means is that the area defining ln
(
1+ 1

n

)
lies

between the area of the rectangles extending from the x-axis to the

upper and lower blue horizontals in Bernoulli’s Limit for ln 1.4.42.

Both rectangles have width 1
n . The height of the upper rectangle is

1 since the upper left corner is at the point (1,1). The height of the

lower rectangle is 1− 1
n . So we conclude by taking areas, that

1
n

(
1− 1

n

)
< ln

(
1+ 1

n

)
<
1
n
· 1 .

Multiplying these inequalities by n they become,

1− 1
n
< n · ln

(
1+ 1

n

)
< 1 .

But now, as we take n larger and larger the left term approaches

1 since 1
n goes to 0. Thus, Bernoulli’s Limit for ln 1.4.42 gets

squeezed between a number rising towards 1 on the left and the

number 1 on the right, hence it must equal 1. Note also that, for any

n, the value n·ln
(
1+ 1

n

)
is always just a bit smaller than 1 as claimed

in the last statement of Bernoulli’s Limit for ln 1.4.42.

Before we close this subsection, we note two facts that will be impor-

tant in the next one.

ln is increasing 1.4.44:

i) The function ln is increasing. That is, if a < b, then ln(a) < ln(b).

ii) No horizontal line meets the graph of ln in more than 1 point.

iii) If a and b are positive and ln(a) = ln(b), then a = b

Part ii) follows from part i) because, if a horizontal line y = c did

meet the graph twice—say at (a, c) and (b, c) with a < b, then we’d
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1
a

← x = a

(a, 1a )

a

1

1
b

x = 1→

y = 1
x↓

← x = b

(1,1)

(b, 1b )

1 b

Figure 1.4.45: Comparing ln(a) and ln(b)

have numbers a < b with ln(a) = c = ln(b). And iii) is just another

way of putting ii) .

Figure 1.4.45 demonstrates why i) holds when a and b are greater

than 1: ln(a) equals the area of region on the left and ln(b) is the

entire area—both left and right pieces, which is clearly larger. The

case when both are less than 1 then follows from the rule ln( 1b ) =
− ln(b) of Other Logarithm Properties 1.4.19.ii). This also shows

that if a < 1 < b, then ln(a) < 0 < ln(b).

1
0.693

1 2 e

← y = ln(x)

Figure 1.4.46: The graph of ln(x)

A less formal way to convince yourself that ln is increasing 1.4.44

is just to look at it’s graph shown in Figure 1.4.46, with a few key

values marked. Because ln is increasing 1.4.44, there is a unique

number a for which ln(a) = 1 which is shown on the graph. The

number turns out to be so important in virtually every area of math-

ematics that it has a name.

The number e 1.4.47: We use the letter e to denote the number
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such that ln(e) = 1.

Why use a name and not just write down the number e? Because we

can’t write down e! In Problem 1.4.40, we saw that e is pretty close

to 2.718281828459. Pretty close but not not equal, as we can see by

using a calculator that gives a few more digits:

ln(2.718281828459) ' 0.99999999999998335884.

It turns out, that like
√
2, e is irrational, although it’s much harder to

see this. But, because it is, as I explained when we were discussing
√
2

is Irrational 1.4.8, we can’t ever write it down exactly as a decimal.

Since it’s so important, the only solution is to name it.

One question you might have after looking at Figure 1.4.46 is

whether ln(x) keeps getting bigger and bigger as x does, or whether

there is some ceiling it never gets beyond. The answer is the former,

as you can see from Other Logarithm Properties 1.4.19.iv). This

shows that if I want a number whose natural log is 1000000, I can

just take e1000000 because ln(e1000000) = 1000000 ln(e) = 1000000.

So ln does eventually become as large as you please—we write

ln(x) -∞ as x -∞. Likewise, we can get any negative number: to

get −1000000 take ln( 1
e1000000 ).

One disclaimer is in order: ln(x) may get as big as you like,

but it gets big ve-e-e-ery slowly. For example, e1000000 has over

400000 digits! The number with natural logarithm 100 is about

5184705528587072464087.4533229.

ln takes on all real values 1.4.48: For any real number c, there

is a positive real a for which ln(a) = c.

This is just another way to say that we can make the value of ln(a)
as positive or as negative as we like by choosing the right a.

Uniqueness of Values of ln 1.4.49: Every horizontal line meets

the graph of ln in a unique point.
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1.4 Logarithms and exponentials

The line y = c does meets the graph at the point (a, c) for which

ln(a) = c, and cannot meet it anywhere else because ln is increas-

ing 1.4.44.ii).

exp and exponentials

Since we digressed for a long time to understand the natural loga-

rithm and it’s properties, permit me to remind you that this whole

section is an attempt to find an answer to the Simple Question 1.4.1,

“What number is 10
√
2 ?”. We haven’t even mentioned an exponential

base 10 for quite a few pages. Yet, it turns out that we’re actually

almost ready to answer that question. In fact, we’ll be able to explain

what we mean by ba for any positive real base b and any real expo-

nent a. There’s just a bit more work to do, but, as we undertake it,

I’d like you to keep this goal in mind.

The last big step is to use natural logarithm function—in particular,

the fact that ln is increasing 1.4.44—to define a new function exp.

We’ll do this by reflecting the graph y = ln(x) in the line y = x.

y = c

y = a

x = cx = a

y = x

(a, c)

(c, a)

Figure 1.4.50: Reflection in y = x

Figure 1.4.50 shows what this reflection does both geometrically and

in coordinates. The reflection of a horizontal line like x = a (shown

in blue) is the vertical line y = a (of the same color), and vice-versa;
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1.4 Logarithms and exponentials

the point (a, a) where these lines meet stays fixed and both lines

make angles of 45◦ with y = x. The reflection this takes the point

(a, c) where x = a meets y = c to the point (c, a) where x = c meets

y = a; the line y = x bisects the line segment joining the points (a, c)
and (c, a) and is perpendicular to it. Simply put, the reflection just

swaps x- and y-coordinates.

Reflection Definition of exp 1.4.51: The function exp is the

function whose graph is the reflection in the line y = x of the graph

of the natural logarithm ln. In coordinates,

a = exp(c) ⇐⇒ c = ln(a)

(0,1)

(ln(2),2)

(1, e)

(1,0)

(2, ln(2))
(e,1)

y = ln(x)

y = exp(x)

Figure 1.4.52: The graphs of the exp and ln functions

There’s one implicit assumption in Reflection Definition of exp

1.4.51 that needs checking. We claim to be defining a function exp.

But we’ll only get a function if our recipe produces a unique value

a = exp(c) for every input real c. In other words, we need to check

any vertical line x = c meets the graph of exp in just 1 point. But,

by reflecting in the line y = x again, the points in which x = c meets

the graph of exp are exactly the points in which the horizontal line

y = c meets the graph of ln. There’s exactly 1 such point because

Uniqueness of Values of ln 1.4.49.
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1.4 Logarithms and exponentials

Figure 1.4.52 shows both graphs with a few of the most important

pairs of corresponding points on each. In particular, the points (0,1)
and (e,1) are on the graph of exp because the points (1,0) and (1, e)
are on the graph of exp. In other words, exp(0) = 1 because ln(1) = 0
and exp(1) = e because ln(e) = 1. Similarly, exp(ln(2)) = 2 and since

ln(2) ' 0.693, we find that exp(0.693) ' 2.

Once again, in the fact that (ln(2),2) is on the graph of exp—in other

words, that exp(ln(2)) = 2—there’s nothing special about 2. It’s a

general fact that taking the exp of any ln takes you back where you

started. The fancy way to express this is to say that exp and ln are

inverse functions.

exp and ln are inverses 1.4.53: For any a > 0, exp(ln(a)) = a
and for any c, ln(exp(c)) = c. That is, each of the functions exp and

ln undoes the transformation wrought by the other.

Two comments are in order. First, the use of the term “inverse” has

nothing to do with the 1-over— 1
·—kind of inverse by division. When

we speak of two functions being inverses, we mean that applying

first one and then the other to any starting value returns us to that

starting value. In this sense, the inverse of putting on your pants

is taking off your pants. More mathematical examples are that the

inverse of “adding 5” is “subtracting 5” or that the inverse of “squar-

ing” a positive number is taking its “square root”.

Problem 1.4.54: Here’s a bit of easy practice with inverse func-

tions.

i) Suppose that f and g are two operations that have inverse oper-

ations F and G, respectively. Show that the operation “first f , then

g” has an inverse operation and express this inverse in terms of F
and G. Hint: What if f is “putting on your sock” and g is “putting on

your shoes”?

ii) What is the inverse of “first add 5, then double”?

iii) Is there any way to fill in the blank in “first halve and then ”

which yields the inverse of “first add 5, then double”?
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1.4 Logarithms and exponentials

Second, note that the starting values a we can input into ln must be

positive, because we only defined ln(a) when a > 0 but that any real

b occurs as an output value of ln by ln takes on all real values

1.4.48. Thus, we can feed any starting value c into exp because but no

matter what c we choose the output value a will be positive. We can

do a bit better: not only is any exponential value positive, but exp(c)
gets larger as c does—that is, exp is also an increasing function.

Problem 1.4.55:

i) Use ln is increasing 1.4.44 to show that, if c = ln(a), d = ln(b)
and c < d, then a < b. Hint: Draw this on the graph of y = ln(x).

ii) Show that the function exp is increasing. That is, if c < d, then

exp(c) < exp(d). Hint: How is the a above related to exp(c)?

In a similar vein, we saw, in checking that ln takes on all real

values 1.4.48, that while ln gets as big as we like, it does so very

slowly. This means that for large a the graph of ln near a is almost

horizontal. Reflecting, the graph of exp(b) near a large b must be

almost vertical. In other words, not only does exp(b) get as big as

we like—exp(x) -∞ as x -∞—but it does so ve-e-e-ery fast.

We won’t need to use these properties but you’ll see lots of exam-

ples of them when we study interest. Both the ln and exp functions

are radically different from power functions and their growth for

large values of x is the most obvious evidence. For very large x, the

function ln(x) grows more slowly, and the function exp(x) more

rapidly, than any positive rational power of x. Eventually, for ex-

ample, ln(x) < x
1

1000 and ex > x1000 but we could use any positive

number in place of 1000.

As a first application of the fact that exp and ln are inverses

1.4.53, let’s see what Bernoulli’s Limit for ln 1.4.42 says about the

exponential function. When we apply the exp function to the last

version—ln
((
1 + 1

n

)n) -1—of Bernoulli’s Limit for ln 1.4.42, we

get exp(
(

ln
((
1 + 1

n

)n)) -exp(1). Since the exp on the left undoes
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1.4 Logarithms and exponentials

the ln leaving just the exponential inside and exp(1) = e by defini-

tion, we obtain:

Bernoulli’s Limit for exp 1.4.56: As n goes to infinity, the expo-

nential
(
1+ 1

n

)n
approaches the limiting value e. In fancier notation,

as n -∞, of
(
1 + 1

n

)n -e. Moreover, for any given n, because the

logarithm is slightly smaller than 1, the corresponding exponential is

always a bit smaller than e.

I’ll make a few comments on this limit at the end of the section when

I finish reviewing the history of ln and exp. Its a key tool in Chapter

5, allowing us to use logarithms and exponentials to study the time

value of money and many other phenomena.

We are now going to squeeze a series of amazing properties out

of the fact that exp and ln are inverses 1.4.53. Broadly speaking,

this lets us turn any property of ln into an inverse property of exp.

The model uses the fundamental Logarithm Property 1.4.14. This

says that ln converts products of inputs into sums of outputs, so it

translates to say that exp converts sums of inputs into products of

outputs. In formulae, because ln(a · b) = ln(a) + ln(b), we expect

that exp(c + d) = exp(c) · exp(d).

Our method for checking such inverse property equations is stupidly

simple. Suppose that a and b are two positive numbers and that we

know that ln(a) = ln(b). Then a = b because Figure 1.4.45.iii). We

take a and b to be the left and right hand sides of the equation we

want to check. Why can we assume that these are positive? First, all

values (outputs) of exp are positive because they are inputs to ln and

we only allow these to be positive. This means that as long as we only

perform multiplications, divisions and powers of exp values, we can

only produce positive values.

Now let’s try our method out above. We have a = exp(c +d) and b =
exp(c)·exp(d). Then ln(a) = ln

(
exp(c+d)

)
= c+d because exp and

ln are inverses 1.4.53. But ln(b) = ln
(
exp(c)·exp(d)

)
= ln

(
exp(c)

)
+
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1.4 Logarithms and exponentials

ln
(
exp(d)

)
by the Logarithm Property 1.4.14. And ln

(
exp(c)

)
+

ln
(
exp(d)

)
= c + d by using that exp and ln are inverses 1.4.53 on

each term separately.

Problem 1.4.57:
i) Show that exp(−d) = 1

exp(d) . Hint: Use Other Logarithm Prop-

erties 1.4.19.ii) to see that the left and right hand sides have equal

logarithms.

ii) Show that exp(c − d) = exp(c)
exp(d) . Hint: You can copy the argument

in the preceding paragraph almost verbatim. All you need to do is to

replace the use of the Logarithm Property 1.4.14 by Other Loga-

rithm Properties 1.4.19.iii).

Other Logarithm Properties 1.4.19.iv) saying that. for rational c,
ln(bc) = c · ln(b) will be the key that will unlock general exponen-

tials for us. We can think of it as saying that ln converts (rational)

exponentiation of the input to multiplication of the output. Hence,

we expect that:

Key Exponential Property 1.4.58: The function exp converts

rational multiplication of its input into exponentiation of its output.

That is:

If c is rational then, exp(c · d) = exp(d)c .

We’ve already seen the footwork needed twice, in checking Other

Logarithm Properties 1.4.19.iv) and in answering Even Simpler

Question 1.4.2. First handle whole numbers m, then Egyptian

fractions—those that are of the form 1
m—and finally general ratio-

nal fractions c = m
n .

The first step is easy. First, exp(2·d) = exp(d+d) = exp(d)·exp(d) =(
exp(d)

)2
. Then, exp(3 · d) = exp(2 · d + d) = exp(2 · d) · exp(d) =

exp(d)2 · exp(d) = exp(d)3. Continuing in this way we see that

exp(m · d) = exp(d)m for any positive whole number m.

Problem 1.4.59: Show that exp(−m·d) = exp(d)−m. Hint: exp
(
−(m·

d)
)
= 1

exp(md) =
1

exp(d)m by first using Problem 1.4.57.i) and then the

positive m case just proved.
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1.4 Logarithms and exponentials

We handle Egyptian fractions by cancelling them: d = m
( 1
md

)
so exp(d) = exp

(
m
( 1
md

))
= exp

( 1
md

)m
. Then, taking mth roots

exp(d)
1
m =

(
exp

( 1
md

)m) 1
m = exp

( 1
md

)
.

Similarly, mn d =m
( 1
nd
)

so

exp
(m
n
d
)
= exp

(
m
(1
n
d
))
= exp

(1
n
d
)m = exp

(
(d)m

) 1
n

by using the whole number and Egyptian fraction cases. Finally,

we use (bx)z = bx·z—Rules of exponents 1.4.10.ii)—, setting b =
exp(d), x =m and y = 1

n to get
((

exp(d)
)m) 1

n = exp(d)
m
n as desired.

An immediate consequence of the Key Exponential Property

1.4.58 is a way of computing exp(c) for any rational c: exp(c) =
exp(c · 1) = exp(1)c = ec .

Rational Exponentials are Powers of e 1.4.60: The number

e 1.4.47 has the property that, for any rational c, exp(c) = ec .

We’re now at the punch line. We now define ex to be the number

exp(x) for any real number x. This is potentially ambiguous when x
is rational number like 4. We already have a number in mind when

we write e4, namely e · e · e · e but because Rational Exponentials

are Powers of e 1.4.60, this number and our new number exp(4)
are the same.

What I want to emphasize, however, is that, when is x is an irrational

number like
√
2, the only way we have of identifying the number

e
√
2 is as the function value exp(

√
2). The exponential notation is

a convenient one because it reminds of properties of this number

that we may find useful. One way to think of equations like exp(c +
d) = exp(c) · exp(d) and the Key Exponential Property 1.4.58 as

saying that the function values exp(x) walk like exponentials and

talk like exponentials. By writing ex instead of exp(x), we make these

numbers dress like exponentials too. Moreover, the self-deception

we practice when we write ex for exp(x) will never lead us into any
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1.4 Logarithms and exponentials

computational errors: any rule that we “expect” to hold for ex does

because all the rules of exponentials hold for exp(x).

But please remember that except when x is rational, there’s no way

to write down ex in terms of powers of e. Even though we write ex,
the number we are identifying in this way IS the value y output by

the exp function from the input x. Further, the only way we have of

identifying that output value y is to say that it is the input value on

which the function ln outputs x.

One further advantage of writing exp(x) = ex is that it links up our

Area definition of ln 1.4.21 with the more familiar interpretation

of logarithms in terms of exponents. Remember that, by the Reflec-

tion Definition of exp 1.4.51, saying that a = exp(c) is the same as

saying that c = ln(a). These are now the same as saying that a = ec .
In other words, the natural logarithm c of a positive number a is just

the exponent to which we have to raise e to obtain a.

Defining ex to be exp(x) 1.4.61: For any real exponent x, the

exponential ex is defined to be the number exp(x), although ex only

makes sense as a “power of e exponential” when x is rational.

Exponent interpretation of ln(a) 1.4.62: For any positive a,

we interpret ln(a) as the exponent c for which ec = a, with the pro-

viso that unless this number c is rational, what we really mean is the

number c for which exp(c) = a.

OK, you can look down now. We’re back on solid ground and unlike

in the Road Runner™, there’ll be no drawn out whistling sound as we

fall. It’s been a long journey but now we are in a position to under-

stand what number is referred to by any exponential bx for any real

exponent x and any positive real base b. So we are at last in a posi-

tion to answer the Simple Question 1.4.1 and say what we mean by

10
√
2. Isn’t there an easier way? Unfortunately, not. There are other

ways to make sense out of exponentials like 10
√
2 but they are even

more circuitous and require an understanding of a lot of delicate

1—
1—
2—

a ·· ·· z ? 77 Comments welcome at �̂�

mailto:morrison@fordham.edu


1.4 Logarithms and exponentials

tools from calculus. Our apparently roundabout path through the

study of the natural logarithm function ln and its inverse, the expo-

nential function exp is, in fact, the shortest one to a firm footing with

exponentials.

So what is the answer to the Simple Question 1.4.1? Well, 10
√
2 =

exp
(
ln(10) ·

√
2
)
; or, using the exponential notation, we all prefer

10
√
2 = eln(10)·

√
2. This answer is forced on us if we want the rules of

exponents to continue to hold for irrational exponents. In the rule

(bx)z = b(x·z)—Rules of exponents 1.4.10.ii)—set b = e, x = ln(10)
and z =

√
2. Because 10 = exp

(
ln(10)

)
= bx, the left side (bx)z

equals 10
√
2. But the right side is b(x·z) = e(ln(1)·

√
2). So the rules of

exponents tell us that 10
√
2 can only be defined by 10

√
2 = eln(10)·

√
2.

More generally,

A Simple Answer 1.4.63: For any positive real base b and any real

exponent x, the exponential bx is defined to be the number

bx := exp
(
ln(b) · x

)
= eln(b)·x .

Once again we have no choice. When x is rational, this choice

agrees—as it had better—with the “powers of b” definition we gave

at the start of the section: b = exp
(
ln(b)

)
so bx =

(
exp

(
ln(b)

))x
.

But by the Key Exponential Property 1.4.58,
(

exp
(
ln(b)

))x
=

exp
(
x·ln(b)

)
= exp

(
ln(b)·x

)
. And when x is not rational, this defini-

tion is the only one that ensures that bx continues to obey the same

rules of exponents that hold when x is rational.

Perhaps this is a good time for me to ’fess up. As long as you didn’t

look down, you wouldn’t have fallen anyway. You can ask your cal-

culator to find bx for any reasonable b and x and it’ll happily oblige

you with more decimals than you’ll ever need. What’s more those

decimals will be exactly what you would have got by rounding the

number exp
(
ln(b) · x

)
to the same number of places. That’s because

what your calculator actually does when you ask it to find bx is to

compute exp
(
ln(b) · x

)
.
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It’s easy to see why this is smart. It’s not really practical to find

exponentials by taking powers. Even if we are willing to pretend that√
2 = 1414213562373

1000000000000 (and not just close to this decimal), it’s just not

very easy to compute 10
1414213562373
1000000000000 . But calculus gives us very fast

techniques to compute the two functions exp and ln and once we

have these functions under control we have everything we need to

find bx—or rather exp
(
ln(b) · x

)
—for any b and any x.

How do we compute values of exp on a calculator? Most use the 2nd

option for the key labeled LN, and to get a value like exp(2.31) '
10.074424655 you just type 2nd LN 2.31 ENTER—on other calcu-

lators you may need to reverse the order and type 2.31 LN ENTER.

Try to find exp(2.31) on your calculator now so you’ll know how to

compute values when we need them. Here is a bit more practice.

Problem 1.4.64: Using the Key Exponential Property 1.4.58

and the properties in Problem 1.4.57 and the values exp(2) '
7.38905609893 and exp(3) ' 20.0855369232 and the Other Log-

arithm Properties 1.4.19 to predict what each of the values of ln

below should be. Then, use your calculator to check you prediction.

i) exp(5).

ii) exp(−2).
iii) exp(−1) Hint: −1 = 2− 3.

iv) exp( 23). Hint: 23 =
1
3 ·2 so you can apply Key Exponential Prop-

erty 1.4.58.

Problem 1.4.65: We can write 6 as either 2 · 3 or 3 · 2. Use this

observation, the Key Exponential Property 1.4.58, and the values

exp(2) ' 7.38905609893 and exp(3) ' 20.0855369232 to compute

exp(6) in two ways. Then check that both give the right value by

computing exp(6) directly.

OK, so hasn’t this whole section just been a gigantic waste of time?

Why couldn’t we have just left it to our calculator to worry about

exponentials? The answer is that we could have if we only wanted to
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1.4 Logarithms and exponentials

compute exponential values. But later in the course, when we come

to statistics, and especially when we study the mathematics of fi-

nance, we’ll need to know many basic properties of the ln and exp

functions.

All the properties we will need have been revealed in the course of

our attempt to understand what numbers we mean when we write

general exponentials. The Simple Question 1.4.1 and the many other

questions about exponentials that we have answered in this section

have guided us to discover a beautiful pair of functions—probably

the two most important functions in all mathematics—and I hope

you’ll view this as our main achievement. Figuring out what we mean

when we write exponentials with irrational exponents turns out to be

a bonus tossed in with our wider knowledge about these fundamen-

tal mathematical objects.

Before we close this section, here’s the end of the story of these

functions from the point at which I broke off when introducing logs.

At that point, mathematicians and astronomers knew how to calcu-

late approximate values of logarithms and how to use them to sim-

plify calculations but they were still in the Wile E. Coyote position—

suspended in midair—because they had no way to really say what

number a value like ln(2) represented. In fact, it was more common

to work with logarithms base 10 (usually denoted today as log10—

we won’t need these logarithms at all), although, in the earliest days,

there wasn’t even a completely clear notion of base.

In fact, it was quarter of a century before the Area definition of

ln 1.4.21 was discovered and the existence of logarithms was on a

sound footing. The idea that areas underneath the hyperbola y = 1
x

have properties like those of a logarithm was probably first discov-

ered by a Jesuit Mathematician named Grégoire de Saint-Vincent. In

particular, he showed the key equality, that of the two areas in Fig-

ure 1.4.29 in a book on areas and conic sections that he published

in 1647.
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1.4 Logarithms and exponentials

His ideas were refined by his student, Alphonse Antonio de Sarasa,

another Jesuit mathematician. Christian Huygens, a great Dutch

mathematician, astronomer, physicist and—clockmaker, clarified the

connection to logarithms and exponentials and exploited it to pro-

duce some very accurate values. For example, he calculated that
1

ln(10) ' 0.43429448190325180 which is incorrect only in the last

place!

The name natural logarithm for our function ln was first used by

the Danish mathematician Nicolaus Mercator (born Kauffmann) in a

book published in 1668 in which he showed clearly how to use areas

underneath the curve y = 1
x to compute logarithms. Curiously, he

was best known as a—yes!—clockmaker and was made a member of

the Royal Society of England, not for his mathematical work, but for

devising a pendulum clock that would keep accurate time at sea and

thus enable ships’ captains to determine their longitude.

Rather amazingly, given the enormous amount of work that has been

done on logarithms, no one had ever put a fork into the fundamen-

tal constant e. An approximate value of e appears in tables of loga-

rithms of as early as 1619, but it was not identified and christened

for another 70 years. Bernoulli’s Limit for exp 1.4.56 calculates e
exactly. The Bernoulli in the name is the Swiss mathematician Jakob

(not to be confused with Johann, his brother or Daniel, his nephew,

both also important mathematicians). Jakob was led to consider the

limit by questions about compound interest and it will be to answer

these very questions that we’ll need his formula in Section Section

5.4. But he did not give the limiting value any name, only showing

that the powers have a limit and that this limit lies between 2 and 3.

The number e was baptized, but under the name b, in 1690, in letters

written to Huygens by Gottfried Leibniz, a great German mathemati-

cian (and polymath who contributed to too many other fields to even

list), most famous today for having developed the basic ideas of cal-

culus independently of Isaac Newton. For a while both b and c were
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commonly used to denote e.

The man who first identified the number e as we do here (calling it

“that number whose hyperbolic [i.e. natural] logarithm =1”) and used

the letter e to denote it was the incomparable Leonhard Euler, a Swiss

mathematician and physicist. Euler was the greatest mathematician

of the 18th century and one of the greatest of all time. Publication of

a complete edition of his collected works began in 1911 and although

76 volumes have appeared is still not complete in 2009! Just the

29 volumes of his mathematical works fetch about $4,500 but most

of the papers are available at The Euler Archive. Believe it or not

about half of these papers were written after he went totally blind—

dictated from memory to scribes.

Figure 1.4.66: Euler’s first published use of e

Euler first used the letter e in a manuscript from 1727 but this pa-

per was not published until 1862. Figure 1.4.66 shows, in the last 2

lines, the first published use of the notation from Chapter 2 of his

Mechanica, published in 1736. Yup, that’s Latin which was the stan-

dard language used for scientific publication into the 19th century.
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Chapter 2

Dangerous misunderstandings

The first aim of this chapter is to convince you that intuitive thinking

about probabilities is very error-prone. Very often, just when we’re

surest we understand the answer to a question involving uncertainty

or randomness, our understanding is just plain wrong. I’ll make this

case by asking you a bunch of questions to which the answer is ob-

vious and then explaining how the obvious answer is mistaken. The

moral is that to get reliable answers to such questions we need some

more formal techniques as a check on and corrective to our hunches.

Developing these ideas the goals of the pair of chapters—Chapter 5

and Chapter 4—that follow and will call for a fair bit of work. The

second goal of this introductory chapter is to convince you that this

effort is worthwhile because many questions to which these tools

apply come up in everyday life. You’ll often be faced with such ques-

tions, and like it or not, the answers will be important to you. So

understanding how to think about them is a skill you’ll be able to

use throughout your adult life. I’ve chosen here to focus on one

question, “How dangerous is it to eat beef?” I’m not talking elevated

cholesterol or a 24 hour case of food poisoning. I’m talking about

acquiring a slow degenerative disease for which there is no cure or
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2.1 A stroll through the minefield

effective treatment, that is invariably fatal but that that will turn you

into a human vegetable long before it actually kills you. Is that dan-

gerous enough for you?

When we’re done, you’ll understand much better how to analyze

such questions. Next semester, when you’ve forgotten all these tools,

I hope you’ll still be able to recognize and avoid some of the most

common pitfalls in thinking about probabilities. And, a decade from

now, when you can no longer state the odds that a tossed coin will

come up heads, I hope you’ll still remember to distrust your instincts

and hunches when trying to reach conclusions in the face of random-

ness.

2.1 A stroll through the minefield

Never forget that probability is a minefield. You always need to tread

carefully when walking in it. The purpose of this short chapter is to

convince you that such distrust of your intuition is the right attitude.

The whole field of probability is mined and, when you venture out

into it, you need to be an the alert at every step or you’re likely to

wind up with your best guesses blown to smithereens.

I also hope that the examples we’ll look at will convince you that we

need an up-armored vehicle to safely handle reasoning with uncer-

tainty. The whole of Chapter 5 is devoted to bolting on all the nec-

essary reinforcing and we’ll only come back to deal with probability

in relative safety in Chapter 4. So another goal of our stroll through

the minefield is to motivate the effort it will take before we’re ready

to study probability in earnest.

We don’t yet know any of the math of probabilities. But in the prob-

lems that follow, you won’t need to know any. Just rely on your na-

tive intelligence to find the answers to any questions I ask. We’ll then

1—
1—
2—

a ·· ·· z ? 84 Comments welcome at �̂�

mailto:morrison@fordham.edu


2.1 A stroll through the minefield

test these answers, either by carrying out simple experiments with

objects like coins and cards, or by analyzing some data from real

world examples.

“$7’ll get you $12”

The game of “$7’ll get you $12” is a version of the classic short con,

three card Monty, played by a grifter, who handles three cards, and a

mark, who places bets. Traditionally, the 3 cards are two Kings and

a Queen and the goal of the game is for the mark to “find the lady”—

the Queen. The mark bets $7 on a face-down card, and if the card

she bets on is the Queen, she receives $12 ($5 plus her bet of $7), if

not she loses her $7.

As it stands, this is too much of a sucker bet to attract even an AIG

swaps trader, so the grifter shortens the odds as follows. To begin,

the grifter shuffles the three cards face down and the mark puts her

finger on one of the three cards. The grifter then looks at the two

other cards and turns up, or exposes a King, reducing the number

of face down cards to 2. Note that whether or not the mark has her

finger on a King, the grifter can always find a King to expose. The

mark then places her bet on either of the two unexposed cards.

Problem 2.1.1:

i) Suppose the mark places her bets at random. That is, half the

time, she bets on the card she placed her finger on, and the other

half of the time, she bets on the other unexposed card. Show that,

on the average, the mark will lose $1 each time she plays the game.

ii) Does the mark’s betting strategy matter or will she always lose

an average of $1 each time she plays no matter how she places her

bet?

iii) If you were going to play “$7’ll get you $12” for money, would

you choose to be the grifter or the mark?
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2.1 A stroll through the minefield

Before we go on, I assume that we’re all in agreement that in ii), the

mark’s strategy does not matter. The outcome is the same as in i).

The mark loses $1 each time she plays. Now we’re going to check our

predictions by actually playing some rounds of “$7’ll get you $12”.

Experiment 2.1.2:

i) Find a partner in your class. One of you will need to be the grifter

in this experiment and the other will need to be the mark. If the roles

you picked in iii) of Problem 2.1.1 are different, you can each take

the role you prefer. If you both prefer the same role, just toss a coin

to decide who takes what role.

You can use any pair plus a kicker of a different value (instead of

a pair of Kings and a Queen)—the grifter exposes one card of the

pair and the mark wins if she bets on the kicker. Play the game 30
times, with the mark deciding which unexposed card to bet on each

time by flipping a coin: heads the mark bets on the card she fingered,

tails, she bets on the other unexposed card. Record the amounts won

and lost. How close are you to the prediction in i) of Problem 2.1.1?

Compare your results with those of other pairs in your class. Explain

why the observed losses vary, staying close to but usually not exactly

equaling the predicted value of $30.

ii) Play the game 30 times, but this time with the mark betting on

the card she did not finger all 30 times? How close are you to the

prediction that the mark will lose about $30 this time? Compare your

results with those of other pairs in your class. Do you want to change

your answer to ii) of Problem 2.1.1?

iii) Predict what will happen if you play the game 30 times, but this

time with the mark betting on the card she did finger all 30 times.

Then play the game 30 times and compare your results with the rest

of your class to check your prediction.

In “$7’ll get you $12” Revisited, we explain the results of all the

experiments you’ve run above. For now, in keeping with the spirit of

this section, let’s just agree that they’re pretty convincing evidence
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2.1 A stroll through the minefield

that the obvious answer to ii) is obviously wrong. One further point.

This example shows that just having been shown some probability

trap in the past is seldom solid protection against falling into it in

the future. Many of you have already studied the game of three card

Monty in high school and been bored at length with the explanation

of the experiments you just ran. Hint: Monty’s last name is Hall.

Trolling for terrorists

Britain’s National Security Strategy, as laid out in a white paper for a

blue-ribbon Commission on National Security contemplates “exami-

nation of the innocent as well as the suspect” by the “application of

modern data mining and processing techniques”. While recognizing

that “privacy issues” will arise, it concludes that: “Finding out other

people’s secrets is going to involve breaking everyday moral rules.”

Sound a bit sinister? Well, cheer up. You’ve been subject to this kind

of invasion of privacy since 2006. In the US, it goes by the name

of the Automated Targeting System. If you have travelled abroad,

you’ve got a “risk assessment score”. This score, and the informa-

tion used to derive it, can be shared with any government (federal,

state, local, even foreign), used if you apply for a government job,

license, or other benefit and even shared with private organizations

and individuals doing business with the Federal government.

But don’t worry, it’s not available to just anybody. You are not al-

lowed to see your score. In fact, you’re not allowed to know what

information was used to compile it, how your scored is derived from

that information, of when and how it will be used. For your further

protection, there’s no way you can challenge your score if you’ve

been wrongly classified. Feeling safer now?

We know a bit more about a similar list, the Transportation Secu-

rity Administration’s No-Fly list. A copy which became public in
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2.1 A stroll through the minefield

2006 contained 44,000 names and was the subject of a 60 Min-

utes segment. Many of these names posed little risk—because they

were dead (among these were 14 of the 9/11 hijackers). Senator Ted

Kennedy was on the list, as was Catherine Stevens, wife of Senator

Ted Stevens, in both cases because someone with a similar name

had been flagged. In Kennedy’s case it was a “T Kennedy” (Kennedy’s

given name is Edward) and in Stevens’ it was the male pop singer Cat

Stevens. Nelson Mandela was on the list. Children, some less than a

year old, were on the list.

The good news is that the US Government has now consolidated all

its watch lists in a single Terrorist Watch List managed by the Ter-

rorist Screening Center. The bad news is that this list now has over a

million entries (probably a couple of hundred thousand more).

OK, so it’s pretty clear that the rules being used to add names to the

Terrorist Watch List aren’t quite good enough. What I’d like to look

into here is how good the rules would have to be for a watch list

program like the British National Security Strategy or the US Terror-

ist Watch List to actually be an effective way of identifying potential

terrorists. We’ll work with numbers for the British plan because it’s

easier to find the necessary data.

To make such analysis, we need 2 key numbers. First, how large is

the population being screened? The plan being proposed is to de-

velop tools to screen the general population. In Britain, this comes

to about 60,000,000 people. Second, how large is the number of ter-

rorist suspects for which we are screening? The head of MI5, the

agency responsible for tracking terrorists in Britain, estimated this

number, in the fall of 2007 as 2000, up by 400 in the last year. So

let’s, to be safe, say we are looking for 5000 suspects, more than

twice his estimate. To keep the numbers easy, let’s assume that we

only need to screen 50,000,000 innocent people (by eliminating, say,

the very young or old).

Now, we can assess what the results of a terrorist screening proce-
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2.1 A stroll through the minefield

dure would be in terms of its error rate. Such a process can make two

kinds of errors. First, it can fail to flag real terrorists, and second, it

can label innocent people as terrorists. Stop for a moment and ask

yourself which kind of error we need to be most worried about. It’s

natural to say the first. We’re much more worried about an attack

from an unknown terrorist we have failed to identify than we are

about inconveniencing a few innocent people like Ted Kennedy.

The general wisdom from advertising and political campaigns that

try to carry out similar screenings on a regular basis is that a test

that is right on either count 90% of the time is a very good one. You’ll

flag 4500 actual terrorists (90% of the 5000 in Britain) and miss the

other 500 (or 10%). We’re not happy about missing these 500, But the

thought that we can identify another 2500 suspects that we weren’t

aware of is what spurs interest in such a screening.

The problem is that we’ll actually have almost no idea who

those 4500 terrorists are! That’s because our screening will clear

45,000,000 innocent people (90% of the 50,000,000 in Britain) but

will flag the other 10%—that’s 5,000,000 terrorist suspects! So even

after our screening, our 4500 terrorists will be an invisible drop in a

Watch List bucket of 5,004,500. Fewer than 1 in 1000 of the people

on our list are actual terrorists. At this proportion, we certainly have

no basis to lay any charges. We can’t even sensibly monitor the peo-

ple on our list: if we budgeted a billion dollars to do so, we’d just be

totally wasting over $999,000,000 of it!

What if we can devise a better test, say one that is 99% accurate?

Nobody thinks that it’s realistic to hope for accuracy this high, but

that needn’t stop us from asking what it would buy us.

Problem 2.1.3: Show that a test that is 99% accurate will results in

a watch list of 504,950 of whom only 4,950 will be actual terrorists.

So even in our wildest dreams, fewer than 1 person in 100 on

our watch list would actually be a terrorist and if we spent a bil-

lion dollars on monitoring these people we’d still waste more than
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2.1 A stroll through the minefield

$990,000,000 of it. For a more formal discussion, see Problem

4.5.10.

What about the US Terrorist Watch List? It’s hard to say anything

too definite. I have not been able to find any reliable estimates for

the number of terrorists targeting the United States: the numbers I

have seen range from about 5,000 to about 20,000. Nor do we have

any idea what the accuracy of the procedures used by the Terrorist

Screening Center to place people on it are. But I’d be a lot more sur-

prised to learn there were 50,000 terrorists on our Watch List than I

would be to find out that it contains 1,000,000 innocent people.

The ideas that we have used to analyze watch lists are of great im-

portance in many fields. We’ll study applications to medical diagno-

sis and other problems when we deal with false positives and false

negatives in Diagnostic Testing 4.5.11.

Lightning strikes twice

People have a very hard time distinguishing truly rare and unusual

events from coincidences that are likely to occur fairly frequently

by chance. Here I want you to think about some events that seem

unusual and to estimate just how rare they are. Since we haven’t

learned how to compute such probabilities, I’ll only ask multiple

choice, “pick-the-right-answer” questions

Example 2.1.4: To play a pick4 lottery—a common type of lottery

operated by 32 states on a daily basis—you simply choose a 4 digit

number, that is a number from 0000 to 9999. There are 10,000 such

numbers and each is equally likely to be drawn on any given day. In

other words, the chance that you’ll win by playing any of the possible

numbers (cost $1) equals 1
10,000 . In most states, if you do you’ll win

$5,000.
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2.1 A stroll through the minefield

i) On September 9, 1981, the winning number in both the Mas-

sachusetts and New Hampshire pick4 was 8092. What was the chance

of this happening?

a. 1
5,000 = 2

1
10,000

b. 1
10000

c. 1
20,000 =

1
2

1
10,000

d. 1
100,000,000 =

1
10,000 ·

1
10,000 .

ii) What is the chance that the winning number in both the Mas-

sachusetts and New Hampshire pick4 on September 9, 2081 will be

the same?

a. 1
5,000 = 2

1
10,000

b. 1
10,000

c. 1
20,000 =

1
2

1
10000

d. 1
100,000,000 =

1
10,000 ·

1
10,000 .

iii) On September 10, 1981, several newspapers reported that both

the Massachusetts and New Hampshire pick4 winning number for

the previous day had been 8092 and said that the chance of this

happening was 1
100,000,000 . Were they right about this probability?

Let’s start with i). We saw above that the chance that 8092 is drawn

in New Hampshire is 1
10,000 . Likewise, the chance that 8092 is drawn

in Massachusetts is 1
10,000 . Right away this tells us that i)a is wrong:

anytime 8092 comes up in both states, it’s sure to come up in New

Hampshire so the former chance must be less than the latter.

Problem 2.1.5: Explain why the answer in i)c must also be wrong.

Now let’s turn to ii) for a moment. Here it’s easy to see what the right

answer is. Let’s suppose that on September 9, 2081, the number 8092
is chosen in New Hampshire. Since the chance the number 8092 will

be chosen in Massachusetts is then 1
10,000 , we’ll have a 1

10,000 that the

numbers match. What is some other comes up in New Hampshire,

say 7615. The chance that 7615 will be chosen in Massachusetts is

again 1
10,000 , so again there’s a 1

10,000 chance that the numbers match.

In fact, no matter what number is chosen in New Hampshire, there’s
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a 1
10,000 chance that the same number will come up in Massachusetts.

So the right answer to ii) is ii)b.

Now I ask: are the questions in i) and ii) the same? No. The difference

is that in i), we want, not only that the two winning numbers are the

same, but, in addition, that they match the specific number 8092.

In the year 2081, having 8092 come up in both states is only 1 of

10,000 way the numbers can match. So the 1
10,000 chance of they will

match then must be 10,000 times bigger than the chance that they

will both be 8092. Travelling back in time a century, the right answer

to i) must be 1
100,000,000 .

How, then, can the answer to iii) be anything but “Obviously, yes”?

Let me ask, and answer, a couple of even more obvious questions.

Would it have merited a story if the Massachusetts pick4 number was

8092 and the New Hampshire number was 7615. Pretty much “Dog

bites man”: I don’t think so. What if the numbers had been reversed?

Still no story. What if the winning number in both states has been

7615? Now the man is biting the dog again. What was unusual about

the draws on September 9, 1981 has nothing to do with the fact that

the winning numbers were 8092. It was the fact the the same number

was drawn in both States that was news; exactly what number was

drawn is irrelevant. And the chance of seeing the same number in

both states is the same on September 9, 1981 and on September 9,

2081: 1
10,000 not 1

100,000,000 .

Problem 2.1.6: On January 22 and 23, 2009 the same 3-digit num-

ber, 196 was picked two days in a row in the Nebraska PICK 3

lottery and an article on this coincidence circulated widely. Check

out the pick3 winning numbers for August 10 and 11, 2006 at

http://www.nelottery.com/numbers.xsp. How likely do you think it

is that a "one in a million" event (as the article calls this coincidence)

would happen twice in 1200 or so drawings? How likely is it that the

same number will be drawn twice in a row in pick3?
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Problem 2.1.7: New York state holds two drawings daily for WIN 4,

its name for a pick4 lottery.

i) How likely is the same number to come up in both daily draw-

ings?

ii) How likely is the number 8056 to come up in both daily draw-

ings?

iii) Comment on the probabilities in this Daily News article from

March 10, 2009.

One skill I fervently hope you’ll acquire in Math4Life is that of dis-

tinguishing between the truly rare and unpredictable, the unusual

but predictable, and the merely coincidental. It’s truly rare for any

given pre-assigned number to come up twice in a day in the New

York win4. So we’ll almost certainly never see 8056 twice in one

day again—having decided now to look for this number to come

up twice. It’s unusual for the same number to come up twice in a day

in the New York win4 but we can predict that it will happen about

once every 27.4 years on average. Since there are about 25 states with

daily pick4 type lotteries, we can expect some such lottery to draw

the same number twice in a row a bit less often than once a year.

This happened in Pennsylvania on June 23rd, 2003. This event was

also unusual but predictable. That the number that came up twice

was 3199 was merely a coincidence, in hindsight. This would have

been a truly rare event had we been watching, before June 23rd, 2003

for the number 3199 to come up twice.

AIG gives back: a fairy tale with a moral

Early in 2009, during the furor over the huge amount of Federal

money ($180,000,000,000) used to bail out its financial products di-

vision bailouts and bonuses ($180,000,000) it had paid to employ-

ees in that division, the Board of Directors of insurer AIG decided

that it would be smart to “give back to the American taxpayer”.
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They decided to return 10% of the bailout money via a lottery. Ev-

ery American citizen—the census bureau estimates that there are

227,719,424—would have a chance to win one of 18,000 prizes of

$1,000,000 in cash. (Yes, 18,000 × $1,000,000 = $18,000,000,000
which is only 10% of $180,000,000,000). A computer was pro-

grammed to select American citizens at random using a combination

of birth, tax and Social Security records. We’ll assume that this task

was performed perfectly—that is, on each draw every citizen had an

equal chance of being picked. Because the number of prizes was so

much smaller than the number of citizens (less than 1 in 10,000 cit-

izens would be a winner), AIG felt that it was not necessary to take

any action to prevent the same citizen winning more than 1 prize.

Problem 2.1.8: Which of the following numbers is closest to the

chance that some citizen’s name would be drawn twice?

i) 0
ii) 0.00000000625 (This is 18,000

227,719,424
17,999

227,719,424 .)

iii) 0.00007904464 (This is 18,000
227,719,424 .)

iv) 0.00010000000 (This is 1
10,000 .)

v) 0.50000000000 (This is 1
2 .)

Can we rule out some of the answers above as obviously wrong? Well,

we can rule out 0. The chance of drawing the same person twice may

be small, but it’s definitely a possibility if we don’t try to prevent it,

so the right answer is positive. In the other direction, 12 seems crazy:

how can there be a 50 − 50 chance of having a double winner when

fewer than 1 in 10,000 is going to win? Likewise, 0.00010000000
seems pretty fishy because the fraction 1

10,000 really has nothing to

do with the drawing—I just mentioned it to give you a rough feel for

the size of 18,000
227,719,424 .

That leaves 0.00000000625 and 0.00007904464. If, as we expect,

there is no double winner, then there will be exactly 18,000 win-

ners among the 227719424 citizens, so the chance of winning will

be 18,000
227,719,424 . But the chance of winning twice must surely be smaller
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than this. First you need to win one of the 18000 prizes, then

you need to also win one of the 17999 other prizes. That gives us
18,000

227,719,424
17,999

227,719,424 , so the answer must be 0.00000000625.

OK, I owe you an apology. The preceding paragraph is total non-

sense, even if it sounded pretty reasonable going by. I just wanted

to set you up for one of the most graphic demonstrations that in-

tuition is a very unreliable guide to probability. The closest answer

is 0.50000000000. The actual chance of having a double winner is

0.50903428737!! Yes, that’s right, there’s a better than 50−50 chance

this will happen. Let me just remark that that’s 5,000 times as big as

0.00007904464 and over 80,000,000 times as big as 0.00000000625,

the answer that seems right. How’s that for unreliable intuition?

Be sceptical about probabilities 2.1.9: Moral: Be skeptical with

probabilities. If you’re not sure you understand it, think three times

before believing it, and even if you are sure you understand it, think

twice before believing it.

That’s all I’ll say for now about this example, because I’d need to di-

gress too long to explain how to calculate the number 0.50903428737
and why it’s the right answer. If you can’t wait to find out, you can

peek ahead to the discussion to Example 3.8.42. Oh yes, and, of

course, there was no AIG lottery. I just made this problem up to

have an example where the chance of a double winner would come

out close to 1
2 .

“We wuz robbed”

The title for this section was first uttered by boxing manager Joe

"Yussel the Muscle" Jacobs (also the creator of “I shoulda stood in

bed”) on June 21, 1932. That night, Max Schmeling had, in the view of

most observers, outfought Jack Sharkey for the heavyweight cham-

pionship but lost a split decision.
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Here we’re going to look at another robbery. It concerns the selection

of playoff teams for the strike-shortened 1981 Major League Base-

ball season. Teams played differing numbers of games depending

on how many of their games had been scheduled during the strike

period, from June 12th to August 9th. For example, the Expos played

6 more games than the Cards. So the playoff teams that year were

decided, not by the greatest number of wins, but by the highest win-

ning percentage. Moreover, to create some extra playoff games and

make back some of the money lost during the strike, two teams from

each division would qualify for the playoffs. We’re back in the days

before wildcard teams when the division winners used to play each

other for their league championship. Instead, the team in each di-

vision with the best record before the strike began would play off

against the team with the best record after the strike ended.

You may notice a small problem with this format. What if the same

team has the best winning percentage both before and after the

strike? It was at first proposed to select the team with the second

best overall record, but this was changed, on August 20th, to the

team with the second best record in the second half. Here’s a very

easy set of questions about how this worked out.

Problem 2.1.10: Below are the final standings (for the entire 1981

season) in the National League.

i) Using Table 2.1.11, can you name with certainty all 4 of the 4
teams that qualified for the National League Playoffs? If so, what

teams were they? If not, explain why it’s impossible.

ii) Using Table 2.1.11, can you name with certainty any 2 of the

4 teams that qualified for the National League Playoffs? If so, what

teams were they? If not, explain why it’s impossible.

iii) Using Table 2.1.11, can you name with certainty any 1 of the

4 teams that qualified for the National League Playoffs? If so, what

team was it? If not, explain why it’s impossible.
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2.1 A stroll through the minefield

iv) Using Table 2.1.11, can you name with certainty any 1 of the 8
teams that did not qualify for the National League Playoffs? If so,

what team was it? If not, explain why it’s impossible.

Rank Club Wins Losses Percentage GB

East Division

1st St. Louis Cardinals 59 43 .578 –

2nd Montreal Expos 60 48 .556 2.0

3rd Philadelphia Phillies 59 48 .551 2.5

4th Pittsburgh Pirates 46 56 .451 13.0

5th New York Mets 41 62 .398 18.5

6th Chicago Cubs 38 65 .369 21.5

West Division

1st Cincinnati Reds 66 42 .611 –

2nd Los Angeles Dodgers 63 47 .573 4.0

3rd Houston Astros 61 49 .555 6.0

4th San Francisco Giants 56 55 .505 11.5

5th Atlanta Braves 50 56 .472 15.0

6th San Diego Padres 41 69 .373 26.0

Table 2.1.11: 1981 National League final standings

I hope you answered “No” to part i). For example, in the East Division,

it’s pretty clear that one of the teams must be the Cards and the

other must be either the Expos or Phillies. But which of the Expos and

Phillies made it is too close to call. After all, they’re only separated

by a single game, so which of them did better in the second half of

the season is impossible to say “with certainty”. And whichever of

the two that was would have qualified, either as the outright winner

of the second half in the East, or as the second best second half team

in the East.

Similar reasoning applies in the West. The Reds look like a lock but

picking between “with certainty” between the Dodgers and the As-
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2.1 A stroll through the minefield

tros is not possible, although since the Dodgers led overall by 2
games, you have a hunch they made it.

What about part ii)? I’ll bet that many of you answered “Yes”, the

Cards and Reds must have qualified. After all, each has the best

record in its division for the entire season. So each must have had

the best record either in the first half or in the second half—if not

in both. You can’t be best overall without being best in at least one

half. Any way you cut it, they’d both qualify. Right?

Wrong, as Table 2.1.12 shows. The Cards were best overall but only

second best in each half, so the Phillies and Expos made the playoffs

in the East.

Rank Club Wins Losses Percentage GB

First half season

1st Philadelphia Phillies 34 21 .618 –

2nd St. Louis Cardinals 30 20 .600 2.5

3rd Montreal Expos 30 25 .545 4.0

4th Pittsburgh Pirates 25 23 .521 5.5

5th New York Mets 17 34 .333 15.0

6th Chicago Cubs 15 37 .288 17.5

Second half season

1st Montreal Expos 30 23 .566 –

2nd St. Louis Cardinals 29 23 .558 0.5

3rd Philadelphia Phillies 25 27 .481 4.5

4th New York Mets 24 28 .462 5.5

5th Chicago Cubs 23 28 .451 6.0

6th Pittsburgh Pirates 21 33 .389 9.5

Table 2.1.12: 1981 NL East standings by half

I’ll bet pretty much all of you answered “Yes”, the Reds must have

qualified to iii). After all, they don’t just have the best record in the

West, they have the best record in the entire National League. You

probably felt, as before that you can’t be best overall without being
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2.1 A stroll through the minefield

best in at least one half. Well, we now know that’s not so, but so

what? The Reds aren’t just a couple of games ahead like the Cards

were, they’re a full 6 games ahead of the Astros. They must have

made the playoffs. Well, read Table 2.1.13 and weep. It was Dodgers

versus Astros in the NL West in 1981. They’re still saying “We wuz

robbed” in Cincinnati.

Rank Club Wins Losses Percentage GB

First half season

1st Los Angeles Dodgers 36 21 .632 –

2nd Cincinnati Reds 35 21 .625 0.5

3rd Houston Astros 28 29 .491 8.0

4th Atlanta Braves 25 29 .463 9.5

5th San Francisco Giants 27 32 .458 10.0

6th San Diego Padres 23 33 .411 12.5

Second half season

1st Houston Astros 33 20 .623 –

2nd Cincinnati Reds 31 21 .596 1.5

3rd San Francisco Giants 29 23 .558 3.5

4th Los Angeles Dodgers 27 26 .509 6.0

5th Atlanta Braves 25 27 .481 7.5

6th San Diego Padres 18 36 .333 15.5

Table 2.1.13: 1981 NL West standings by half

What we’ve seen in parts ii) and iii) is usually referred to as

Simpson’s paradox. If you start with several component sets of av-

erages (like the 2 sets of winning percentages in the first half and

second half above), and aggregate them to get a single overall set of

averages (the winning percentages for the full season), you can’t tell

very much about the component averages you started with from the

overall averages. Even an obvious overall best, like the Reds, needn’t

be best in any of the components.

OK, so what about the worst teams. Well, Simpson’s paradox also
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2.1 A stroll through the minefield

means that we can’t be sure that the worst teams overall were worst

in at least one half. As it happened they were, as Table 2.1.12 and

Table 2.1.13 show. In fact the hapless Padres were not only worst

overall but worst in both halves. But that wasn’t what iii) of Problem

2.1.10 asked. Can’t we at least be sure that the worst teams did not

make the playoffs? After all, the Cubs finished 21.5 games behind

the Cards and the Padres 26 behind the Reds.

Rank Club Wins Losses Percentage GB

First half season

1st Atlanta Braves

2nd Cincinnati Reds

3rd Los Angeles Dodgers

4th Houston Astros

5th San Francisco Giants

6th San Diego Padres

Second half season

1st San Diego Padres

2nd Cincinnati Reds

3rd Houston Astros

4th San Francisco Giants

5th Los Angeles Dodgers

6th Atlanta Braves

Table 2.1.14: 1981 NL West “standings” by half

Problem 2.1.15: Complete Table 2.1.14 for the two halves of the NL

West season so that:

i) the total wins and losses for each team for the full season match

those of Table 2.1.11;

ii) the total number of games played by each team in each half sea-

son matches that in Table 2.1.13; and,
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2.1 A stroll through the minefield

iii) the standings in each half season are as given.

Other than matching these totals, your table does not need to be

realistic—and it won’t be, because you’ll have to make some teams

like the Padres impossibly good in one half and impossibly bad in

the other.

When you’ve finished, you’ll have shown that the answer to part iv)

of Problem 2.1.10 is “No”. At least mathematically, the Braves and

Padres could have played for the 1981 NL championship. Hey, that’s

no stranger than putting a team from Atlanta in the NL West!

We’ll see other examples of Simpson’s paradox, in less frivolous con-

texts, including a famous case dealing with discrimination in admis-

sion to graduate school in Simpson’s Paradox.

He’s on Fire!

What is a random pattern? That question turns out to be very diffi-

cult to answer authoritatively. To keep things fairly simple, I’m going

to restrict attention in this section to runs of heads and tails, which

will write as a sequence of letters H and T, and which we can generate

easily either out of our heads or by flipping a coin.

We don’t want to work with sequences that are too short because

no such sequence is really unlikely and there’s no way to distinguish

between randomness and order. For example, there are 4 sequences

of length 2—we’ll write such sequences without any angle brackets

here, as HH, HT, TH and TT—each of which we expect to see 1
4

th
of

the time if they appear randomly. In this section, I’m just going to ask

you to take frequencies like this on faith: we’ll see soon (in Example

3.3.5) that there are 2` sequences of Hs and Ts with ` letters and

that, if we choose at random, we expect each to occur 1 time in 2`.

On the other hand, we don’t need to take really long sequences to

study randomness. If, as we will, we work with sequences with 100
Hs and Ts, then each will come up 1

2100
th

of the time. By the way,
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2.1 A stroll through the minefield

1
2100

' 7.8886× 10−31 ' 0.00000000000000000000000000000078886.

So one answer to the question, “What runs of 100 Hs and Ts are

random?” might be: they all are. This is not wrong, in that all such

runs are equally likely—or better, unlikely. But it misses the point

we’re trying to get at.

Consider the three sequences below:

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

H T H T H T H T T H H H T H H H H T H T T T T T H H H H H H T H H T H T H H H T H H H H H T H H T T

T H H T H T H H T H T H H T H T T H T T H T H T T H H H H H H T H T H T H T H H H T H H H T H T T H

H T T T T T T T T H H T H T T H H H H T T T T H H H H T H H H T T T T H T H T T H H T T H T H H H T

T T T T H T T T T T T T T H H H H T H H T T T T T H T H T T H H T T H H H H T H T H H T H H H T H H

Each of these is equally likely. They’ll come up 1 time in 1
2100 . But the

first is clearly very unrandom. It contains no Ts. Since we expect a

coin to come up tails about half the time, we’d be surprised, to say

the least, to see no tails in 100 tosses. In fact, I’d be pretty sure the

coin we were tossing had heads on both sides.

The second sequence looks more random, but it still contains 59 Hs

and only 41 Ts. Weren’t we expecting 50 of each? Not quite. We only

expect the coin to come up tails about half the time. Going back to

runs of length 2, we’re not surprised to see no tails (or all tails) be-

cause HH (and TT) come up 1 time in 4. So we see exactly one T

only half the time. When we have learned the Binomial Distribu-

tion Formula 4.7.23, we’ll see exactly 50 tails in 100 tosses a bit

less than 8% of the time (but if you are interested you can check

out Example 4.7.26 now). So not seeing 50 tails is the more common

outcome. We’ll see exactly 41 tails about 1.5% of the time. That’s less

than 1
5

th
as often as we see 50 tails, but it’s still not all that unusual.

The third sequence gives an impression somewhere in between. This

time there are 45 Hs and 55 Ts. Those numbers come up almost 5%

of the time, so are nearly as common as a 50–50 split. On the other
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2.1 A stroll through the minefield

hand, look at the left side. There are two blocks of 8 Ts in a row,

one at the left of each line. Moreover, 12 of the first 13 tosses on the

bottom line are Ts. Shouldn’t this make us suspicious that this run

is not random? But how suspicious should we be? That’s not so easy

to say.

So no tails in 100 tosses is definitely not random. It’s not so obvious,

but even 20 tails is definitely not random: it happens less than 1
time in a billion. In fact, any number of tails less than or equal to 20
happens less than 1 time in a billion.

Where do we draw the line between a “mildly” unusual (41 tails) and

a “wildly” unusual (20 or fewer)? Or between a “mildly” unusual run

of 8 Ts in a row and a “wildly” unusual run of 100 Hs? The answer

depends on how much confidence we want to have that what we’re

seeing is not random. We can never be completely sure: remember

even 0 tails will eventually appear if we look at enough runs of 100
tosses. But since we’d expect to have to look at about 1031 such runs

to see 0 tails once, we’re very well-justified in deciding that some-

thing’s fishy if we ever do see it. Likewise, something’s definitely

fishy if we see fewer than 20 tails.

A run like the second one above with only 41 Ts is right at the cusp.

As we’ll see when we apply the Central Limit Theorem 4.9.12 in

Section 4.9, a better question to ask is what’s the chance of seeing

no more than 41 Ts, and this turns out to be about 4.4%. In other

words, we expect this to happen less than 5% of the time, or less

than 1 time in 20. The figure 5% is very commonly used (for histor-

ical reasons) as the cutoff for outcomes that are unusual enough to

make us seriously question their randomness. When you hear about

experimental results at the 95% significance level, what is meant is

that something was observed that we’d expect to see less than 5% of

the time by pure chance.

As I said above, distinguishing the random from the meaningful is a

very tricky problem, but one that arises in just about every discipline
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2.1 A stroll through the minefield

in the modern world. The following experiment is designed to give

you a first inkling of just how tricky.

Experiment 2.1.16: Below are two sets of empty boxes, in each of

which you are to record a run of 100 random Hs and Ts.

i) Made-up method: fill in the upper set of boxes by just writing

down 100 Hs and Ts “out of your head”, trying to make the sequence

look as random as possible.

ii) Coin-toss method: fill in the lower set of boxes by tossing a coin

100 times, putting down an H each time you get a head and a T each

time you get a tail.

Before going on, take a look at the run of Hs and Ts that you made

up. Does it look random to you? If not, feel free to go back and

change some of the letters to make it look more random. Please don’t

edit the boxes that you filled out by tossing a coin.

I’m now going to “Spot the quarter”, that is, tell you which set of

boxes you filled out and which were filled out by the coin. Since I

won’t be able to look at the Hs and Ts in your boxes, I’m going to ask

you to help by computing a pattern number for each set of boxes.

Then, I’ll ask you to concentrate very hard on these two numbers for

30 seconds to communicate their random essence to me.

Here’s how to find the pattern number. Find the greatest number

of consecutive Ts in the top row. Then find the greatest number of

consecutive Ts in the bottom row. Then repeat, but this time find the

greatest number of consecutive Hs in each row. Add up the squares

of these 4 numbers to get the pattern number. For example, for the

boxes below, where the runs are shown in red, the pattern number

is 66: 42 above and 52 below for the runs of Ts and 32 above plus 42

below for the runs of Hs.
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2.1 A stroll through the minefield

H T H H T H T T T H H T T H T T H H H T T T H T H T H T T T T H T H H T T T H T H T T H H H T T T H

T T T H H T H H H T T T T T H T T T H H T H T T T T H H T H T H H H H T T T H T H T T H T H H H T T

OK. When you have your two pattern numbers, write them down

and concentrate hard on communicating them to me for 30 seconds.

Thank you.

I can now reveal that the boxes you filled out of your head are the set

with the smaller pattern number. What’s going on here? Naturally, I

cannot reveal the secrets of my psychic powers. That’s mainly be-

cause I don’t have any psychic powers. What I do know is that what

people think is random is usually not.

In a case like the sequences of Hs and Ts, people think that long runs

of consecutive Hs or consecutive Ts are not random. So sequences of

Hs and Ts written down “out-of-your-head” to look random do not

contain very long streaks of Hs or Ts. In fact, a random sequence of

Hs and Ts, like that produced by tossing a coin, will have surprisingly

long runs of consecutive Hs or consecutive Ts. When there are a total

of 50 tosses there’s a run of 5 or more heads more than half the time

(and likewise a run of 5 or more Ts more than half the time). More

than half the time there’ll be at least one run of 6 or more. Without

going into all the details, the upshot is that the pattern number of a

random sequence of 100 Hs and Ts is almost always 100 or larger;

the pattern number of a sequence generated by a person is almost

never bigger than 75.

So my pattern number was just a gadget to “peek” at your sequences

and see which contained long streaks of Hs and Ts: the one that

has these was almost always generated by the coin and the one that

doesn’t by you. I’d have been able to tell which was which by taking

a real glance at your boxes, just by noting which set had the longer

streaks in it.

One way to express the intuition about randomness that this exam-

ple reveals is that people feel that the more consecutive heads we

have tossed, the more we should expect a tail on the next throw. The

belief that “runs tend to stop” is what causes us to avoid long streaks
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2.1 A stroll through the minefield

when trying to simulate random sequences of Hs and Ts. But “runs

tend to stop” is wrong. There’s a huge amount of evidence that “The

coin has no memory”: regardless of what has happened on the pre-

vious tosses, we should expect the next one to come up heads (and

tails) half the time. In other words, a run of (say) heads is exactly

equally likely to continue and to stop on the next toss. In Section

4.7, we look extensively at this very important property for which

the general technical name is independence

What’s really odd about our intuition is that most people simultane-

ously believe even more strongly in the opposite fallacy: “runs tend

to continue”. Listen to any broadcast of a college or professional bas-

ketball game and I guarantee that, at some point after a player has

made 2 or 3 shots in a row, the announcer will invoke the “hot hand”.

A player with a streak of made shots is more than ordinarily likely

to make the next shot he attempts. So the rest of the team should

“get him the ball”. Make another shot or two and you can expect to

hear the dreaded cliché, “He’s on fire!”.

Wrong. Wrong, wrong, wrong. There’s no such thing as the hot hand.

Entire seasons of shot by shot records of both field goals and free

throws have been examined—the classic reference is The Hot Hand

in Basketball: On the Misperception of Random Sequences by Thomas

Gilovich, Robert Vallone and Amos Tversky [Cognitive Psychology 17,

295-315 (1985)]—and the evidence solidly confirms that a shooter’s

success on recent attempts has no influence on his chance of making

his next shot.

I know you don’t believe me. The common argument is that shooters

aren’t coins and that it’s the role of confidence in shooting that af-

fects their success. Wrong. But, for now, let’s agree to disagree. We’ll

come back to this topic when we have some more tools in hand and

you can make your own experiments.
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Chuck-a-luck

Chuck-a-luck or birdcage is the name of a carnival or midway game in

which 3 dice are thrown by spinning a cage like that shown in Figure

2.1.17. In the most common variant, the rube bets on a number from

1 to 6 and wins the value of his bet for each die that comes up with

the number bet showing, losing the bet if the chosen number does

not show on any die.

Figure 2.1.17: A chuck-a-luck dice cage

In a striking example of convergent evolution1, functionally equiv-

alent games exist in China (Hoo hey how), England (Crown and an-

chor), Flanders (Anker en Zon), France (Ancre, pique et soleil) and

Vietnam (Bâu cua cá co. p). The genetic trees of these games can be

traced by comparing the dice used, as in the anchor common to the

European versions. A Chinese set is shown in Figure 2.1.18. With the

1Convergent evolution occurs when two genetically unrelated lines develop the
same functional biological trait, as in the development of winged flight in bats, birds
and insects. Usually, differences in implementation, as in this example, confirm the
independence of the development. The most famous example is the camera eye which
is “wired backwards” (nerves enter the front of the retina creating a blind spot) in
vertebrates but forwards in cephalopods.
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addition of many bells and whistles, the game is now found in most

Asian and US casinos under the name Sic bo.

Figure 2.1.18: Hoo hey how dice

Suppose you bet on 4. Since a die has 6 sides, each of which has an

equal 1 in 6 chance of coming up on any roll, you can expect the first

die to show a 4
(
1
6

)
th

of the time you play. Another way to put this

is that you expect to the first die to contribute
(
1
6

)
th

of a 4 to your

winnings. Likewise, you can expect each of the second and third dies

to contribute
(
1
6

)
th

of a 4 to your winnings. All told you expect to

see 3× 1
6 =

1
2 of a 4 each time the case is spun.

Of course, there’s nothing special about the number 4. Since all 6
numbers are equally likely to come up, you expect to see 1

2 any num-

ber you bet on
(
1
6

)th
of all dice and hence to see 1

2 of any of the 6
numbers each time the case is spun. We can check this by noting that

6 numbers times 1
2 an appearance per spin gives an expected total of

3 appearances per spin for all 6 numbers which matches the 3 dice

in the case. If we replaced 1
2 with a larger or smaller number, we get

either fewer than 3 or more than 3 expected appearances.

Another way to express the preceding argument is to say that for

every $1 you bet at chuck-a-luck, you expect to win 50¢, or to keep

the numbers round every 2 times you bet $1, you expect to win $1. Of

course, if you bet $1 twice and win $1 once, you’ll also lose $1 once.

So, in the long run, rubes should expect to break even at Chuck-a-

luck.

Problem 2.1.19: Why do they call them rubes? Why is the carney

spending 14 hour days spinning that dice cage? What do you really
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think happens to the rubes when they play Chuck-a-luck?

That’s right. The rubes lose money. On average, they will lose about

$ 17
216 ' 0.07870370370 or roughly 7.87 cents for every dollar bet. I’ll

postpone explaining what the catch is until we have learned how to

count the dice rolls in the game, but feel free to look ahead to the

discussion after Example 3.8.36.

Let’s note that, once again, the obvious answer about the game is

wrong. You’re sure the game is fair—meaning that you neither expect

to win nor to lose—and it’s not. That fact explains why the game is

popular in so many different cultures. The rube gene seems to be one

of the most widespread in the human population and Chuck-a-luck

does a brilliant job of expressing it.

Instead, I want to use Chuck-a-luck to look at another question. How

random are the losses of the rubes and the winnings of the operator?

To make this question a little more concrete, let’s consider several

versions of it.

Chuck-a-luck Scenarios 2.1.20:

i) You like to gamble and Sic Bo is your game. We want to consider

your chances of beating Dump Casino’s house edge in a couple of

scenarios.

a. Suppose you visit the Dump Casino in Atlantic City on August

25, 2008 and bet $1 at at Sic Bo 100 times. What is the chance

that you’ll walk away a winner on the day?

b. Suppose you visit the Dump Casino in Atlantic City twice a week

for a year—let’s call this 100 visits so you can take a 2 week

vacation—and bet $1 at Sic Bo 100 times on each visit. What is

the chance that you’ll walk away a winner on the year?

ii) You’re the owner of a string of Chuck-a-luck booths each of

which you book on a state fair circuit for 100 days each year and

lease to operators. Each day, each operator reports the net amount

of money won on bets placed at his booth and you split this profit
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50–50. Let’s assume, to keep things simple, that each day each booth

covers exactly 10,000 $1 bets.

a. Suppose that one of your operators reports that, on August 25,

2008, his booth won $675. Does this indicate a problem with the

operator or his booth?

b. Suppose that one of your operators reports that, on August 26,

2008, his booth won $443. Does this indicate a problem with the

operator or his booth?

c. Suppose that over the course of a season, one of your operators

reports that his booth won $76,034. Does this indicate a prob-

lem with the operator or his booth?

d. Suppose that over the course of a season, one of your operators

reports that his booth won $84,741. Does this indicate a prob-

lem with the operator or his booth?

Before we start to try to answer these questions, a few comments.

First, despite the frivolous context, questions of this type are very

important. Other questions of this type—in the sense that giving

answers requires applying exactly the same mathematical ideas to

different observations—include:

• Does smoking cause lung cancer?

• Is the recent change in average global temperatures due to

rises in carbon dioxides levels in the atmosphere or to random

climatic variations?

• Is the SAT culturally biased?

• Does adding omega-3 fatty acids to your diet reduce your risk

of heart disease?

• Can the mutual fund managers consistently outperform stock

market indexes?

• Does pledging sexual abstinence reduce your risk of acquiring

STDs?

So, let’s try to get a bit more of a bird’s eye view of what it is we

are asking. In each of the Chuck-a-luck Scenarios 2.1.20, we have
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2.1 A stroll through the minefield

a probability prediction of what should happen, based on the knowl-

edge that rubes lose 7.870370370 cents for every dollar bet. Let’s

work out these expectations.

Problem 2.1.21: Calculate the expected loss of the player and the

expected winnings of the operator for each of the Chuck-a-luck

Scenarios 2.1.20.

Partial Solution
I’ll work out i)a and ii)c and leave the other parts to you. In all

cases, the calculation is very easy: just multiply the total number

of $1 bets placed by the expected win or loss of $0.0787 per

dollar bet and you’ll have the expectation.

In i)a, there are 100 bets so the expectation is that the rube will

lose about $100× 0.0787 = $7.87.

In ii)c, there are 10,000 bets on each of 100 days, making

1,000,000 bets in all, so the expectation is that the operator will

win about $1,000,000× 0.07870370370 = $78,703.70.

OK, so we have a clear idea of what we expect, but there’s kicker.

Despite all the decimal places and the apparent accuracy, these ex-

pectations are only approximate. The kicker is the italicized word

about that we need to insert because we are dealing with probabili-

ties. It’s the same about as the one in the sentence: “If we toss a coin

100 times, it will come up heads about 50 times.” When we say that,

we do not mean that we think exactly 50 heads is all that likely; as

I mentioned above in discussing randomness in He’s on Fire!, that’ll

happen only about 8% of the time. What we mean is that we expect

the number of heads to be close to 50 most of the time. But some-

times, we’ll see a lot more heads—even 100 heads although only 1
time in about 1031. Saying how near to 50 heads is close and how

often is most of the time is not so easy. Are the 45 heads and the

59 heads that we saw in random examples in He’s on Fire! close?

How often can we expect numbers this far from our expectation of

50? When is a value far enough from what we expect for us to say “I
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2.1 A stroll through the minefield

smell smoke” and when is it far enough away to yell “Fire”.

The questions posed in Chuck-a-luck Scenarios 2.1.20 are ques-

tions of this type. We are comparing an particular observation (in

He’s on Fire!, these were the particular runs of 100 heads and tails)

to an expectation (we expect to see about 50 heads), and we ask:

“How likely is it that a random observation would deviate from our

expectation as much as the particular observation does?” If the like-

lihood is big enough, we say the deviation is due to randomness.

An observation like 45 heads falls squarely in this range. As that

likelihood get smaller, we start to smell smoke: “I suspect that my

particular observation is not random.” In the discussion following,

Unlikely Successes Rule-of-Thumb 4.9.20, we’ll see that an obser-

vation like 64 heads smells distinctly smoky. When the likelihood

gets small enough, we yell fire: “My observation isn’t random; if it is,

I’ll eat my hat.” Given an observation like 31 heads, we see flames. At

81 heads, we bring in the arson squad. But things are seldom com-

pletely cut and dried. An observation like the 59 heads that appeared

in of our random runs is almost, but not quite, in the smoky range.

Let’s rephrase the questions in i) in these terms. In i)a, our expecta-

tion is that you’ll lose $7.87. If you come home a winner on August

25th, then we’ve observed a loss that deviates by more than $7.87
from our expectation. How likely is a deviation this big? In i)b, our

expectation is that you’ll lose $787.03 on the year. If you are a net

winner over the year, then we’ve observed a loss that deviates by

more than $787.03 from our expectation. How likely is a deviation

this big?

Statistics is the science of finding ways to answer this, and similar,

questions. It’s a huge subject and we’ll just learn a few of its most

basic lessons, at the end of out study o fprobability, in Section 4.9.

These tell us how to estimate such likelihoods in terms of the num-

ber amount of data in our observation (the number of tosses of the

coin, or the number of spins of the Chuck-a-luck cage) and a key
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2.1 A stroll through the minefield

number, called the variance of our problem. I’m not even going to

try to define the variance roughly here, except to say that it tries to

capture how far from our expectation a typical observation will be.

Once we have learned a bit of statistics, we’ll be able answer ques-

tions like those in the Chuck-a-luck Scenarios 2.1.20 about devi-

ations from expectations almost as easily as we were able to deter-

mine what the expectations were above. Warning: don’t take this to

mean that statistics is easy. Far from it; it’s simply that we’re only

going to look at a tiny corner of the subject that is easy. The kind of

answers we’ll be able to give will be deductive, meaning that we’ll just

have to study problems mathematically to reach our conclusions.

There’s also an inductive, or observation based, approach to decid-

ing how likely the deviations in the Chuck-a-luck Scenarios 2.1.20

are. We simply make the observation in each question a large num-

ber of times, and then see what fraction of our observations exhibit

the deviation from our expectation asked about. For example, con-

sider the observation or experiment of playing Sic bo 100 times, as

in i)a, and recording the net win or loss for the rube. Suppose we re-

peat this observation n times and see p occasions in which the rube

went home a winner. Then, the fraction p
n gives us an estimate of

how often we can expect the rube to win, and hence an approximate

answer to the question in i)a. If n is reasonably large, we expect this

estimate to be reasonably accurate.

In a moment, we going to look at a set of n = 100 such observations

for each question, which is enough to give a good feel the answers

to the Chuck-a-luck Scenarios 2.1.20. For this number of observa-

tions, we can rephrase our conclusion as: the rube wins about p% of

the time.

There are a couple of draw backs to the inductive approach. First, it’s

a lot of work. To get each observation we need to make 100 spins to

get one observation, and hence 100 = 10,000 spins to find p. In ii)c,

each observation calls for 1,000,000 spins so finding p would call for
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2.1 A stroll through the minefield

100,000,00 spins. A homework assignment like that might make for

a couple of pretty late nights. One of the challenges facing statistics

is to find ways to reach reliable conclusions without having to take

a very large number of observations. Being able to do this well is

of immense practical significance, because in many problems—think

of testing medical procedures—it is very expensive to gather even a

single observation.

I have two pieces of good news for you. First, our look at statistics

won’t reach the difficulties of efficient testing of hypotheses. Sec-

ond, I’ve done all the experiments needed. I wrote a small computer

program to simulate chuck-a-luck spins; then I used this program to

produce 100 observations of each of the Chuck-a-luck Scenarios

2.1.20. The 100,000,00 spins needed for parts ii)c and ii)d took 13
hours on my iMac™. All you’ll have to do is analyze the resulting

observations.

The second drawback to the inductive approach is that the answer

we’ll get is itself somewhat random. Suppose we carry out a second

set of 100 observations of the rube in the casino, and see the rube

come home a winner q times. There’s no guarantee that p and q will

be equal. In fact (as with the 50 heads in 100 tosses) this is usually

rather unlikely. What we expect is that p and q will be fairly close

to each other. But how close is close? And if they’re not close, which

one should we trust and which should we reject? If we don’t repeat

our observations, how do we know that the p we observed isn’t a

wildly unlikely value? These questions are, as I hope you now see,

just further statistical questions about our collections of observa-

tions. Once again, we could try to answer them either deductively (if

we are prepared to learn some more statistics) or inductively (if we

have a lot of free time for experimenting).

More good news. I’d like you to remember is that even inductive an-

swer based on a lot of observations may me misleading. This is one

of the main reasons that there’s no substitute for deductive statisti-
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2.1 A stroll through the minefield

cal methods. But you do not need to worry about the variability of

the observations that I’ll provide you with. Just trust me that they are

reasonable and draw the conclusions they suggest. I’ll periodically

tell you what the deductive methods say about various likelihoods.

Again, just trust these figures for now and we’ll see how to arrive at

them in Problem 4.9.26.

Each cell in Table 2.1.22 shows the net winnings (or, if negative

losses) of the rube in 100 Sic Bo spins. There are also 100 cells or

observations: the cells are in the order that I made the observations

in reading order (from left to right and top to bottom). Just by glanc-

ing at the table you can see that the rube does not go home a winner

too often. On the other hand, there are cells when he does go home

a winner by a fair bit—by $17 on two occasions.

-5 -26 8 -19 -20 -17 -29 4 -7 0 -12 -7 3 -20 -7 -11 -5 -16 -3 -12

-8 -7 -8 -1 -9 -17 -20 -12 1 -20 -17 -18 -7 -4 2 -6 0 1 5 2

-22 -10 -31 9 2 -20 7 -9 -13 17 10 -9 -10 -35 -5 -2 -2 -14 8 -2

-11 -24 -1 -12 6 7 -24 -4 -6 -23 -9 -1 17 -1 14 -2 -11 -6 16 0

-4 -18 -5 -35 -11 11 -4 -9 -18 -2 -14 -19 -8 -17 -15 11 -11 -29 -3 -2

Table 2.1.22: 100 raw observations for part i)a

Table 2.1.23 contains the same data as Table 2.1.22, but the numbers

have been sorted into increasing order to make it easier to answer

the question, “How often does the rube go home a winner after a

night of Sic Bo?” The answer is that he wins 21 nights out of 100 and

wins or breaks even 24 times.

-35 -35 -31 -29 -29 -26 -24 -24 -23 -22 -20 -20 -20 -20 -20 -19 -19 -18 -18 -18

-17 -17 -17 -17 -16 -15 -14 -14 -13 -12 -12 -12 -12 -11 -11 -11 -11 -11 -10 -10

-9 -9 -9 -9 -9 -8 -8 -8 -7 -7 -7 -7 -7 -6 -6 -6 -5 -5 -5 -5

-4 -4 -4 -4 -3 -3 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 0 0 0 1

1 2 2 2 3 4 5 6 7 7 8 8 9 10 11 11 14 16 17 17

Table 2.1.23: 100 sorted observations for part i)a

Table 2.1.24 contains a second set of 100 “night in the casino”. Once

again the rubes winnings have been sorted into increasing order.
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2.1 A stroll through the minefield

Now, he only wins 20 nights out of 100 but he wins or breaks even

26 times. Both sets of observations suggest that the rube wins on

about 20% of the nights he plays and breaks even on about 25%.

-35 -33 -32 -30 -29 -28 -26 -26 -25 -25 -22 -21 -21 -21 -20 -20 -20 -20 -20 -20

-20 -19 -19 -19 -19 -19 -19 -17 -17 -17 -16 -14 -14 -14 -13 -13 -13 -13 -13 -12

-12 -12 -12 -11 -11 -11 -10 -9 -9 -9 -7 -6 -6 -5 -5 -5 -4 -4 -4 -4

-4 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -1 -1 0 0 0 0 0 0

1 1 1 2 3 3 3 3 4 4 4 5 5 5 7 8 8 11 13 14

Table 2.1.24: 100 more sorted observations for part i)a

Looking at the 2 sets of observations, it’s pretty clear that the rube

didn’t do as well in the second set as in the first. The numbers in

corresponding cells are generally a little more negative in the second

table than in the first. You can confirm this by summing the num-

bers. In the first table, they sum to −752 and in the second to −898.

That’s a difference of $146. Another way to put these totals is to saw

that in the first table the average loss per night is $7.52—close to,

but a bit less than our expectation of $7.87–while in the second the

average loss is $8.98 over a dollar more than we expected.

This differences illustrate what I meant when I said that inductive

answer like those in the table are themselves somewhat random. The

statistic we were trying to focus on—how many winning nights were

there—was quite close in the two tables. But, the two average losses

differ substantially.

Before I present 100 observations for i)b of the Chuck-a-luck Sce-

narios 2.1.20, note that you already have 2 in hand. We’ve been

thinking of Table 2.1.23 and Table 2.1.24 as 100 observations for

i)a—the rube plays for one night—but each can be thought of as one

observation of the rube playing for a whole year. Notice also that

these 2 observations don’t really offer much guidance in answering

i)b. Yes, the player loses in both observations, $752 and $898. But if

I picked 2 cells at random in one of these tables, I’d probably get 2
negative numbers ( 34 of the cells are negative). Yet the player seems
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2.1 A stroll through the minefield

to win about 20% of the time. So we really need lots of tables like the

two above to answer i)b.

Table 2.1.25 gives a sorted summary of the data in 100 tables like

the 2 above. Each cell of this table contains the total won or lost by

the rube in 100 nights of Sic Bo play, so each cell summarizes an

amount of data equal to all of one of the tables above. For example,

the −898 in the top row stands for as much data as all of Table

2.1.24.

-1114-1103-1077-1031-1031-982-963-963-958-946-942-922-905-902-902-901-899-898-895-889

-887 -882 -878 -873 -872-869-868-859-858-855-850-848-845-843-841-841-839-833-826-824

-824 -824 -819 -817 -816-816-816-815-812-806-805-805-800-789-788-787-786-784-782-779

-776 -765 -762 -758 -755-752-751-746-746-737-736-727-726-723-722-722-721-720-719-710

-709 -703 -701 -697 -691-687-678-668-666-664-658-654-645-578-574-570-521-517-516-493

Table 2.1.25: 100 sorted observations for part i)b

What strikes you about this table? All the entries are negative; quite

negative. The rube never ends the year a winner. He doesn’t even

come close. If he goes to Dump 100 times a year for a century, he

won’t break even in a single year.

The total of the 100 cells in the table is −$79,748. and so the rube’s

average loss over 100 nights—the average value of a call—is $797.48.

We expected the rube to lose an average of $787.30 and now we’re

getting pretty close. If we divide the entries in the table by 100 to get

the corresponding average loss on the 100 nights at Dump that each

cell summarizes, we see that these average nightly losses range from

a low of $4.93 to a high of $11.14. That range is much smaller than

the ranges of nightly losses we saw in the previous tables (which

were between $35 and −$17 (where we’re now viewing a win of $17
as a loss of −$17).

That last observation is the most important point about this exam-

ple. We expect each the losses on an average night to be about $7.87.

But lots of individual nights are far from average: we see nights that

$25 above and night that are $25 below this figure. When we take
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average of groups of individual nights, we still see some variability.

But this variability is much smaller. Our best and worst averages are

now less than $4 away from our expectation.

We can also use Table 2.1.25 to start to answer ii)a and ii)b. Each

cell in Table 2.1.25 summarizes 100 nights of 100 spins of Sic Bo.

But we can also think of each cell as summarizing 10,000 spins of

chuck-a-luck, or one day’s action at a state fair.

Problem 2.1.26:

i) How many cells in Table 2.1.25 are smaller than 675? Estimate

the chance of seeing a days winnings equal to or smaller than $675?

ii) How many cells in Table 2.1.25 are smaller than 443? Estimate

the chance of seeing a days winnings equal to or smaller than $443?

Would you be suspect your operator of falsifying his report in either

case?

Let me ask that question again, showing you a different set of obser-

vations. Table 2.1.28 was generated by the same random process as

Table 2.1.25. Each cell summarizes 10,000 simulated spins of chuck-

a-luck. The total of the cells in this table is −80152 meaning that the

operator averaged winnings of $802.52 a day, a few dollar more than

in the previous table.

Problem 2.1.27:

i) How many cells in Table 2.1.28 are smaller than 675? Estimate

the chance of seeing a day’s winnings equal to or smaller than $675?

ii) How many cells in Table 2.1.28 are smaller than 443? Estimate

the chance of seeing a day’s winnings equal to or smaller than $443?

Would you be suspect your operator of falsifying his report in either

case?

-1128-1076-1029-1023-1012-987-972-972-970-963-953-950-949-945-937-933-921-911-897-894

-893 -888 -887 -887 -885-871-868-862-861-861-858-856-849-848-844-842-838-838-833-832

-830 -827 -818 -809 -808-804-800-798-798-796-796-794-781-780-776-776-776-773-772-772

-772 -770 -768 -761 -760-757-755-750-744-740-735-734-731-727-726-726-722-721-719-716

-713 -709 -709 -706 -705-697-697-694-687-687-685-643-641-623-620-585-575-562-512-361

Table 2.1.28: 100 sorted observations for parts ii)a and ii)b
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2.1 A stroll through the minefield

This example illustrates what makes statistics hard and why we need

to supplement inductive methods with deductive ones. Looking at

Table 2.1.25, I presume you said that winnings as low as $443 must

be very rare. We only saw 1 day in 100 below $500.

But then we get Table 2.1.28. One of the 100 numbers in that table

is −361 which is not only a lot smaller than −500, but a lot smaller

than −443. An observation this far from its fellow is usually called

an outlier. What should we conclude? Do numbers as small as −361
come up close to once in every 200 observations? Or did we just

happen to observe something unusual? There’s no easy way to tell.

Either we need a lot more observations, which means a lot more

work, or we need some theory. I hope this example will convince you

that that latter is the better answer.

It turns out that the deductive theory shows that winnings less than

$500 can be expected less than 1 time in 100. Winnings as low as

$443 occurs less than 1 time in 700. So we might be very suspicious

of the operator who reported this figure but realize that his report

is not wildly unlikely. When you look at 100 observations, seeing a

1 in 700 value is surprising, but only mildly so. The number −361
really is unusual. We expect to see an observation that small only

about 1 time in 10,000. Put more graphically, suppose we looked at

100 tables like the 2 we have: how often would we expect to see an

entry this small? Most of the time we’d see either exactly 1 or 0, and

only rather rarely fairly often would we see more than one. So it’s

surprising that we did observe the number 361 in looking at just 2
such tables.

But note also that we can’t just throw an outlier away because it

messes us our tables and annoys us. We’ll also see how important

respecting the data is to drawing sound statistical conclusions. I was

shocked when my program spit out that −361 and I went back and

did a few more checks of my simulator. But I found no problems.

So I swallowed hard and passed the number on to you. If I saw an
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2.1 A stroll through the minefield

outlier than far off again, I would much more seriously question my

program. Right now, I’m more worried that some reviewer will think

I deliberately inserted the number −361 to set off this discussion of

outliers.

Problem 2.1.29: We can also view Table 2.1.28 as a second set of

100 yearly observations of the rube in i)b? Should the outlier −361
make us revise our conclusion that the rube will never come home a

winner at the end of the year?

With all these cautions, we’re ready to see the striking effects of ac-

cumulating large numbers of observations. Each cell in Table 2.1.31

below summarizes 1,000,000 spins of chuck-a-luck: that’s as much

data as in all of Table 2.1.28. Notice, once again, how much more

“predictable” all the numbers in this table are. We expected the total

loss in 100,000,000 spins to equal −7,870,370.37 and we observe a

total loss of −7,887,034 (the total of all the cells). Observation and

expectation now match to 2 places (almost to 3). If we divide each

cell by the 1,000,000 spins we get numbers ranging from −.081928
to −.075908, all of which are clustered near the expected value of

−.078703.

Problem 2.1.30: Use the data in Table 2.1.31 to answer parts ii)c

and ii)d.

-81928 -80899 -80820 -80568 -80552 -80513 -80431 -80429 -80286 -80274

-80217 -80198 -80129 -80108 -80038 -79995 -79965 -79954 -79936 -79933

-79929 -79861 -79850 -79847 -79807 -79755 -79737 -79611 -79570 -79557

-79551 -79495 -79465 -79456 -79425 -79381 -79358 -79326 -79237 -79236

-79234 -79176 -79167 -79160 -79102 -79068 -79044 -79042 -79004 -78995

-78994 -78913 -78867 -78831 -78828 -78797 -78776 -78756 -78705 -78700

-78657 -78519 -78490 -78442 -78409 -78395 -78387 -78383 -78126 -78040

-78008 -77981 -77937 -77931 -77928 -77902 -77898 -77832 -77824 -77771

-77759 -77755 -77736 -77728 -77702 -77694 -77672 -77667 -77630 -77448

-77445 -77410 -77361 -77307 -77196 -77079 -77032 -76704 -76155 -75908

Table 2.1.31: 100 sorted observations for parts ii)c and ii)d

Let me close by quickly discussing Problem 2.1.30. Winnings of
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2.1 A stroll through the minefield

$76,234 are observed twice in our table to this figure is a bit unusual

but not wildly so. In the long run, you’d see winnings this low about 1
year in 60. The closest we come to seeing winnings of $84,741 in our

observations is the $81,928. Is that extra $1,800 or so significant?

Almost certainly.

There are 61 observations within 1000 away from the expectation

of −78703.7 and 39 further away, but only 5 more than 2000 away

and only 1 just over 3000 away. Winnings of $84,741 would be about

6000 away from the expectation—twice as far as any of our 100 ob-

servations, and that ’s far enough to yell “Fire”. A value this far away

can be expected in fewer than 1 in every 10,000,000 observations.

If your operator reported winnings that were low by this much, you’d

suspect him of holding out on you. Perhaps you’re not worried about

making a few thousand more than you expected. But you should be.

That $84,741 tells you that something is not right—and it’s not the

laws of probability—so you’d be smart to investigate that booth.

The very important moral here is called the:

Law of Large Numbers 2.1.32: Even outcomes that are individu-

ally random become predictable when you look at large collections of

them.

In an evening of Sic Bo, the rube can often go home a winner (about

20% of the time) even though we expect him to lose. In a year of play-

ing the game, he’ll always end up a loser, although his total losses

can vary substantially (by a factor of 2 or more). Similarly, a chuck-a-

luck booth operator can always expect to be up at the end of a day,

but his net winnings can vary a lot. But we can predict, with very

high certainty that over a season of running a booth, his winnings

will not vary more than 5% percent (i.e. $4,000) from the expected

$78,703.70. We’ll see many more examples later in the course.
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2.2 You want prions in that burger

One of the roles of the US Department of Agriculture, or U.S.D.A.,

is to ensure the safety of meat consumed by Americans. It does this

through an Animal and Plant Health Inspection Service or APHIS pro-

gram whose mission is “To protect the health and value of U.S. agri-

culture, natural and other resources”.

In recent years, the disease of greatest concern has been BSE or

bovine spongiform encephalopathy common know as mad cow dis-

ease. This is a disease of cattle, humans and other mammals gener-

ally felt to be caused by misfolded proteins or prions. Such prions,

although much simpler even than viruses, have the ability to repro-

duce in mammalian brains causing the gradual degeneration of the

brain (encephalopathy) and spinal cord into a spongy (spongiform)

mass—hence the name. In humans, the disease is more commonly

called Creutzfeldt–Jakob disease or CJD but here I’ll call all forms

BSE for simplicity.

The progress of the disease is if often very slow, especially in hu-

mans. It often takes a decade or more to declare itself by progressive

dementia (memory loss and hallucinations) and physical impairment

(jerky movements, rigidity, ataxia and seizures) and another before

death ensures. There is currently no cure or effective treatment for

BSE/CJD; the disease is invariably fatal.

The most common route of infection is the ingestion of prions con-

tained the flesh of other infected mammals, although a variant called

scrapie that infects sheep is conjectured to be transmitted through

both urine and maternal milk. Cattle infections occur mainly when

feed contains by-products from carcasses of sheep, goats and other

cattle. Although such by-products are usually cooked as part of the

feed manufacturing process, ordinary cooking neither destroys nor
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disactivates the offending prions. Most countries now ban the use of

such “ruminant-to-ruminant” feed.

Infection due to cannibalism was common until recently in areas

such as Papua-New Guinea where the disease is known as kuru. But

in the last 30 years, most infections in humans have been caused

by consumption of infected beef. As with cattle feed, even very well-

cooked beef that contains prions remains infectious. It is estimated

that several hundred thousand infected cattle have entered the hu-

man food chain since the 1980s, but little good data exists and the

figure could easier be an order of magnitude (10 times) lower or

higher. An outbreak of BSE/CJD in Britain in the 1980s led to the

slaughter of hundreds of thousands of animals and the banning of

importation of British beef. This infection has since led to the death

of at least 150 people but, given the long incubation period, the ulti-

mate toll is difficult to estimate.

So, it seems urgent to ask, the

BSE Question 2.2.1: How many US cattle are infected with BSE?

I’d sure like to know and I bet you would too. It would be easy to an-

swer this question. Although it is currently difficult to test living an-

imals for BSE, examination of the brain and spinal cord tissues after

slaughter is a reliable and easy method of identifying infected meat.

Some countries, notably Japan, perform this test on every carcass in-

tended for human consumption. However, as we’ll see at the end of

BSE Testing, it’s possible to screen only a small fraction of slaugh-

tered animals and still say that with a high degree of certainty that

rates of infection are lower than pretty much any pre-determined

threshold we’d like to set. Testing programs in Europe, Canada and

most of Asia are of this type with the threshold typically set at about

1 in 1,000,000.

Unfortunately, it’s also possible to design a program that tests tens

of thousands of carcasses and is likely to find no infections even if

infection rate is as high as 1 in 100,000. It turns out that
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In this section, I want to convince you that the APHIS screening pro-

gram in the US is deliberately designed not to answer the BSE Ques-

tion 2.2.1.

That’s right. The U.S.D.A. does not want you to know how many cat-

tle in the US have BSE and has designed a screening program that is

pretty much guaranteed not to discover this information. Why? Be-

cause, if you find out, so will the authorities in the many countries

that import large quantities of US Beef. Even if the answer turns out

to be “very, very few”, recent history shows that what happened to

exports of British beef in the 1980s will happen to ours: they’ll be

prohibited. So to protect US beef exports, you must remain in the

dark.

Before we look at the program, let me say that my personal hunch

is that rates of BSE infection in US cattle are probably pretty low

and that your risk of acquiring CJD is very low indeed. But I don’t

really know. I want to try to convince you that you don’t either and

to convince you that the reason we don’t know is because APHIS has

not done the tests that would answer the BSE Question 2.2.1. To see

this, we need to consider two further questions.

Our first question is, “What is an acceptable rate of exposure of

Americans to BSE infected cattle?” The first reaction to this ques-

tion is to say, “What are you, a moron? There’s no acceptable rate

of exposure to BSE. Only zero exposure is acceptable.” The U.S.D.A.

would agree with you. When a single case of a BSE infected cow was

discovered in Canada in mid-2003, it banned all imports of Canadian

beef into the US. Deboned beef from younger cows was allowed back

in in 2004. (Cattle less that 30 months old do not show BSE patholo-

gies, although, given the often slow progress of the disease, it’s not

completely clear that they pose no risk.) But imports of live cat-

tle were only renormalized in November 2007. By that time, several

more cases of BSE had been found in Canada, but these all affected

cattle born before Canada banned “ruminant-to-ruminant” feed and
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such cattle were still excluded.

Speaking of “ruminant-to-ruminant” feed bans, the FDA enacted one

in 1997. But in 2005, a General Accounting Office report found

that many feed firms had never been inspected and many were

still processing ruminant protein. According to another FDA report

from later in 2005, showed that 4,553 firms—27% of that had been

inspected—were handling prohibited materials. Such materials are

allowed in feed intended for export (apparently it’s perfectly accept-

able to infect our foreign customers with BSE via their cattle) though

to avoid scaring off export customers, such infected feed need not

be labeled as containing ruminant protein. So some—no one knows

just how much—is almost certainly making its way onto US feed lots.

Our second question is, “What is an acceptable rate of discovery of

BSE infected cattle in the US?”. Here again we know that the answer

is, “Only zero discovery is acceptable.” On December 9th 2003, Dave

Louthan shot a dairy cow that he feared would trample “downers”

(cows too weak or ill to stand) in its trailer at Vern’s Moses Lake

Meats in Washington. The cow’s brain was sent for testing; because

APHIS was temporarily paying $10 an animal for test samples, Vern’s

had begun sending in about 80 samples a month in October, al-

though in the two years ending in mid-2003 not a single cow was

tested in Washington state. On December 11th, the animal’s split car-

cass was sent to Midway Meats for deboning, and on the 12th the

meat was shipped on to two licensed meatpackers. By the time the

cow’s BSE test came back positive on December 23rd, the meat had

long since been distributed to wholesalers, and from them to re-

tailers in 8 states. In a press conference called to try to quench a

firestorm of outcry the next day, the Secretary of Agriculture re-

vealed that barely 20,000 cattle had been tested nationally in 2002.

A Christmas Day editorial in the New York Times commented that

“This single case will expose the holes in the American system of

meat production and disease testing.”
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The discovery of that single case of BSE eventually led 50 countries

to ban imports of US beef. It was not until mid-2008 that normal

exports were resumed in some of the biggest Asian markets, like

Japan and Korea. Japan, which accounted historically for about half

of all beef exports from the US with an annual value close to $2
billion, had allowed in some beef earlier but closed its markets again

in 2006 when another case of BSE as discovered in the US. Those

$2 billion a year are the biggest reason why “Only zero discovery is

acceptable.”

So an ideal U.S.D.A. testing program for BSE would meet 2 goals:

zero discovery and zero exposure. That’s easy to do, if there are no

BSE infected cows in US herds. You could test every animal slaugh-

tered, as Japan does: you wouldn’t find and BSE and everyone would

know they were not being exposed to BSE. In Europe, where there is

some BSE present, all animals older than 30 months at slaughter are

tested; because of its slow development tests generally do not reveal

BSE in younger animals even if they are infected. These countries

also enforce farm-to-fork traceability of all food products, so they

can easily locate infected meat at later processing stages and have

it destroyed. This has benefits in controlling other types of contam-

ination, like escheria coli. Currently the U.S.D.A. is planning to track

animals to the slaughterhouse, and to track meat from the slaugh-

terhouse, but has no plans for tracking meat in the slaughterhouse,

where similar cuts from many different animals are routinely mixed.

But a dilemma arises if some US cattle actually do have BSE. Then the

only way to ensure zero exposure is to identify those cattle with BSE

so they can be kept out of the human food chain. But that, of course,

violates zero discovery. The only way to ensure zero discovery is not

to test any cattle for BSE. And that, of course, violates zero exposure.

One of the two goals has to give.

APHIS’s solution has been to abandon both as absolute goals. Pub-

lic concern over BSE is very high—over 80% of American consumers
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would like to see every animal tested—so some BSE testing must be

done. This means there’s some risk of BSE discovery. But the testing

program is designed to ensure that zero discovery is very likely in

most years even if the rates of infection or prevalence is of the order

of 1 animal in 100,000, meaning that about 300 infected animals are

consumed every year. That’s an amount of meat weighing as much

as about 600,000 quarter-pounders. APHIS claims that its program

shows that the prevalence of BSE in American herds are actually less

than 1 in 1,000,000(or even in 10,000,000) but this claim is based

on very questionable assumptions. Other U.S.D.A. policies that we’ll

review late convince me that the goal is not to answer the BSE Ques-

tion 2.2.1.

Let’s look at the math, as summarized in Table 2.2.2, and then I’ll

close by comparing what it tells us about APHIS’s testing program

to APHIS’s claims about its program. You’ll have to take my word

for the numbers in the tables that follow, but you’ll soon be able

to derive them yourself using the Binomial Distribution Formula

4.7.23: see . The numbers assume that cattle to be tested are chosen

at random. In particular, whether or not one animal being tested has

BSE has no influence on the chance that any other does. This is an-

other example of the independence property we met in the preceding

section in the notion that “The coin has no memory”. We’ll also as-

sume that the APHIS tests successfully identify as infected all cattle

with BSE. This assumption is open to debate: see the discussion of

the middle portion of of the table below.

The first set of numbers shows what we’d expect when testing

20,000 cattle a year; this was the number of tests conducted in

the years before the BSE infected cow was detected in 2003. If 1 in

100,000 cattle were infected, we’d expect to uncover at least 1 case

of BSE (i.e. more than 0) in about 18% of years. In other words, we’d

see a case about every 5 years, and more than one case only once

every 50 years.
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Prevalence 1 in 100,000 1 in 1,000,000

20,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.818730 0.181270 0.980199 0.019801

1 0.163748 0.017522 0.019603 0.000197

2 0.016374 0.001148 0.000196 0.000001

3 0.001092 0.000057 0.000001 0.000000006

360,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.027323 0.972677 0.697676 0.302324

1 0.098365 0.874312 0.251164 0.051160

2 0.177058 0.697255 0.045209 0.005950

3 0.212470 0.484784 0.005425 0.000526

40,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.670319 0.329681 0.960789 0.039210

1 0.268130 0.061551 0.038431 0.000778

2 0.053625 0.007926 0.000769 0.000010

3 0.007150 0.000776 0.000010 0.0000001

Table 2.2.2: Number of cattle with BSE detected per year

At a prevalence of 1 in 1,000,000, we only expect to find any infected

animal once every 50 tears of so and we’d essentially never see more

than 1—well, once every 5,000 years or so. In summary, none of this

data provides much basis for claiming that infection rates are less

than 1 in 100,000 and we could expect such results even if preva-

lence was considerably higher.

For just over two years, between June 2004 and July 2006, testing

rates were increased to about 1,000 animals a day—say 360,000 a
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year. These tests uncovered 2 infected cows, one in Texas in Novem-

ber, 2004 or June, 2005 and one in Alabama in February, 2006. The

ambiguity about the date for the Texas animal arises because the

November, 2004 tests did not disclose BSE (but for other reasons

the animal was kept out of the human food supply). However, the

U.S.D.A.’s Inspector General, against the wishes of agency’s head who

was “irked” by the move, requested that a more sensitive Western

blot test be run. This was done in June, 2005 and the test came back

positive for BSE. Later, that month the BSE testing protocol was al-

tered to include the Western blot test. So it is hard to say how many

infected animals were missed in the first year of the program. We’ll

assume as mentioned before the table that this number is 0.

So we observe a single infected animal in each year of the program.

If prevalence was as high as 1 in 100,000, these outcomes would be

surprising. We’d expect to see no more than 1 infected animal only

about 1 year in 8. I won’t explain the reasoning needed here, or in

what follows, but the arithmetic is involved easy and I’ll show it:

0.027323+ 0.098365 = 0.125688 ' 1
8 . So we’d expect this two years

running only about 1 time in 64 or 1.5% of the time. At least, that’s

well below the standard minimal cutoff of 5%.

What about a prevalence of 1 in 1,000,000? Then the jury is out. At

this prevalence, only expect to see any infected animal in 0.302324
of all years. To see at least 1 for 2 years running will happen only

about 1 time in 11 (0.302324 · 0.302324 ' 1
11 ). In contrast, we’d

expect to see no infected animal in either year almost half the time

(0.697676 · 0.697676 ' 1
2 ). We can’t draw a very strong conclusion,

but the observed results suggest that the prevalence may well be

quite a bit higher than 1 in a 1,000,000.

Problem 2.2.3: After June 2006, APHIS reduced the number of tests

to 40,000 a year. In the first 2 years of this testing program, no in-

fected animal has been detected. By imitating the calculations I have

given above, try to use the numbers in the third section of the table

1—
1—
2—

a ·· ·· z ? 129 Comments welcome at �̂�

mailto:morrison@fordham.edu


2.2 You want prions in that burger

to obtain the following conclusions:

i) At a prevalence of 1 in 100,000, we expect to see no infected

animal in about 67% of years, or in about 2 out of 3 years.

ii) At a prevalence of 1 in 100,000, we expect to see no infected

animal in 2 consecutive years about 45% of the time.

iii) At a prevalence of 1 in 1,000,000, we expect to see no infected

animal in about 96% of years, or in about 19 out of 20 years.

iv) At a prevalence of 1 in 1,000,000, we expect to see no infected

animal in 2 consecutive years about 92% of the time.

What is no infected animal is found in the third year of this program?

By cubing numbers in the table, argue that:

i) At a prevalence of 1 in 100,000, we expect to see no infected

animal in 3 consecutive years about 30% of the time.

ii) At a prevalence of 1 in 1,000,000, we expect to see no infected

animal in 3 consecutive years about 87% of the time.

How many years will the APHIS testing program have to continue

without finding a single infected animal before the chance of seeing

such an outcome drops below the standard 5% level?

i) Show that, at a prevalence of 1 in 100,000, we must see no in-

fected animal in 8 consecutive years before the chance of this hap-

pening is less than 5%. Hint: Compute powers of 0.670319.

ii) Show that, at a prevalence of 1 in 1,000,000, we must see no

infected animal in 75 consecutive years before the chance of this

happening is less than 5%.

The numbers above make it pretty clear what the basic problem with

APHIS’ testing program is: they just aren’t testing enough cattle. If

we tested 3,000,000 cattle—that just 10% of the animals slaughtered

each year—and found no BSE we’d be 95% certain that prevalence

was below 1 in 1,000,000. If we found no BSE for 2 years running, we

be over 99.7% certain. If we tested 10,000,000 cattle for a single year

without finding any BSE, we could essentially rule out the possibility

of a prevalence of 1 in 5,000,000: we’d have observed something that
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would happen only 1 year in 300 at that prevalence. So it would be

very easy for APHIS to answer the BSE Question 2.2.1.

In fairness, I should explain that APHIS claims that it has answered

this question. More precisely, it claims that the testing program de-

scribed above gives us 99% confidence that BSE prevalence in US cat-

tle is below 1 in 10,000,000 (yes, that’s ten million). Do they just

not understand the math? No. A Background Report prepared by

APHIS in 2004 (cited in the Federal Register, but no longer on the

APHIS website) makes this clear. It states that, at a prevalence of 1
in 1,000,000, “to achieve a 95 percent confidence level in detecting

at least one case from a random sample of adult cattle, we would

have to randomly sample and test approximately 3 million animals”.

That’s exactly right.

Instead, APHIS assumes that infected animals will “all be found in the

high-risk cattle population” (again, this and further quotes are from

the APHIS Background Report). Specifically, they assumed that in the

roughly 100,000,000 US cattle, only the roughly 45,000,000 adult

cattle might be infected. There’s no good evidence for this, but, hey!,

we can’t test for BSE in younger cattle anyway. Next, they decided to

try to rule out a prevalence of 1 in a million. Thus they were looking

for 45 infected animals. Now comes the punch line. They assume

that: the majority of these potential infected cattle will be in a sample

of 195,000 “high-risk” cattle that they selected for testing.2

That is, they assume that they are dealing with a population of

cattle where the prevalence of BSE is roughly 0.00023. That’s 23
times a prevalence of 1 in 100,000 and 230 times a prevalence of

1 in 1,000,000. Not finding an infected animal in 12,500 tests gives

roughly 95% confidence that prevalence is not this high; not finding

one in 20,000 tests gives 99% confidence.

2They also assume, as we did, that they can test accurately for BSE. We have no
way to evaluate this assumption, so we’ll pass over it, but the missed animal in 2005
makes you wonder.

1—
1—
2—

a ·· ·· z ? 131 Comments welcome at �̂�

http://bulk.resource.org/gpo.gov/register/2005/2005_527.pdf
mailto:morrison@fordham.edu


2.2 You want prions in that burger

The italicized assumption makes life so easy that one can just as well

rule out much lower prevalences. So the U.S.D.A. does. In July 2006

(after finding the third infected animal), it claimed that 2 positives in

759000 tests (over all years) gives a best estimate of 4 to 7 infected

animals amongst 42,000,000 adult cattle. This is still in the current

document on their site as of April, 2009, but prevalences less than 1
in 18,000,000 are claimed online.

What about that italicized assumption? Well, there’s some evidence

from much larger European testing programs that prevalence rates

are much higher in certain groups of like downers (cattle slaugh-

tered when unable to walk). But there’s been no well designed ex-

periment to show how much higher such prevalence rates might be.

Indeed, the same APHIS survey goes on to note that "It is important

to note that no estimations of prevalence are done when designing

these surveillance plans." (italics mine).

Remember, I said that my belief was that the APHIS program was

designed not to answer the BSE Question 2.2.1. Well, at least we

can be sure that it was not designed to answer it. The Background

Report states: "The objective of the surveillance plan is not to estimate

prevalence of BSE in the U.S. cattle population" and goes on to make

this very clear: “We would like to clarify that, at this time, there have

been no sampling-based, quantitative estimates of the prevalence of

BSE in the United States. Certain assumptions have been made to

assist in developing the surveillance plan, but this is very different

from calculating or estimating the prevalence of BSE in the United

States.” Again, my italics.

OK, but not having designed a plan that answers the question is not

the same as designing a plan not to answer it. Why do I claim that

APHIS’ goal was the latter (as well as the former)? Well, imagine you

are a beef exporter whose main business is in the lucrative Japanese

market (where prices per pound are much higher than in the US or

most other countries). Japan has just closed its border to all US beef
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and said that it won’t open them unless every animal whose meat is

shipped to Japan is tested for BSE. That kind of testing is clearly not

going to be done for you by the U.S.D.A. What should you do?

The answer is pretty obvious. Test every animal your company

slaughters for BSE. Then you can give the Japanese the assurances

they’re demanding and start exporting your beef to Japan again. Re-

member we’re talking a billion dollar market here. There’s just one

catch. Federal Law gives APHIS legal responsibility for animal health

so you can’t just go off and start your own testing program. Your

program must be authorized by APHIS.

No sweat. You’re going to pay for testing your animals yourself—and

you can well afford to since the beef you sell in Japan goes for much

more per pound than beef sold domestically. You’re happy to have

APHIS monitor the actual testing and to compensate it for the time

of its staff. So you apply to APHIS to permission to start testing your

animals for BSE on these terms. That’s just what Creekstone Farms,

a Kentucky and Kansas based processor of black Angus beef that

sold a third of its beef in Japan and Korea, did in 2006. Specifically,

Creekstone asked for permission to test for BSE in a testing site built

to U.S.D.A. specifications, the roughly 300,000 cattle it processes an-

nually.

The U.S.D.A. denied this request, citing the 1913 Virus-Serum-Toxin

Act, intended to ensure the safety of animal vaccines, as justifica-

tion. This act gives the U.S.D.A. authority to regulate “any worthless,

contaminated, dangerous, or harmful virus, serum, toxin, or analo-

gous product for use in the treatment of domestic animals” and the

agency held that BSE testing kits were an “analogous product” and

that they were “worthless, contaminated, dangerous, or harmful”.

Wait a minute, back up the bus here: we’re talking about exactly the

same BSE testing kits that the U.S.D.A. uses in its own BSE testing

program! It gets better. Creekstone took the U.S.D.A. to court. The

case made its way through the courts: Creekstone was upheld in US
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District Court in March, 2007 but that decision was overturned in the

US Court of Appeals in September, 2008 and the case sent back to

District Court.

In a dissent to the Appeal Court decision, Chief Judge Sentelle noted,

“It seems that the Department’s fear is that Creekstone’s use of the

test kits would enable it to provide buyers with a false assurance that

the cattle from which its beef is obtained are free of Bovine Spongi-

form Encephalopathy.” But APHIS claims that its own testing pro-

gram shows that all American cattle are free from BSE. Creekstone

could only provide false assurance of safety if its cattle tested neg-

ative but were actually BSE infected. In fact, Creekstone’s cattle are

too young for the tests to reveal BSE and Creekstone agrees that the

tests do not demonstrate that its cattle are BSE free. They only want

to test because that’s what Japan and Korea demand and they want

to sell beef in those markets.

My guess (and purely a guess) is that the U.S.D.A. fears that if come

producers began universal testing, the US public would begin to de-

mand such testing on the beef it eats. Of course, that’s only a worry

if you’re not really sure that such testing wouldn’t uncover an unac-

ceptably high prevalence of BSE. I’m not.

So that’s my case for claiming that APHIS has designed a testing

program not to answer the BSE Question 2.2.1. Why else should it

act so aggressively to prevent any private testing that might answer

that question?

So, is it safe to eat beef? Let’s first discuss long term risks. We don’t

really know what long term mortality from CJD may turn out to be.

Many Western countries are currently experiencing an epidemic of

dementia but the causes are unclear. At least a few of these cases are

almost certainly due to CJD caused by eating BSE tainted beef. How

many? I can find no convincing estimate. The incubation period for

CJD is very long so the majority of infections may still be undeclared

for a long time. Moreover, reliable diagnosis of CJD is only possible

1—
1—
2—

a ·· ·· z ? 134 Comments welcome at �̂�

mailto:morrison@fordham.edu


2.2 You want prions in that burger

by autopsy. I think that it will be a long time, if ever, before we know

real rates of BSE infection over the past 20 years. It may be very

low—so far only about 200 deaths are attributed to it—but it could

also be very much higher.

Next, what about your risk from BSE today? Well, only certain tis-

sues in cattle (principally the brain, spinal cord and perhaps mar-

row) seem to carry prions. Unfortunately, a lot of beef is probably

contaminated with such tissues. The first step in preparing a carcass

for deboning is splitting: this involves passing a large saw through

the carcass longitudinally, bisecting the brain and spinal cord and

typically spreading tissues from these areas widely over the carcass.

Meat is often removed by Advanced Meat Recovery or AMR systems

which essentially squeegee it off the bone under high pressure and

produce a sort of "blood, marrow, and muscle gumbo". A recent

study by the Food Safety and Inspection Service, another arm of the

U.S.D.A., found that 35% of AMR meat sampled contained marrow

and spinal cord. But the real piece of data we’d need to assess our

BSE risk is an answer to the BSE Question 2.2.1 and we’re not going

to have that anytime soon.

Ok, so is it or isn’t it safe to eat beef? My personal feeling is that

the primary risk in eating beef is not from BSE but from saturated

fat. A major recent study suggests that reducing red meat consump-

tion could lower the mortality of the 20% of the population who are

the biggest consumers by 11% in men and 16% in women. Nationally,

that translates to tens of thousands of deaths per year attributable

to the dietary role of beef and other red meats. That’s almost cer-

tainly much higher than the number of CJD deaths we’ll see even if

infection rates are much higher than we currently think. Despite this

knowledge, I eat beef. So what the heck? Give me a side of prions

with that burger.
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Chapter 3

When it really counts

This chapter introduces the objects we use to describe collections

in mathematics—sets to give them their mathematical name. Set are

very much the air we breathe in mathematics, fundamental, simple

objects that underlie all the more ornate structures in the subject.

Our study of sets has two main themes. The first is to review and re-

late ways of creating new sets from old, using a variety of set opera-

tions: products, subsets, power sets, intersections, unions and com-

plements. The goal here is to learn how to use these operations to

simplify large, complicated sets by disassembling them into small,

basic components.

The second theme is learning ways to count sets: that is, calculate

their orders, the number of objects or elements they contain. This is

the problem to which we’ll apply our study of set operations, using

them to find the orders of sets that are much too big to list or count

directly. Our approach will be to develop shorthands for the orders

of common basic component sets, and then to understand how to

reassemble such shorthand counts into an overall count for a large

set built from such components.
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3.1 Sets: the air we breathe

The language of sets and our ability to count them will then be key

tools in our study of probability and statistics in the next chapter.

3.1 Sets: the air we breathe

The purpose of this section is mainly linguistic. We’re going to learn

some terminology for dealing with sets. Things will be pretty infor-

mal for two good reasons.

First, although a lot of the mathematics we’ll be doing later on uses

sets, they’re very much in the background. They’re a bit like air. We’re

surrounded by it, we breath it all the time, but we never need to

think about it. Like air, sets will surround us and we’ll use them all

the time, but, if we have a feel for what sets are and solid command

of a few basic set relationships, we seldom need to think consciously

about them.

But be warned! This is one of those times when you either really mas-

ter the necessary ideas and then everything else is easy as breathing,

or you’re just a bit vague on the basics and then you’ll have asthma

for the next two chapters. Do yourself a favor and force yourself

to really memorize the (very few) definitions and formulae in this

section.

The second reason we’re going to be informal about sets is that

defining them carefully is quite tricky. It took decades for mathe-

maticians to see what some of the subtle points involved were and

decades more for them to find the right ways of dealing with them.

Fortunately, for you, only professional mathematicians really need

to come to grips with these niceties.
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3.1 Sets: the air we breathe

Objects and oracles

OK, let’s start by recalling the definition of an atom. To the Greeks,

an atom was something that could not be divided into parts—the

Greek word atomos means uncuttable. Democritus’ philosophical

school held that all matter was composed of eternal atoms though

he had no idea what these atoms might be. The modern use of the

term in chemistry is due to Dalton around 1800 who claimed that

atoms were of many types, each type giving rise to one of the chem-

ical elements discovered by Lavoisier. The viewpoint of the time was

that these smallest elemental components—our modern atoms—in

chemical reactions must be the smallest components of all matter.

By the late 19th century, physics had begun to reveal that this use of

the term atom was a misnomer because these atoms were composed

of even smaller “sub-atomic” particles like electrons, protons and

neutrons. Today we know that these particles are themselves made

up of even smaller constituents like quarks. In hindsight, being an

atom—indivisible—is relative, not absolute.

I recall all this to explain what we will mean by an object. Well, an

object is just any thing we want to distinguish. What’s a thing? An

object, of course! I hope you start to see the difficulty of giving care-

ful definitions. On the other hand, as I’ve already said we don’t re-

ally need to be more precise. For us, an object will be like one of

Democritus’ atoms. It’s something we choose to view as indivisible

but we don’t worry about specifying its properties much more care-

fully. Some objects are mathematical. Each of the natural numbers—

the numbers 0,1,2,3, . . .—is an object. So is each of the letters a,

b, c, . . . , z in the alphabet. But many objects are completely non-

mathematical. You are an object. More generally, each student in

your section of Math4Life is an object. Your left sock is an object.

So is your right sock. The primary colors red, green and blue are

each objects. So far (I hope) so good.

Now comes the only mildly tricky point. Being an object is, like be-
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3.1 Sets: the air we breathe

ing an atom, relative. The difference is that, unlike the chemists and

physicists who found out that their atoms could be decomposed,

we’ll more often want to consider of group of objects as forming a

single object. When we do this we have to choose to view the group

as atomic or indivisible. The advantage of doing this is that it makes

the concept of being a object very general. For example, the pair of

socks you have on is an object. I know that it could be divided into

a left sock and a right sock but I choose to view it as one object (the

pair) rather than two (the socks). Likewise, you can choose to view

the 25 students in your section of Math4Life is an single object, by

simply deciding that the section itself is the object and ignoring the

possibility of dividing it into 25 individual students. Even the natural

numbers can be viewed as a single object by simply choosing to view

the whole collection as an atom and forgetting the possibility of de-

composing it into (infinitely many!) individual numbers. The natural

number object is important enough in mathematics to have its own

notation N. The basic idea is the same in all three cases. We get to

decide what’s an object to suit our own convenience, just as, even

today, it’s useful to view atoms as “atomic” when studying chemi-

cal reactions but as collections of particles when studying nuclear

physics.

Here’s the good news. You can pretty much forget everything I have

just said. Just remember that an object can be anything that we find

it useful to label as an object as long as we agree to view the object

as atomic (even if we know better).

The advantage of this long discussion of objects is that it makes

saying what a set is pretty easy. Informally, a set is just an object

that we have decided to view as a container that holds other objects.

We’ll denote sets by upper case letters like A,B,C or U,V,W to make

it more visible that we view them as containers holding other objects

rather than as atomic objects.

Example 3.1.1: The natural numbers N is a set that contains the

1—
1—
2—

a ·· ·· z ? 139 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.1 Sets: the air we breathe

numbers 0, 1, 2 . . . and so on. The Latin alphabet is a set L that

contains the 26 letters from ‘a’ to ‘z’, your pair of socks is a set P
containing just two objects, your left sock and your right sock, the

primary colors form a set C with contents are the colors red, green

and blue, and the students in your section of Math4Life is a set S
whose contents you can describe better than I.

So, if sets are just special container-objects, how do we tell the play-

ers without a program? In other words, what makes an object a

set other than saying so? Formally, a set is an object that comes

equipped with an oracle. I’ll call the oracle attached to the set A the

A-oracle.

What do I mean by an oracle? Historically, oracles have existed in

many cultures and in many forms. What they have in common is

that they provide authoritative answers to questions. You’ve proba-

bly heard of the oracle of Delphi who gave answers to the ancient

Greeks through a priestess to the god Apollo, many of which are the

subject of many classic poems and dramas. But the Chinese used tur-

tle bones as oracles far earlier, they appear as voices from the sky

in the great Indian epics the Mahabharata and Ramayana, and are

found in African, Central American and many other cultures. Set or-

acles are so named because they also provide answers to questions.

What kind of questions must the A-oracle be able to answer to qual-

ify an object A as a set? Only very special ones, that let us decide

what objects make up the set A. For any object x, the A-oracle must

be able to answer yes or no to the question “Is the object x in the

container A?”. If the answer is “Yes”, we say that x is an element of

the set A and write

x ∈ A .

This last is read in several ways. In addition to saying “x is an element

of A”, we say, more simply, “x belongs to the set A”, or simplest of

all “x is in A”. If the answer is “No”, we say that “x is not an element
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3.1 Sets: the air we breathe

of A” or “x is not in A” and write

x 6∈ A .

Another way to think of the A-oracle is as an admissions test for A.

The elements x of A are the ones that pass the test and are admitted

to A (by getting a “Yes” from the A-oracle). All other objects get a

“No” and fail.

If you’re wondering where I plan to erect the A-temple of Delphi or

look for A-turtle shells, I’m afraid that set oracles are much more

down-to-earth. What they do have in common with classical oracles

is that come in a variety of forms. We’ll often be able to give multiple

oracles for a single set A. This does not mean that we’re giving multi-

ple sets. All that counts about an oracle is the answers it gives—that

is, which objects it says belong to A. The embodiment of the oracle—

be it a list, a formula, a description, a priestess or a shell—doesn’t

matter. A set A is simply its members or contents. Put differently,

two sets A and B are the same if exactly the same objects x belong

to both, even if the A-oracle and the B-oracle at first seem very dif-

ferent.

The simplest way to give an A-oracle is simply to write down a list of

all the elements of A. To indicate that this list is a set we surround

it in what are called set braces: { }. You’ve probably seen this way of

writing the set N of natural numbers:

N = {0,1,2,3, . . .} .

But we can also write the letters in the alphabet as

L = {a, b, c, d, e, f , g, h, i, j, k, `,m,n, o, p, q, r , s, t, u, v,w, x, y, z}

or the primary colors C and your socks P as

C = {red,green,blue} and P = {left sock, right sock} .

One point about such lists that is a bit misleading is that they have

a left-right order. Changing this order does not change the set listed.
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3.1 Sets: the air we breathe

Why? Because, as I’ve stressed above, changing the order does not

change which objects x belong—that is, appear in the list, it just

changes where they appear in the list. We don’t care where, just

whether. So we could just as well have written C = {green, red,blue}
and P = {right sock, left sock}.
Sets versus Lists 3.1.2: A brief digression. In Section 3.5, we’ll

want to consider object rather like sets except that the elements do

come with an order. We’ll call these lists and use brackets, rather

than set braces to emphasize the difference.

So [1,2,3] is a list and {1,2,3} is a set. The difference is that [1,2,3]
and [3,2,1] are different lists (because the change in order mat-

ters for lists) but {1,2,3} and {3,2,1} are the same set (because the

change in order does not matter for sets). But I’ll wait until we come

to them in earnest to say more about lists.

Back to sets and a very important point. Listing elements is usually

not how we want to give an A oracle. The problem is that it’s simply

too cumbersome when the set has lots of elements. It was annoying

to have to write down the letters of the alphabet to describe L. You

certainly wouldn’t want to have to do too many homework problems

with your section S of Math4Life, if you have to write out a class list

every time you mentioned S. Soon we’ll be working with sets with so

many elements that it would be impossible to list them all in a life-

time, much less at the end of your English class when you’re rushing

to finish your math homework. Even worse, it was impossible to list

all the elements of N because there are infinitely many, and I sleazed

out above with those ellipses (. . .) indicating that I was omitting all

the rest.

We need set oracles that are more concise than those that simply

list their elements. What we’re almost always going to use is what

experts call an informal “natural language” description. In plain en-

glish, plain english! In fact, we already did this in Example 3.1.1 be-

fore I had even said carefully what a set was and I’m sure you had
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3.1 Sets: the air we breathe

no problem understanding what each of the example sets there was.

When I said the letters in the alphabet formed a set L, we both knew

that the elements of L were the 26 letters I listed above. Likewise

there was no problem in speaking about the set S of students in

your section of Math4Life. We both know that you’re in S and Brit-

ney Spears isn’t. Even the “list” of natural numbers I gave above is

really an informal description. I only listed the first 4 elements of N

but we both interpreted those ellipses as indicating that N contains

the objects 5,6,7, . . . (and we both know what objects comes after

these, and so on).

In all these examples, there are some implicit assumptions. If you

were Russian, you might have said “Don’t you mean the 33 letters in

the alphabet?” and we’d have had to settle which alphabet we meant.

Likewise, I’m comfortable thinking about the set S of students in

your section, but if you asked me how many elements S has—that is,

how many students are in your section—I’d have to don my priestess’

robes and email your Registrar to find out. And we both share the

intuitive notion of the natural numbers N as all those numbers you’d

get if you could “count forever”.

I’m not going to worry about such potential confusions and you don’t

need to either because, in practice, they just don’t come up for the

finite sets we’ll be working with. The informal description of any set

A that we need will be sufficiently clear that we’ll both understand

what set is meant and be able to serve as our own oracles about what

objects are elements of A. And, if we need more information, like

how many elements we’ll be able to derive an unambiguous answer

from the description.

You may be wondering why it took all those mathematicians so long

to settle on the right definition of sets. The answer is connected with

problems that arise with certain very big infinite sets and with sets

whose elements are other sets. I won’t go into any further details but

if you are interested you can google “Russell’s paradox”—Bertrand
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Russell was one of the mathematicians who helped clarify and re-

solve these issues.

Let’s sum up. An object is something we choose to view as atomic. A

set is a special kind of object that we view as both an atomic entity

and as a collection of objects called its elements. What identifies an

object as a set is saying so. We need to specify how to tell what the

elements of the set are—give its oracle—but we’re free to provide

this oracular specification in whatever form is most convenient for

us.

The order of a set

Before we end this subsection, there’s one more basic term to intro-

duce.

Order of a Set 3.1.3: If a set A is finite, we define the order #A
of A to be the number of distinct elements in A. If A is infinite, we

simply say that A has infinite order and write #A = ∞.

Example 3.1.4: Just so there’s no confusion we give the order of

some of the sets above. The order of the Latin alphabet L is 26. The

order of the set P of socks is 2. The set N of natural numbers has

infinite order.

Example 3.1.5: How many elements does the set A = {a, b, b, c}
have? The answer is 3 not 4! The point is that, although we have

listed b twice, it only gives us 1 element of A.

This is the meaning of the emphasized adjective distinct in the def-

inition of the order of a set. An element is either in a set A or it’s

not. You can’t hold multiple memberships in the A club. It’s not to-

tally wrong to list an element more than once, as b was above, but

its pointless and confusing to do so. So we don’t.

Warning: These examples are misleading. It’s stupidly easy to find

the order of these sets because we just count. The most difficult
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skill in this course for most students is learning to “count” without

counting. That is, to find the number of elements in a set A which is

informally described—rather than listed—without trying to list the

elements of A. This skill will be our basic tool for working with prob-

abilities and statistics. And, there’s no way of avoiding it because, I

have already indicated, we’ll very soon be working with sets with far

too many elements to list.

3.2 Subsets

Here is where we start to lay out the basic set relationships and op-

erations I mentioned at the beginning of this section. Unlike the pre-

ceding subsection, where all you needed was to get a feel for what

sets were, in this subsection and the next, it’s critical to really master

the ideas. From here, on you need to pay careful attention.

In this subsection, we discuss the fundamental relationship of inclu-

sion or containment between sets, then see how it can be used to

construct new sets from old ones.

Subset 3.2.1: We say that B is a subset of A and write B ⊂ A if,

informally, every element of B is also an element of A.

There are lots of other ways to say or write this. Other ways to say

that B is a subset of A are to say that B is contained in A or that A
contains B, and, instead of B ⊂ A we often write A ⊃ B.

There are also lots of ways to restate the condition that every ele-

ment of B is also an element of A, all with the identical meaning.

Using element notation, B is a subset of A, if x ∈ A whenever x ∈ B.

Or, B is a subset of A, if x ∈ B implies that x ∈ A. In terms of oracles

or admissions tests, this simply means any object x that passes the

admissions test for B automatically passes the test for A. The “club”

or collection B is more exclusive than A is.
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Example 3.2.2: Consider the sets D = {0,1,2,3,4,5,6,7,8,9},
E = {0,2,4,6,8}, O = {1,3,5,7,9}, L = {5,6,7,8,9}, and S =
{0,1,2,3,4}.

Is E ⊂ D? Yes because, each of the 5 elements 0, 2, 4, 6, and 8 of E is

also an element of D. In fact, O, L and S are also subsets of D. Is D a

subset of D? Yes. Why? See Example 3.2.6 for a general solution, but

try to work this out for yourself first.

Is E a subset of S? No, because 6 ∈ E but 6 6∈ S. Equally, no because

8 ∈ E but 8 6∈ S. It doesn’t matter that most of the elements of E are

in S: E is only a subset of S if every element of E is in S. Show that E
is not a subset of O or L either.

Example 3.2.3: In the previous example, we listed the elements of

each set. Remember we don’t want to make this a habit because it

just doesn’t work when the sets get bigger. So let’s try a descriptive

example. Consider the set T of two digit numbers (from 10 and 99),

the set H of whole numbers from 1 to 100, and the set E of even

whole numbers.

Checking that a set B is not a subset of a setA is easy: just exhibit any

element of B that is not an element of A. Here are some examples: Is

E ⊂ T? No, because 100 ∈ E but 100 6∈ T . Equally, no, because 6 ∈ E
but 6 6∈ T .

Is E ⊂ H? This time 100 ∈ H and 6 ∈ H. Nonetheless, 102 ∈ E but

102 6∈ H and since there’s an element of E not in H, E is not a subset

of H.

Is T ⊂ E? No, because 99 ∈ T but 99 6∈ E. Equally, no because 47 ∈ T
but 47 6∈ E.

Is H ⊂ T? No, because 100 ∈ H but 100 6∈ T . Equally, no because

8 ∈ H but 8 6∈ T .

Checking that a set B is a subset of a set A is a bit harder: we have to

check that every element of B is an element of A. Here’s an example:

Is T ⊂ H? Yes. If x is any two-digit number, that is, any element of T
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then 10 ≤ x ≤ 99. If so, then it’s also true that 1 ≤ x ≤ 100 and these

inequalities are just a different way of stating the test for admission

to H. Thus we’ve checked that every element of T is in H so T ⊂ H.

In the last example, notice how useful it was to be able to replace

the natural language “numbers from 1 to 100” oracle for the set

H with the more formal “x satisfying 1 ≤ x ≤ 100” oracle. This

freedom is why it’s important that we identify a set by its members

(what objects it contains), not by its oracle (how these objects are

described).

I want to define two more concepts so that I can point them out when

they arise in the problems that follow.

Empty Set 3.2.4: The empty set � is the set with no elements. That

is, no object x is a member of �. This is one set it’s easy, if pointless, to

list: � = { }.

Disjoint Sets 3.2.5: We say sets A and B are disjoint if no x is a

member of both A and B. Informally, B disjoint from A is a far as B
can get from being a subset of A.

Example 3.2.6:

i) For which A is the empty set � a subset of A?

The empty set is a subset of every set A. If � 6⊂ A, there would have

to be an element x ∈ � such that x 6∈ A. No such x can exist for the

stupid, but very adequate, reason that no x is a member of �.

ii) For which sets A is A itself a subset of A?

Every set A is a subset of itself. What does A ⊂ Amean? It means that

if x ∈ A (the subset), then x ∈ A (the containing set). That’s tauto-

logically true—a tautology is an implication in which the hypothesis

(the if-part) is the same as the conclusion (the then-part)

iii) Give an example of a set A whose only subsets are the empty set

� and itself.

The empty set itself is such a A. So also is any set A with just a single

element x. A subset B of such an A can contain no element except x.
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If B contains x, then B = A; if not, then B = �. Are there any other

examples?

Problem 3.2.7: Consider the set S of states in the U.S., the set C of

states in the continental U.S., the set T of the 13 original colonies,

and the set B of blue (i.e. Democratic) states in the 2008 Presidential

election. Which of these sets are subsets of which others?

Problem 3.2.8: Consider the set D2 of pairs of numbers from 1 to 6
like (2,3) and 6,4). We consider the order of the numbers to matter,

so (2,3) and (3,2) are different elements of D2. This means that D2

has 6 × 6 = 36 elements running from (1,1) to (6,6), although this

count will not be needed in this problem. We will work a lot with

this set later on, viewing the numbers from 1 to 6 as the 6 faces of

a standard die, and the pairs of numbers in D2 as the numbers on a

pair of dice. Since the order of the pair of numbers matters, we need

to distinguish the two dice which I’ll usually do by imagining that

they have different colors, say blue and red. I hinted at this by the

coloring a few of the pairs above, but usually I’ll rely on you to make

the distinction in your own mind.

Here are several sets that are subsets of D2 by construction or by

definition—that is, because, we only admit elements to them that

already lie in D2:
ES is the set of pairs with an “Even Sum”.

S7 is the set of pairs with “Sum 7”.

S4 is the set of pairs with “Sum 4”.

BE is the set of pairs which are “Both Even”.

BO is the set of pairs which are “Both Odd”.

OE is the set of pairs with “one Odd, one Even”.

FO is the set of pairs with “First number Odd”.

Which of these sets are subsets of which others? Try not to list the

pairs in each of these sets—remember we’ll soon be working with

sets too big to list. Instead, try to give informal arguments about why

elements in one set are or are not in the other. I’ll get you started.
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Partial Solution: Let’s see which are subsets of ES.

S7 is not a subset of ES because if a pair has sum 7 it’s sum is not

even. In this case, not as single element of OE is in ES. In fancier

terms, the sets OE and ES are disjoint. If we like, we can give a

specific example: (4,3) has sum 7 so (4,3) ∈ S7 but (4,3) 6∈ ES,

hence S 6⊂ ES

S4 is a subset of ES because if a pair has sum 4 (i.e., (a, b) ∈ S4),

then their sum is even ((a, b) ∈ ES).

BE is a subset of ES because if both entries in a pair (a, b) are even

(i.e., (a, b) ∈ BE), then their sum is a + b certainly even (i.e. (a, b) ∈
ES).

B0 is a subset of ES. This is a bit trickier. If both entries in a pair

(a, b) are odd (i.e., (a, b) ∈ BE), then their sum is even ((a, b) ∈ ES)

because ”odd plus odd is even”.

OE is not a subset of ES. If one entries in a pair (a, b) is odd and the

other is even (i.e., (a, b) ∈ BE), then their sum is odd ((a, b) 6∈ ES).

As an more specific example, (4,3) ∈ OE but (4,3) 6∈ ES. Once again

OE and ES are disjoint.

FO is not a subset of ES. The pair (3,4) is in FO but not in ES. This

time FO and ES are not disjoint: for example, (3,3) is an element of

both FO and ES.

3.3 Product sets

Sequences

One aspect of working with sets that is often a bit confusing for the

beginner is that many fields have their own special terms that mean
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3.3 Product sets

nothing more or less than “set”, “element” or “subset”. The most im-

portant example is the field of probability which we’ll comer to in the

next chapter, but there are lots of others. Sequences provide another

example and I’m going to introduce them now, both as a warmup

for probability and because they provide an unbeatable source of

exercises in the coming subsections.

A sequence s in the Latin alphabet is just a sequence of ordinary

a–z letters. Examples of such s are the sequences (t,o,p), (p,o,t),
(p,o,p,p,y) or (x,z,p,p,q). The order of the letters matters (so

(t,o,p) and (p,o,t) are different sequences) and a letter may be re-

peated (as in (p,o,p,p,y) or (x,z,p,p,q)). Of course, there’s more

familiar term for a sequence of letters in the Latin alphabet: a word.

That’s how we’d prefer to view sequences most of the time.

Here’s how we’ll do so. We’ll use those parentheses ( ) when the con-

text does not make it clear that we’re dealing with sequences, but

we’ll also drop them when they’re not needed. Likewise, the we’ll

often omit the commas that separate the successive letters in a se-

quence when no confusion is likely, and rely on the typewriter font

to remind us that we’re viewing the word that’s left as a sequence of

letters.

Eventually, in Section 3.5, we’ll want to view lists with sequences

and we’ll even drop the typewriter font to make it easier to pass

between the two. And one of the key skills we’ll learn in The Four

Quadrants and the Three Hard Words is how to tell, from an

informal description, whether objects are subsets, lists or sequences.

At that point, we’ll drop the typewriter font since it’s presence or

absence would giveaway the answer. But in this section, we’ll usually

write the example sequences above as top, pot, poppy and xzppq.

Warning: as the last example shows, the letters in a sequence need

not form a dictionary word (even if you might love to be able to put

down xzppq the next time you play Scrabble™).

The length of a sequence is just the number of letters in it—my four
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3.3 Product sets

example sequences have lengths 3, 3, 5 and 5. We usually denote this

length by ` and also often refer to a `-letter sequence instead of a

sequence of length `.

You may sometimes see sequences referred to as lists but, in this

course, we will use the term lists to refer to a special kind of

sequence—one in which no letter is repeated: see Lists from A as

sequences 3.5.11. Such lists are the subject of the whole of section

Section 3.5.

It will often be convenient to work with sequences that use other

alphabets. Don’t worry, you won’t need to know Greek or Cyrillic.

Alphabet and Letter 3.3.1: An alphabet is simply a set; any

set. The elements of the alphabet are called letters. In other words,

alphabet is a synonym for set and letter is a synonym for element.

Why introduce such synonyms when we just learned the perfectly

good primary terms? There are several reasons. The best is that they

indicate how we’re going to use a set. Set is a very general term and

saying that A is a set gives me no indication of why I am interested

in it. If we call A an alphabet, we’re declaring that we’re going to be

working with sequences.

Sequence 3.3.2: A sequence in the alphabet A is a just a sequence

of A-letters—that is, elements of A. As for ordinary sequences the

order of the letters matters and repetition of letters in a sequence

is permitted. The length ` of a sequence s is the number of letters

in the sequence, exactly as for ordinary Latin alphabet sequences (or

words).

You will have to get used to using the term letter in a broader

than everyday sense. The next example introduces the most com-

mon case, where we view digits as letters,

Example 3.3.3: One alphabet we’ll work with quiet a bit is the set

10 = {0,1,2,3,4,5,6,7,8,9}. In this alphabet, as I warned you above,

the letters are simply the 10 decimal digits—hence the name. We are
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3.3 Product sets

going to work with the set 102 of sequences of length 2 in this alpha-

bet: the exponential notation I am using here and in the following

examples of sets of sequences will be explained in Products of a

Set with Itself 3.3.20. Just bear with it for now.

The set 102 is almost, but not quite, the set T of two-digit numbers

that appears in Example 3.2.3. We can think of each number from 10
to 99 as a 2-digit sequence: that is, every element of T can be viewed

as an element of 102. But 102 also contains the ten sequences 00, 01,

02, 03, 04, 05, 06, 07, 08, 09 starting with 0 and these do correspond

one-digit numbers.

Is 102 the same as the set H of numbers from 1 to 100? No, for

several reasons. Again, the leading 0s cause a problem: the sequence

03 is like the number 3 but it is not the same object. We could agree

to ignore leading 0s to get around this, and in some later problems

we will. More seriously, however, the element 100 of H is not in D2
and the element 00 of 102 is not in H (even if we ignore leading 0s).

In other words, H is not a subset of 102 and 102 is not a subset of H.

Show that the set 101 of sequences of length 1 in the alphabet 10 is

just 10 itself. In fact, you should be able to convince yourself that

this is true for any alphabet A. Then try to find a formula for the

number of elements of the set 10` of sequences of length ` in the

alphabet 10. Hint: 101 had 10 elements, 102 has 100; first predict how

many elements 103 has then take a leap to any length `.

Problem 3.3.4: Consider the set L6 of 6-letter sequences in the

Latin alphabet L. The set L6 already demonstrates that we can’t hope

to work with sets and subsets by listing elements. It has 308915776
elements, so if you could write out one sequence a second, it would

still take you almost 10 years to list its elements! Some subsets of L6

are:

NR, the set of sequences with “No Repeated letters”.

NV , the set of sequences with “No Vowels” (we’ll call ‘y’ a vowel for

this problem).
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3.3 Product sets

NC, the set of sequences with “No Consonants”.

BVC, the set of sequences that contain “Both Vowels and Conso-

nants”.

OE, the set of sequences that contain “at least 1 letter e”.

TE, the set of sequences that contain “at least 2 e’s”.

NE, the set of sequences that contain “No letter e”.

EF , the set of sequences that contain “at least 1 letter e and at least

1 letter f”.

DW , the set of sequences that are “Dictionary Words” (in say,

Merriam-Webster’s Online Dictionary).

i) Which of these sets are subsets of which others?

ii) Which pairs of subsets in the list above are disjoint?

Partial Solution: Let’s see which subsets are disjoint from NV .

NR andNV are not disjoint because, for example, “bcdfgh” is in both

NV (it has no vowel) andNR (it has no repeated letter). There are lots

of other correct solutions because there are lots of other sequences

in both sets and it would have been just as good to exhibit any other

one.

NC and NV are disjoint because if a sequence has no vowels and

no consonants it has no letters so must have length 0 (the sequence

with 0 letters is called the null or empty sequence in analogy with

the empty set with 0 elements).

BVC and NV are disjoint because if a sequence has no vowels it can’t

contain both vowels and consonants.

OE and NV are disjoint because if a sequence contains an ‘e’ it con-

tains a vowel. Likewise TE and NV are disjoint and EE and NV are

disjoint.

NE and NV are not disjoint: again “bcdfgh” is in both.

Believe it or not, DW and NV are not disjoint. Check out crwths!

iii) Try to guess a formula for the number of elements of the set

L` of sequences of length ` in the Latin alphabet. Hint: L1 has 26

elements. You can check your prediction by seeing whether it gives

308915776 for the number of elements of L6.
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3.3 Product sets

Example 3.3.5: A binary sequence is a sequence in the binary al-

phabet 2 with just two letters 0 and 1. Such sequences may seem

pretty silly but they are actually among the most widely studied and

used. The main reason is that computers ultimately represent all

the data they handle—text, photos, music, whatever—as binary se-

quences. Lo-o-o-ng binary sequences are we’ll see in this example.

My goal here is to look ahead to the counting we’ll be doing soon

and find a formula for the number of binary sequences of length `.

It’s not too hard to discover such a formula. If we just list the binary

sequences of small length `, we’ll quickly see a pattern. To make

sure we don’t miss any, we’ll list sequences in increasing order. Here

are the sequences of lengths 1 to 4:

number of

` list of binary sequences of length ` binary sequences

of length `
1 0 2 = 21

1

2 00 01 4 = 22
10 11

3 000 001 010 011 8 = 23
100 101 110 111

4 0000 0001 0010 0011 0100 0101 0110 0111 16 = 24
1000 1001 1010 1011 1100 1101 1110 1111

Looking at this table, it’s not hard to predict that the number of bi-

nary sequences of length `—the order of the set 2`—is 2`. If we look

a bit more carefully, we can even see why this is. Why did I divide

each list of sequences into two rows? To make it easy to compare

the rows. Notice that for each length `, the entries in the top row

and the bottom are identical except for the first bit—a bit is just a

shorthand way of saying a Binary digIT, that is, a single 0 or 1. The

first bit in each top row is a 0 and in each bottom row is a 1.

This pattern continues to hold for any `. Every sequence of length

1—
1—
2—

a ·· ·· z ? 154 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.3 Product sets

` + 1 consists of a leading bit that is either a 0 or a 1 followed by

a sequence of length `. Conversely, from any sequence of length `
we get exactly 2 of length ` + 1 by adding either a 0 or a 1 at the

start. In other words, the number of binary sequences of length `+1
is always twice the number of binary sequences of length `. If the

number of length ` is 2` as we predict, then the number of length

` + 1 will be 2 · 2` = 2`+1, again, just as we’d predict.

There’s nothing special about binary sequences. If our alphabet has

m letters instead of 2, then there will bem =m1 sequences of length

1. Each of these will yield m sequences of length 2 by adding one of

the m letters in the alphabet to the start of the sequence so there

will be m ·m = m2 sequences of length 2. And there’ll be m times

as many—m ·m2 = m3—of length 3 and so on. We sum this up for

future reference:

Sequence Counting Formula 3.3.6: For any ` ≥ 0, the number

of sequences of length ` in an alphabet A with m letters is m`.

Notice that we allow ` = 0 in this formula. What’s a sequence of

length 0? Just what it says, an empty sequence with 0 letters. You

can see other examples of the Sequence Counting Formula 3.3.6 in

Example 3.3.3 for decimal sequences (m = 10) and in iii) of Problem

3.3.4 for Latin alphabet sequences (m = 26).

Before we close this subsection, I’d like to emphasize how fast the

number, 2`, of binary sequences of length ` gets big. Let’s compute

some examples to get a feel—try calculating these in your calculator

to check me. First 210 = 1024. Before your time, computers had disks

whose storage was measured in kilobytes or kb—units of 210 or 1024
bytes—although kilo is the Greek work for thousand. Next 220 =
1048576, roughly a million: in computerese, this is a megabyte or

mb. The next two are 230 = 1073741824 (a gigabyte or gb) and 240 =
1099511627776 (a terabyte or tb). By this point your calculator has

probably already given up on an exact answer and started to use

scientific notation.
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A 1tb drive is a pretty large hard drive even today. It’s enough space

to record address book entries (with a cell number and an email) for

everyone on earth! But you’d need 5 such hard drives just to list the

binary sequences of length 40! Each such sequence is 40 bits long

(there are 40 0s or 1s) which is 5 bytes (a byte is 8 bits). And since

there are 240 such sequences they’d take up 5 · 240 bytes or 5tb).

This kind of very rapid growth is why we don’t want to describe sets

by listing elements. In fact, even binary sequences of length 20, that

is, the set 220, would make the point. This set has over a million

elements so if I locked you in a room and refused to feed you until

you’d listed them all, you probably wouldn’t starve to death. But

you’d need a whole lot of ruled pads and, since a million seconds is

over 11 days, you’d be right peckish when you got out.

Challenge 3.3.7: This is just to illustrate the limitations of even a

calculator with such large numbers. Show that there are

1267650600228229401496703205376

binary sequences of length 100.

Hint: Your calculator can tell you what 225 is. Also, 250 = 225 ·225 and

2100 = 250 · 250. This is a challenge because your calculator cannot

compute either of these products,

Products of sets

A recurring theme in mathematics is that of reducing complex

problems to simpler ones by a strategy that goes by the name of

“Divide and Conquer”. The term comes from a Roman military and

political strategy, used against the Jewish Confederation and the

Greek Achaean League, of dividing potentially difficult opponents

into small groups that are individually easy to conquer. The mathe-

matical paradigm involves an extra step. In addition to dividing—

disassembling a big problem into smaller component problems—

and conquering—solving the easier component problems individu-
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3.3 Product sets

ally, we need to have a way of reassembling the answer to the com-

ponent problems into an answer to the original big problem. The key

tools in both the dis- and re-assembly stages are usually operations

that relate the components to the whole.

We’re going to ease into our study of set operations by looking the

product of sets. It’s a good place to start because most of you are

probably already familiar with it and it’s the easiest to work with. In

fact, we’ve been working with products for some time now without

explicitly saying so. But we’ll soon see that sets of sequences are just

special kinds of product sets. Let’s start with the easiest case.

Product of Two Sets 3.3.8: The product A× B of two sets A and

B is the set whose elements are all ordered pairs (a, b) in which a is

an element of A and b is an element of B.

As the term suggests, we consider that the order in which the ele-

ments a and b in an ordered pair are written to matter. This means

that (a, b) = (a′, b′) only if both the first and second components of

the pair are equal: a = a′ and b = b′. In particular, (a, b) will almost

never equal (b, a): this happens if and only if a = b.

The product A × B is also often called the Cartesian product or the

direct product of A and B. Since it’s the only kind of product set we’ll

need to deal with, we’ll just call it the product of A and B.

A very easy, but also very useful, formula tells us how many elements

a product set has.

Product Set Counting Formula 3.3.9: If A is a set with m ele-

ments and B is a set with n elements then the number of elements of

the product set A× B is just the product M · n of the order of a times

the order of B.

This is almost too obvious to prove, but let’s not let that stop us. For

any fixed element a in A, there are exactly n pairs (a, b) in A × B—

one for each of the n elements b in B. To count all the elements of
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3.3 Product sets

A×B, we need to add up one term n for each of them elements a in

A. Thus we find that A× B has

n+ n+ · · · + n︸ ︷︷ ︸
m terms

elements and just need to recall that the product m · n is simply a

shorthand for this sum.

Example 3.3.10: Here’s an example we’ll work with later quite a bit,

the standard deck D of playing cards shown below.

Figure 3.3.11: A standard deck of cards

Let S = {♠,♥,♦,♣} be the set consisting of the 4 suits in a standard

deck of cards. In the order, I have written them—pretty standard,

because its the ranking they have in the game of bridge—they are

called spades, hearts, diamonds and clubs.

Let V = {A,2,3,4,5,6,7,8,9,10, J,Q,K} be the set consisting of the

13 values in a standard deck. The letters A, J, Q, and K stand for

ace, jack, queen and king. Jacks, queens and kings are called face

cards because carry portraits of persons. The other cards are called

spot or numbered cards because they carry a corresponding number

of “spots”: the Ace has just a single spot. But, in many games, like

bridge, the Ace is treated as a sort of honorary face card that out-

ranks all the other values while in others, especially poker, it has a
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3.3 Product sets

sort of dual citizenship and can be treated as either the highest or

lowest value.

The deck of cardsD shown above is just the product S×V . Note that,

as predicted by Product Set Counting Formula 3.3.9, the 4 suits

(rows) of 13 values (columns) have a deck (table) with 4 · 13 = 52
cards.

There’s no reason why we can’t form a product of a set with itself. We

just have to be extra careful to pay attention to the order in ordered

pairs. There was not much chance of getting the pairs (♥,9) and

(9,♥) in the deck product above confused since the two components

are so different. But, if we are considering the product of the L × L
of the Latin alphabet with itself, then there’s some risk of mixing

up (e, i) and (i, e) if we don’t pay attention. We’ll usually abbreviate

A × A as A2 just as we would if A were a number instead of a set.

We’ve already seen an example of such a self-product in Problem

3.2.8 where we formed the product D2 of the set of numbers from 1
to 6 with itself, viewed as the pair of numbers on a blue die and a red

die. One point that this example makes and that I want to underline

her is that we are allowed to repeat a component in a product. In

particular, D2 contains ordered pairs like (2,2) and (5,5).

Going further, there’s no reason why we can’t take the product of

more than 2 sets. It’s easy to define the triple product A × B × C to

be the set of ordered triples (a, b, c) with a ∈ A, b ∈ B and c ∈ C.

Problem 3.3.12:

i) Show that if A has order m, B has order n and C has order p,

then A× B × C has order m · n · p.

Solution
The idea is to use Product Set Counting Formula 3.3.9 twice.

It first says that the set D = B × C has order n · p. Then it says

that the set E = A×D has order m · (n · p). But an element of E
is a pair (a, d) with a ∈ A and d ∈ D and since D = B × C this

is the same as a pair (a, (b, c)) whose second element is another
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pair. By removing the interior parentheses, this is the same as

a triple (a, b, c) ∈ A × B × C so the order of this product must

equal the order of E:m · (n ·p) =m ·n ·p, once again, by simply

removing the parentheses.

ii) What shorthand would you suggest for the triple product A ×
A×A?

Problem 3.3.13: caterer offers a set A of 5 appetizers, a set E of 8
entrees and a set D of 6 desserts. To order your wedding banquet

you have to pick one of each. What set describes the possible menus

for your banquet and how many such menus are possible?

There’s an easy way to summarize the formulas for the order of

product sets in both Product Set Counting Formula 3.3.9 and i)

of Problem 3.3.12.

General Product Set Counting Rule 3.3.14: The order of a

product of sets is the product of the orders of the sets.

Problem 3.3.15: Joan has 23 pairs of shoes, 15 pairs of stockings,

18 skirts, 14 blouses and 9 hats. Each day she chooses her outfit by

picking one item from each of these categories. Use a product set to

describe Joan’s outfits and determine how many different outfits she

can select from.

Rules like General Product Set Counting Rule 3.3.14 come up

very often in mathematics—we’ll see several more in this course—so

I am going to digress briefly to make a few points about them. I’m

going to name them.

Bang Zoom Rules 3.3.16: A bang zoom rule is any rule obtained

from the statement, “The bang of thezoom(s) is the zoom of the

bang(s)” by replacing the terms “bang” and “zoom”.

Mathematicians say this in a fancier way: banging and zooming

commute. This term may be familiar to you in the context of a single

operation: we say, for example, that addition or multiplication are

1—
1—
2—

a ·· ·· z ? 160 Comments welcome at �̂�

mailto:morrison@fordham.edu
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commutative to mean that, if you perform several additions (or mul-

tiplications), you get the same answer regardless of what order you

do them in. Here we say two different operations commute if they

give the same answer in either orders. From Section 1.1, you should

realize that this is usually not the case. But when it is true, it makes

life easier so we want to take note of the fact.

Problem 3.3.17: Bang Zoom Rules 3.3.16 include the familiar dis-

tributive law a(b+c) = ab+ac. Show this by completing the sentence

“The multiple of the sum is the . . . ”.

Why do I want to bother identifying Bang Zoom Rules 3.3.16? There

are two reasons. First, rules stated in “Bang Zoom” are much eas-

ier to state and remember: just compare the simple but general

General Product Set Counting Rule 3.3.14 with the complicated

statements in Product Set Counting Formula 3.3.9 and Problem

3.3.12 which only cover double and triple products. Second, when

Bang Zoom Rules 3.3.16 are true when there are 2 zooms, they’re

almost always true when there are 3, or 4, or any number of zooms.

The reason is that the trick we used in Problem 3.3.12 of applying

the 2-zoom rule twice almost always works in some form or other. In

the future, I’m not going to bore you with checking such statements.

Instead, once we understand the 2-zoom case, I’ll take it for granted

that we know the rule in all cases and (if I feel any justification at all

is needed) just cite the:

Bang Zoom Principle 3.3.18: If a bang zoom rule is true when

there are 2 zooms it is true when there are any number of zooms.

Problem 3.3.19: Check that the Bang Zoom Principle 3.3.18 holds

for the distributive law when there are 3 or 4 zooms—that is, 3 or 4
terms in the sum being multiplied.

Back to product sets. The notation needed to define a product of an

arbitrary number ` of sets gets a bit cumbersome. Fortunately, we’ll

only need such general product sets in the easy special case where
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they are all the same. What’s more, we have already dealt with this

case above!

What is an element of the triple product A3? It’s an ordered triple

(a, a′, a′′) with each of a, a′ and a′′ in A. But observe that there is

really no need for all that punctuation. If we just write aa′a′′ we

know everything we need to about the triple, including the order of

the 3 components. Doesn’t that aa′a′′ look familiar? I hope so, be-

cause it’s nothing more than a 3-letter sequence in the alphabet A. In

both the ordered triples and the sequence, order matters and repeat-

ing a letter is allowed—aa′a is another legal triple corresponding to

(a, a′, a). So every ordered triple determines a unique sequence and

vice versa; there’s no need for duplicate of definitions and notation.

Products of a Set with Itself 3.3.20: The `-fold product A` of

the sets A is the set of sequences of length ` in the alphabet A. It’s

then immediate from the Sequence Counting Formula 3.3.6 that,

if A has m elements, then A` has m` elements.

Why don’t we think of all products as sequences? Because the com-

ponents of an element of a general product come from different sets;

for example, in Example 3.3.10, from the suits S and the values V .

All the components—letters—in a sequence have to come from the

same set, so we can only think of products of a set with itself as

sequences. The good news is that almost all the examples we’ll need

to work are nonetheless simple, either because they involve just 2
(or occasionally 3) factor sets and then we just need to use ordered

pairs or triples, or because they are products of a set with itself so

that we can use sequences.

3.4 Power sets

The next operation for producing new sets from old comes from the

subset relation.
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Power Sets 3.4.1: If A is any set, the power set P(A) is the set of

all subsets of A. That is, the objects B that are elements of P(A) are

exactly those that are subsets B of A.

This sounds tricky but, perhaps for that very reason, it isn’t. A few

examples will make it easy to see what’s going on.

Example 3.4.2: What are the power sets of the sets A1 = {1}, A2 =
{1,2} and A3 = {1,2,3}?

Recall from Example 3.2.6 i) and ii) that every set contains two triv-

ial subsets, the empty set � and itself and from iii) that these are

the only subsets when the set, like A1 has only a single element. So

P(A1) =
{
�, {1}

}
. Could I have written, more simply

{
�.1

}
? No! Why

not? Because, 1 is an element of A1 and elements of A1 are not ele-

ments of P(A1). Elements of P(A1) are subsets of A1—so the subset

A = {1} itself is an element of P(A) but the element 1 of A is not an

element of P(A) .

Problem 3.4.3: Let A =
{
�
}

and let A′ =
{
�, {�}

}
. How many ele-

ments does A have? (The answer is not 0!) Does A = �? (Do these two

sets have the same number of elements?) How many elements does

A′ have?

Don’t worry. Once you grasp that the power set P(A) is a collection

of sets—the subsets of A—and can contain no “naked” elements, ev-

erything’s easy. The power set of A2 is P(A2) =
{
�, {1}, {2}, {1,2}

}
.

Notice that the first two subsets in this list are the subsets of A1, and

the next two are just these subsets with the new element 2 added.

The subset of A3 will likewise consists of the subsets of A2, and

these subsets with the new element 3 added. So

P(A3) =
{
�, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}

}
.

Problem 3.4.4: What is the power set of the set A4 = {1,2,3,4}?
Hint: Add one element to each set in P(A3).
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3.4 Power sets

You may have noticed that the sets powers sets of A1, A2, and A3
have 2, 4 and 8 elements and, if you computed it correctly, your

power set of A4 has 16. Of course, these numbers are 21, 22, 23

and 24. I hope that this is reminding you of Example 3.3.5 above. It

doesn’t take much nerve to predict the:

Power Set Counting Formula 3.4.5: If A is any set with m ele-

ments, then A has exactly 2m subsets. That is the power set P(A) has

exactly 2m elements.

To check this prediction, we just need to list the subsets of A “one

element at a time” just as we did in Example 3.4.2 and Problem

3.4.4. Each time we add an element we get two new subsets out of

each old one. So when we have added all m elements the number of

subsets will have doubled ` times to 2m in all.

Is is a coincidence that the number of binary sequences of length ` is

the same as the number of subsets of a set A with m elements? Not

at all. We can build a binary sequence s from a subset B as follows.

The first bit of the sequence s is 1 if the first element of A is in the

subset B, and 0 if this element is not in B. Likewise, The second bit of

the sequence s is 1 if the second element of A is in the subset B, and

0 if this element is not in B. And so on: I’m cheating a bit since I’m

talking about the first element of A and order does not matter for

sets. This is harmless; whatever order the elements of A come in will

do. For example, if A5 = {d, a, c, e, b} then the subset B = {a, c, b}
gives the sequence s = 01101 and the sequence s′ = 11000 gives the

subset B′ = {d, a}. Since we can pair up subsets B and sequences s in

this way—with every subset paired with exactly 1 binary sequence—

the number of subsets of A and the number of binary sequences of

length m must be the same.

We can go even further. What we have really done by pairing up

subsets and sequences is to show that the power set P(A) of a set A
withm elements and the sequence set 2m are pretty much the same;

it’s just that the objects have different names, subsets in one and
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3.4 Power sets

sequences in the other. For this reason, mathematicians often like

to write P(A) as 2A. This is the reason that the set P(A) is called a

power set.

We’ll continue to write P(A), so we can save exponential notation for

self-products or sets of sequences and avoid any possible confusion.

Note the key difference. If A is a set withm elements, then the `-fold

product of A with itself is the set A` which hasm` elements, but the

power set P(A) can be viewed as the set 2m which has 2m elements.

In a self-product the order m of A is the base of the exponential. In

a power set, the the order m of A is the exponent.

OK. Time for a slightly nasty problem.

Problem 3.4.6:

i) What is the power set P(�) of the empty set?

Hint: the empty set has ` = 0 elements so it must have 2` = 20 = 1
subset. What is this set?

ii) What is the power set P
(
P(�)

)
? Hint: P(�) has 1 element so it

has 21 = 2 subsets.

Hint: The answer is in an earlier problem in this section.

iii) What is the power set P
(
P
(
P(�)

))
?

Infinities and an argument from The Book

Let’s next ask a question that illustrates the power of the power set

operation (if you’ll pardon the pun). We’ve seen that for any finite

set A, the power set of A has “a lot more” elements than A. In other

words, for any positive `, 2` is bigger than `, usually a whole lot

bigger. For example, we saw in the preceding subsection that when

` = 40, 2` = 1099511627776.

What happens if A is infinite? Is P(A) still bigger than A in some

sense? More generally, is all we can saw about two infinite sets that

they’re both infinite or is there someway to compare them? If there
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3.4 Power sets

is a way to compare, then there must be different sizes of infinity.

Such a notion at first seems counter to our intuition.

What if I try to compare the infinity of the sets N and N×N?

•
(0,0)

0

•
(0,1)

1

•
(0,2)

3

•
(0,3)

6

•
(0,4)

10

•
(0,5)

15

•
(0,6)

21

•
(0,7)

28

•
(0,8)

36

.

.

.

. . .

•
(1,0)

2

•
(1,1)

4

•
(1,2)

7

•
(1,3)

11

•
(1,4)

16

•
(1,5)

22

•
(1,6)

29

•
(1,7)

37

.

.

.

. . .

•
(2,0)

5

•
(2,1)

8

•
(2,2)

12

•
(2,3)

17

•
(2,4)

23

•
(2,5)

30

•
(2,6)

38

.

.

.

. . .

•
(3,0)

9

•
(3,1)

13

•
(3,2)

18

•
(3,3)

24

•
(3,4)

31

•
(3,5)

39

.

.

.

. . .

•
(4,0)

14

•
(4,1)

19

•
(4,2)

25

•
(4,3)

32

•
(4,4)

40

.

.

.

. . .

•
(5,0)

20

•
(5,1)

26

•
(5,2)

33

•
(5,3)

41

.

.

.

. . .

•
(6,0)

27

•
(6,1)

34

•
(6,2)

42

.

.

.

. . .

•
(7,0)

35

•
(7,1)

43

.

.

.

. . .

•
(8,0)

44

.

.

.

. . .

Figure 3.4.7: Comparing the infinities of N and N×N

Figure 3.4.7 shows a picture of both sets in the xy-plane. The ele-

ments of N are the dots in the bottom row. Every dot is an element

of N×N. So there are infinitely many elements of N×N above every

element of N. Surely this means that the order of N × N is a bigger

infinity than that of N.

Not so, as Figure 3.4.7 also shows. By following the diagonals down-

and-right from the y-axis to the x-axis, each time returning to the

next highest point on the y-axis, we will pass by all the points of

N×N. Suppose, as we go by, we drop successive whole numbers from

N at each point: these numbers are shown above the point. Then, we

eventually pair up every pair in N ×N with a different number in N

and vice versa. So these sets have the same order—that is, the same

infinity! You can do basically the same thing with N×N×N and with
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3.4 Power sets

N×N×N×N and so on. You can even pair off N and Q: the set Q of

rational numbers is somehow much “thicker” than any of the other

examples. For example, you can’t draw even the part of Q that lies

between 0 and 1: you can start with the 1
2 , then 1

3 , 23 , then 1
4 and 3

4 ,

then 1
5 , 25 , 35 and 4

5 and so on, but, however long you continue you’ve

always left out fractions with infinitely many denominators. So now

it certainly seems like we’re back to square one: all infinities are the

same.

Yet, it turns out that there are different infinities. Even infinitely

many of them! Working out this kind of question is one of the things

that mathematicians spent all those years on when they were try to

understand the fine points of working with sets. Even today, many

basic questions remain unsolved.

However, there’s one argument that I cannot resist including it here1

It an argument so simple and elegant that it’s certainly in The Book,

in which the great Hungarian mathematician Paul Erdős imagined

that God collected the most beautiful arguments in mathematics. It’s

Cantor’s Diagonalization Argument, named after Georg Cantor, the

German mathematician who came up with it in 1891. Don’t be put

off by the fancy sounding name, because the idea is very simple. It’s

really just the argument we used to prove the Power Set Counting

Formula 3.4.5 above. The argument can be used to show that for any

infinite set A, the power set P(A) has a bigger infinity of elements.

I’m just going to give Cantor’s argument for the set N of natural

numbers which I’ll think of in its usual order as N = {0,1,2,3, . . .}.
I’ll encode a subset B of N as a binary sequence as we did for finite

sets above. The only difference is that because N is infinite, I’ll need

to use a set S of infinite sequences s = b0b1b2b3 . . . bn−1bnbn+1 . . ..
We can convert such a sequence s to a subset B exactly as before bit

1Let me answer the question I’m sure is on many lips. This will not be on the
exam. So, if you’re a member of one of the invertebrate orders, feel free to go watch
that episode of American Idol that cued up on your DVR and come back at the end of
this section.
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3.4 Power sets

bn is 1 if n is an element of the subset B and 0 if n is not an element

of B. For example, the empty set is given by s = 0000 . . .000 . . .,
the subset N itself by s = 1111 . . .111 . . . and the subset E of even

numbers by s = 1010101010 . . ..

I claim that there’s no way to pair up the natural numbers N its

power set P(N)—or, what’s the same to pair N and the set S of in-

finite sequences. We can try but there’ll always be unpaired or “left

over” sequences, just as there would be if we tried to pair up a finite

set with a larger finite set. For example, if we say, tried to pair off a

set with 14 against one with 15 elements, we’d always have 1 element

left over. Intuitively obvious as this is, we need to know something

about how the pairing is carried out to have any hope of putting a

fork into one the leftover element. What makes Cantor’s argument

so amazing is that he manages to identify a leftover sequence with-

out knowing anything about how we’ve tried to pair up N and S. The

reason he’s able to do this, is that, the infinity of S is so much bigger

than that of N that just about every sequence in S is leftover. Pre-

cisely, the infinity of the leftovers in S is a big as the infinity of all

of S

Suppose we try to pair up the natural numbers N and the set S of

infinite sequences by associating 0 and s0, 1 and s1 and so on. Then

what we’d have would be a list of all the elements of S. That is, we’d

have an infinite list L = [s0, s1, s2, s3, . . . , sn−1snsn+1] that included

every sequence s ∈ S.

Let’s lay out this list L more carefully so we can see the bits that

make up each sequence:
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3.4 Power sets

s0 = b00 b01 b02 b03 . . . b0n−1 b0n b0n+1 . . .
s1 = b10 b11 b12 b13 . . . b1n−1 b1n b1n+1 . . .
s2 = b20 b21 b22 b23 . . . b2n−1 b2n b2n+1 . . .
s3 = b30 b31 b32 b33 . . . b3n−1 b3n b3n+1 . . .
...

...
...

...
...

...
...

...
...

...
...

sn−1 = bn−10 bn−11 bn−12 bn−13 . . . bn−1n−1 bn−1n bn−1n+1 . . .
sn = bn0 bn1 bn2 bn3 . . . bnn−1 bnn bnn+1 . . .
sn+1 = bn+10 bn+11 bn+12 bn+13 . . . bn+1n−1 bn+1n bn+1n+1 . . .

Cantor now, by a brilliantly simple idea, produces a sequence t in S
that cannot be on the list L above. That’s just what we’re trying to

see: that no list L can contain all the sequences in S.

The trick is to define a bit cn to be the opposite of the red bit bnn
above: that is, if bnn = 1, then cn = 0 and if bnn = 0, then cn = 1. Then,

the sequence t = c0c1c2c3 . . . cn−1cncn+1 . . . can’t be anywhere in the

list L. We can’t have t = s0 because Cantor has set things up so that

the 0th bits of t and s0—that is, c0 and b00 are opposite. We can’t have

t = s1 because Cantor has set things up so that the 1st bits of t and

s1—that is, c1 and b11 are opposite. In general, we can’t have t = sn
because Cantor has set things up so that the 0th bits of t and s0—that

is, cn and bnn are opposite. So t can’t be anywhere in the list.

OK, the good news is that it won’t matter in the rest of the course if

you forget everything I’ve just said about infinite sets. But I hope you

won’t, as Cantor’s argument is as elegant and beautiful an achieve-

ment of the mind as any Shakespeare sonnet or Giotto fresco. You

may have no use for mathematics after you leave this course, but if

you didn’t didn’t get at least a tiny tingle from seeing his ideas, I’m

afraid your cord just doesn’t reach all the way to the outlet.

Cantor’s proof leaves open one question. Can we find a set A with

the larger uncountable infinity of P(N) somewhere in nature? Not

only is the answer yes, but you already know A! If we simply put
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a decimal point to the left of each infinite binary sequences in the

proof, what we’ll get are all the real numbers in the interval between

0 and 1. For example, the sequence .0000 . . . encoding the empty set

gives the real number 0, the sequence .1111 . . . encoding all of N

gives the number 1 and the the sequence .1010101 . . . encoding the

set E of even numbers gives 2
3 . We can check these last values using

the Geometric Series Formula 1.3.6.

Problem 3.4.8: Recall that a binary decimal .b1b2b3b4 . . . is a short-

hand for the series b1
21 +

b2
22 +

b3
23 +

b4
24 + · · · . Most such series are not

geometric but a few are. Use the Geometric Series Formula 1.3.6

to show that:

i) .1111 . . . = 1
21 +

1
22 +

1
23 +

1
24 + · · · = 1; and,

ii) .10101 . . . = 1
21 +

0
22 +

1
23 +

0
24 +

1
25 +· · · =

1
2 +

1
2·4 +

1
2·42 +· · · =

2
3 .

In fact, the points of any line segment form an uncountably infinite

set. How does the infinity of a line segment compare to the infinity

of the entire real line, or the infinity of the whole (x−y)-plane of an-

alytic geometry. The very counter-intuitive answer is that the entire

plane is no bigger than the shortest line segment!

All this talk of different sizes of infinity may seem like the sort of

mathematics that could never interest anyone but the most commit-

ted mathematician. Not so. Today, it’s probably computer scientists

who worry most about these issues. The reason is that computers

are inherently finite devices. With “enough” resources, they can com-

pute infinite many answers—even we, if we could live “long enough”,

would be able to count to any of the infinitely many natural num-

bers. But arguments like Cantor’s show that the infinities that we, or

computers, can explore are limited to the small, countable N type.

For example, most real numbers can’t be computed—there are too

many. That’s forced computer scientists to think hard about exactly

what they can compute. But understanding this would take us too

far from our path so I won’t try to explain it further here.
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Combinations

Before we close this section, I want to do a bit more counting with

power sets. We already have lots of evidence that the most important

property of a set is its order or number of elements. So it’s natural

to feel that two subsets of a set A that have the same number of

elements are somehow similar. Our next goal is to use this idea to

group the elements of P(A)—the subsets of A—by the number of

elements they contain.

Subsets of Order ` 3.4.9: The set P(A)l is the set whose elements

are the subsets B of A having order exactly `. Since every subset B
of A is an element of P(A), the set P(A)l is a subset of P(A). More

informally, we’ll call P(A)l the set of subsets of order ` of the set A.

A few comments. Suppose that A has order m. Then the order of

any subset B of A is between 0 and m. Thus, every subset B—every

element of P(A)—lies in one of the sets P(A)0, P(A)1, P(A)2, . . . ,

P(A)m. On the other hand, these sets are disjoint: no subset B can

be in two of them because then B would have 2 different orders. The

sets P(A)l thus cut up or partition P(A). We’ll need this concept in

probability so let’s record it.

Partition of S 3.4.10: A collection of subsets of a set S forms a

partition of S if every element of S lies in exactly one of the subsets.

Another way to say this is to say that the sets are pairwise disjoint (no

two can have a common element) and every element of S lies in one

of them.

The next point to note is that order of P(A)l—the number of subsets

B of A that themselves have order `—depends only on the order

m of A and the order `. What if A′ is another set with order m?

This simply means that we can pair up the elements a of A with the

elements a′ of A′. But then we can also pair up the subsets B of A
with subsets B′ of A′ by the rule that a′ ∈ B′ if and only if a ∈ B. This

should be no surprise since P(A) and P(A′) both have order 2m by

1—
1—
2—

a ·· ·· z ? 171 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.4 Power sets

the Power Set Counting Formula 3.4.5. However, this pairing of

subsets has an extra nice property: every A-subset B with ` elements

a gets paired with an A′-subset B′ with ` elements a′. Hence the sets

P(A)l and P(A′)l consisting of all such `-element subsets have the

same order.

Problem 3.4.11: List all the subsets of the sets A = {1,2,3} and

A′ = {1′,2′,3′} and check that the pairing 1 ↔ 1′, 2 ↔ 2′ and 3 ↔ 3′

also pairs the sets P(A)l and P(A′)l for ` = 0,1,2 and 3.

The point of these observations is that we can speak about the num-

ber of `-element subsets of a set A with m elements without worry-

ing about what the set A is.

Binomial Coefficients and Combinations 3.4.12: The binomial

coefficient
(
m
`

)
—read “m choose `”—is defined to be the number of

subsets B of order ` in any (and every) set A of order m. The count(
m
`

)
is also often called a combination, written C(m,`) or mCl and

read “combination m `” or “m combination `”.

The idea behind the use of the word “choose” above is that we are

counting the ways of choosing a k-element subset from a set with m
elements. This idea is often expressed, more loosely, as “choosing k-
elements from amongstm”. I put those quotes in the second version

because, as we’ll see shortly, such choices come in several flavors,

and the subset flavor, that we’re dealing with now is just the most

important.

Mathematicians prefer the binomial coefficient notation to combina-

tions and that’s what I’ll mainly use here. But there’s a good reason

for knowing both: your calculator probably has the combinations

version built in. On the TI-8x series, it’s found on the Math panel as

nCr. To use it, you enter the orderm, select the nCr row, enter the or-

der ` and press ENTER. But we’ll soon see that whenm and ` are not

too big, it’s often faster to work out combinations by hand and the

most common combinations are easy enough to simply remember.
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3.4 Power sets

Let’s try to find a formula for
(
m
`

)
by bootstrapping our way up. Here

I’ll take m = 3 to keep the number of subsets small and we’ll try to

work our way up from the smallest `— ` = 0 —to the biggest ` = 3.

It doesn’t matter what master set A of order 3 I take so let’s take

A = {a, b, c}. Then it’s easy to write out the sets P(A)l for reference.

P(A)0 =
{
�
}

P(A)1 =
{
{a}, {b}, {c}

}
P(A)2 =

{
{a, b}, {a, c}, {b, c}

}
P(A)3 =

{
{a, b, c}

}
Now, let’s start trying to count P(A)l by pure thought. I’ll try to

prediction how many there are for any m, then we’ll check my pre-

diction for m = 3. First, P(A)0 is pretty easy: it always has only 1
element, the empty set � for any A.

It’s not much harder to count P(A)1. A 1-element subset if deter-

mined by its unique element and there are m of these if A has order

m. Sure enough there are 3 here where m = 3. I’ll record this as(
m
1

)
= m

1 ; my reason for inserting the apparently pointless denomi-

nator 1 will become clear in a moment.

It’s for ` = 2 that you have to think a bit. A set with two elements

can be obtained by adding 1 more element to a set with 1 element.

The first point that calls for a bit of care is that there are only m− 1
choices for this second element. Why? If my 1-element subset is {a},
I better not choose to add a or I won’t end up with 2 elements. This

was the point of Example 3.1.5. So 3 choices for the 1-element set and

2 for the second element makes 6 subsets with 2-elements. Except,

of course, there are only three.

What went wrong? We can see if we carry out my choosing proce-

dure. It does yield 6 subsets: from {a} we get {a, b} and {a, c}, from

{b} we get {b, a} and {b, c}, and from {c} we get {c, a} and {c, b}.
The problem is that each of these sets appears twice, with the ele-

ments listed in the opposite order. So in addition to multiplying by

(m − 1) for my second element, I need to also divide by 2 to com-
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pensate for the duplication. This division depends only on the fact

that my subsets have 2 elements so it’ll apply for any m. So my re-

vised prediction is that
(
m
2

)
= m

1
m−1
2 —I am multiplying the number

of 1-element subsets by the effective number of different 2-element

subsets I get from each by adding an element. Form = 4 this predicts(
4
2

)
= 4

1
3
2 = 6.

Problem 3.4.13: Check that A′ = {a, b, c, d} has exactly 6 subsets

with 2 elements.

Note that, even though the fraction 3
2 is not a whole number, the

product of fractions 4
1
3
2 is—as it has better be, since it’s the num-

ber
(
4
2

)
of 2-element subsets of a 4-element set and that is a whole

number by definition.

We’re almost done as ` = 3 poses no new problems. I get one 3-

element subset from each 2 element subset by adding one of the

m − 2 elements not already inside. But now each 3-element subset

will come up, not twice, but three times—once with each of its 3 ele-

ments as the “latest addition”. Let’s check: from {a, b} we get one 3
element set {a, b, c} (because (3−2) = 1), from {a, c} we get {a, c, b}
and from {b, c} we get {b, c, a}. And, sure enough, we’ve got the

same 3 element subset 3 times, once with each element as the “lat-

est addition”. So I predict
(
m
3

)
= m

1
m−1
2

m−2
3 .

Problem 3.4.14: Check that A′ = {a, b, c, d} has exactly 4
1
3
2
2
3 . sub-

sets with 3 elements.

Now, I hope you see why I started out with a fraction. It makes the

pattern pretty clear. It looks like
(
m
`

)
is a product of ` very pre-

dictable fractions. You start out with m
1 and then successively sub-

tract 1 from the numerator and add 1 to the denominator to get the

next fraction. If I’m right, then
(
m
4

)
= m

1
m−1
2

m−2
3

m−3
4 .

One quick check is to plug in m = 3 when we get 3
1
2
2
1
3
0
4 = 0 as we

better since a set with 3 elements has no subsets with 4. A slightly

more convincing one is to plug in m = 4 getting 4
1
3
2
2
3
1
4 = 1 which is
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3.4 Power sets

right, because the only 4 element subset of, say A′ is A′ itself. The

best check of all is that the argument we’ve been using still applies.

To each 3 element subset we can add any of the m− 3 elements not

in it to get a 4 element subset, and doing so will produce each 4
element subset 4 times, once with each of its elements as the “latest

addition”.

Combination Formula 3.4.15: If ` > 0, then(
m
`

)
= C(m,`) = m

1
· m− 1

2
· m− 2

3
. . .
m− ` + 2
` − 1 · m− ` + 1

`

and
(
m
0

)
= C(m,0) = 1.

What about that last case ` = 0? Do we even need to bother with

this? Yes: in fact, this case is needed frequently in applications. But

it’s easy to handle: there’s only one set with 0 elements, the empty

set � and it’s a subset of every set A which is why
(
m
0

)
= C(m,0) = 1

for every m.

In practice, it’s much better to view the Combination Formula

3.4.15 this as a method than a formula. The reason is that it’s much

easier and much more reliable to learn and use the method than to

do the same for the formula.

Method for Computing Combinations 3.4.16:

Step 1: Start with the fraction m
1 with m the size of the master set A.

Step 2: Keep lowering the numerator by 1 and raising the denomina-

tor by 1 to get the next fraction to multiply by.

Step 3: Stop when the denominator of your current fraction is `, the

size of the subsets you want to count.

Problem 3.4.17: Write out the 25 = 32 subsets of the set A =
{a, b, c, d, e} and use Method for Computing Combinations 3.4.16

to check that the Combination Formula 3.4.15 correctly predicts

the number of subsets each order `.
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There’s another beautiful method for finding binomial coefficients

which has the very nice feature that it involves no multiplications or

divisions, just additions. This is the famous triangle of the great 17th

century French mathematician Blaise Pascal.

Table 3.4.18 shows how it starts. In addition to the values of the

binomial coefficients or combinations which are shown in black, I

have indicated, in binomial coefficient form the values of m (in red)

and ` giving the value. The rows are indexed by the size m of the

master set starting with m = 0. Thus the fourth row contains the

combinations with m = 3 that we found above. In each row, the

coefficient
(
m
0

)
with ` = 0 is located at the left and as you move to

the right ` increases by 1 each time, ending with ` =m.

(
0
0

)
:1(

1
0

)
:1

(
1
1

)
:1(

2
0

)
:1

(
2
1

)
:2

(
2
2

)
:1(

3
0

)
:1

(
3
1

)
:3

(
3
2

)
:3

(
3
3

)
:1(

4
0

)
:1

(
4
1

)
:4

(
4
2

)
:6

(
4
3

)
:4

(
4
4

)
:1(

5
0

)
:1

(
5
1

)
:5

(
5
2

)
:10

(
5
3

)
:10

(
5
4

)
:5

(
5
5

)
:1(

6
0

)
:1

(
6
1

)
:6

(
6
2

)
:15

(
6
3

)
:20

(
6
4

)
:15

(
6
5

)
:6

(
6
6

)
:1(

7
0

)
:1

(
7
1

)
:7

(
7
2

)
:21

(
7
3

)
:35

(
7
4

)
:35

(
7
5

)
:21

(
7
6

)
:7

(
7
7

)
:1(

8
0

)
:1

(
8
1

)
:8

(
8
2

)
:28

(
8
3

)
:56

(
8
4

)
:70

(
8
5

)
:56

(
8
6

)
:28

(
8
7

)
:8

(
8
8

)
:1

Table 3.4.18: Pascal’s Triangle

Problem 3.4.19:

i) What values of m and ` give the two entries equal to 15 above?

ii) Pascal’s triangle predicts that
(
7
3

)
= 35 =

(
7
4

)
and that

(
8
4

)
= 70.

Check these values using the Method for Computing Combina-

tions 3.4.16.

How is Pascal’s triangle built? By an incredibly simple rule. You get

the value of each entry by summing the two entries immediately

above it and to its left or right. This works even if one of the entries
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3.4 Power sets

above is missing, as long as we interpret missing entries as having

value 0. Let’s check the m = 7 row (the eighth!) by this rule. It starts

with a 1 which is the sum of a blank entry (0) above and to the left

and a 1 above and to the right. Next we get a 7 as the sum of 1 and

6, then a 21 as the sum of 6 and 15, then a 35 as the sum of 15 and

20. The same pattern repeats, in the opposite order in the right half

of this row.

Problem 3.4.20:

i) Use the building rule to write down the next two rows of the

triangle, corresponding to m = 9 and m = 10.

ii) Check the entries giving the combinations
(
9
4

)
and

(
10
6

)
using the

Method for Computing Combinations 3.4.16.

Why does Pascal’s rule work? To see the reason, we first need to see

what 2 binomial coefficients are used to compute
(
m
`

)
. Since both lie

in the next row up, both involve a master set with m − 1 elements

instead of m. The two subsets whose binomial coefficients are used

have sizes ` − 1 to the left and ` to the right. You can check this

easily by counting in from the left in the row above: an example with

m = 8 and ` = 4 is given by ii) of Problem 3.4.19.

Thus Pascal’s rule amounts to the prediction that:

Pascal’s Identity 3.4.21:(
m
`

)
=
(
m− 1
`

)
+
(
m− 1
` − 1

)
.

This can be checked by some slightly messy algebra with the three

instance of the the Combination Formula 3.4.15 in the identity. It’s

not so hard so I’ll leave this approach to you as a challenge problem.

Challenge 3.4.22: Give this algebraic proof. Hint: First, write down

the right hand side
(
m−1
`

)
+
(
m−1
`−1

)
using the Combination Formula

3.4.15. Then, put the two fractions involved over a common denomi-

nator and simplify the resulting numerator to obtain
(
m
`

)
1—

1—
2—

a ·· ·· z ? 177 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.4 Power sets

But there’s a wonderfully simple way to check Pascal’s Identity

3.4.21 with no algebra at all. Let’s use the set A = {1,2, . . . ,m−1,m}
as our master set with m elements, and lets denote by A′ the subset

A′ = {1,2, . . . ,m− 1} of order (m− 1) with the element m removed.

We simply observe that each of the
(
m
`

)
subsets B of A with ` ele-

ments either contains the elementm or it doesn’t! In the former case,

the set B′ obtained by removing the elementm from B is a subset of

A′ with (` − 1) elements: there are
(
m−1
`−1

)
of these. In the latter, we

can view B itself as a subset of A′ with ` elements: there are
(
m−1
`

)
.

Presto!

Pascal’s triangle also makes clear one other fact about combinations

that’s often computationally and theoretically useful, and that is

not evident from the Combination Formula 3.4.15. The fact that

Pascal’s triangle is symmetric about the vertical line that bisects it

amounts to the identity:

Symmetry of Binomial Coefficients 3.4.23:(
m
`

)
=
(
m

m− `

)
.

We can also see this directly. Every ` element subset B of a set A with

m elements determines a unique subset B′ with (m−1) elements and

vice versa: the elements of B′ are just the (m−`) elements of A that

are not elements of B.

Problem 3.4.24:

i) What would you not want to find
(
100
97

)
using the Combination

Formula 3.4.15 directly?

ii) Use the Symmetry of Binomial Coefficients 3.4.23, to avoid

this problem and find
(
100
97

)
indirectly.

Finally, the triangle makes it clear that some common combinations—

the two “outside” diagonals—are so simple we can just remember

them.
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3.5 Lists and permutations

Simple Binomial Coefficients 3.4.25: For anym,
(
m
0

)
=
(
m
m

)
= 1

and
(
m
1

)
=
(
m
m−1

)
=m.

3.5 Lists and permutations

In this section, we’ll study lists, which were mentioned briefly in Sets

versus Lists 3.1.2, in full detail and learn how to count them using

permutations. Let’s start with the fancy definition. Then we’ll pare it

down to the bare-bones version we’ll use in practice.

Lists: sets with an order

List–Formal Definition 3.5.1: A list L of length ` is a finite set B
or order ` together with a pairing of B with the set l = {1,2,3, . . . , `−
1, `}.

We view the set l is a sort of National Bureau of Standards reference

set of order `. The pairing between the list L and the standard set l

is some extra information. To see what this information amounts to,

let’s look at an example. This example will also make clear that there

are many lists L with the same underlying set B.

Example 3.5.2: Consider the list L for which the set B = {a, b, c, d}
and the pairing with 4 is a ↔ 1, b ↔ 2, c ↔ 3 and d ↔ 4.

What the pairing lets us do is speak about the first element of L—it’s

a the element paired with the number 1; or the fourth—d because it’s

paired with 4; or the second which is . . . ? Right, b because it’s paired

with 2. In other words, the pairing gives us a ordering or ranking the

elements of the set A.

Conversely, a first-to-fourth ordering on the elements of B deter-

mines a pairing of B with 4. The first element of B pairs with 1, the

1—
1—
2—

a ·· ·· z ? 179 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.5 Lists and permutations

second with 2 and so on. There are lots of such orderings—24 to

be precise as we’ll see in the next subsection. The ordering b, d, a, c
corresponds to the pairing b ↔ 1, d ↔ 2, a ↔ 3 and c ↔ 4 and de-

fines a different list L′ based on the same set B, the ordering c, b, a, d
defines a third list L′′ and so on.

It’s obvious from this example that it’s much easier to think of B-

lists in terms of orderings on B than in terms of pairing of B with

l. That’s the working definition we’re going to adopt. All we need

to complete it is a notation that distinguishes lists from plain sets,

which remember do not have any preferred order. We’ll use square

brackets–[ ] to surround lists to make the difference clear.

List: Working Definition 3.5.3: A list L of length ` is a finite set

B of order ` together with the of a first-to-last order on the elements of

B. We denote such a list L by listing the elements of B between square

brackets with the first element of the left and the last on the right.

Example 3.5.4: In the notation of the working definition, the lists

of Example 3.5.2 are L = [a, b, c, d], L′ = [b, d, a, c], and L′′ =
[c, b, a, d].

Problem 3.5.5: There are 6 possible ways of ordering a set with 3
elements. Write down the 6 lists L whose set B = {1,2,3}.

Example 3.5.6: One word about orders. As we go forward, we’ll see

many ways of specifying an order, and sometimes it’s not so obvious

that an order is what’s involved. In fact, we’ll often view ourselves

as having chosen an order—even if we have now written down this

order—if we simply want to view our choices as being altered by any

reordering. Here are a few examples to keep in mind, starting with

some that clearly involve an ordering.

i) Standings in a football league are an ordering of the teams in the

league.

ii) Ranking the applicants to a college puts them in a best-worst

order.
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3.5 Lists and permutations

iii) Shuffling a deck involves choosing an order (hopefully “ran-

dom”) on the set of cards.

iv) Seating a television panel in a row of chairs puts a left-right order

on the panelists.

Here’s a typical trickier one:

v) Assigning the 9 starters on a softball team to fielding positions

orders them.

This example comes up in many guises: the positions can be replaced

by many kinds roles (as officers of a club, as crew on a boat, . . . ). It’s

also the sneakiest since in, say, the softball team example, there’s no

unambiguous “first” fielding position. It’s not first base since in stan-

dard scoring systems the pitcher is assigned the number 1 and even

this assignment is made only by convention. However, the choice

of positions amounts to an order because if we shuffled the play-

ers amongst the positions we can apply the “Abbot and Costello”

method (“Who’s on first?”) to tell that a reordering has occurred.

Lists, ordered subsets and sequences without repetition

If you’re alert, you’ve probably been wondering why I’ve been denot-

ing the underlying set of my lists by the letter B (usually reserved

for subsets) rather than by the letter A by which we usually denote

sets. The answer lies in the applications of list to counting prob-

lems that we’ll need soon. Most sets of lists that we’ll need to count

do not share the exact same underlying set B. However, their Bs do

have enough in common that it’s still easy to count them. The key

example is described by:

Lists of length ` from a set A 3.5.7: A list L of length ` chosen

from or, more simply, from a finite set A is a list whose underlying set

B is a subset of A of order `.
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3.5 Lists and permutations

In other words, choosing L from A involves both choosing a subset B
of order ` from A and choosing an order on B. In practice, we usually

view such choices in an apparently different but equivalent way.

Choices from A without repetition 3.5.8: Choosing a list L of

length ` from A is the same as selecting a sequence of ` individual

elements of A without repetitions.

Successively selecting a sequence of ` individual elements of A with-

out repetitions provides both the subset B of a list (since we do not

allow ourselves to repeat the choice of any element, we are guar-

anteed to wind up with an ` element subset when we’re done) and

the order on B that makes it a list (namely, the order in which its

elements are chosen).

Example 3.5.9: Let’s write down all the lists of length 3 chosen

from the set A = {a, b, c, d}. The only tricky part is simultaneously

avoiding omissions and repetitions. The easiest way to achieve this

to try to choose the underlying set first, then fix the order on it. First,

comes {a, b, c} which gives the 6 lists

[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a] .

Then we have successively {a, b, d} giving the lists

[a, b, d], [a, d, b], [b, a, d], [b, d, a], [d, a, b], [d, b, a] :

{a, c, d} giving the lists

[a, c, d], [a, d, c], [c, a, d], [c, d, a], [d, a, c], [d, c, a] :

and, {b, c, d} giving the lists

[b, c, d], [b, d, c], [c, b, d], [c, d, b], [d, b, c], [d, c, b] .

There are 24 lists in all.

Once again, I hope that this (very simple) example makes it clear

that we don’t want to count lists by listing them. We’ll usually only

be interested in knowing the number of lists–24 in our example. This
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we could find by using Simple Binomial Coefficients 3.4.25 which

says that there are 4 subsets of order 3 and then using Problem 3.5.5

which says that there are 6 orders on each 3 element subset. Don’t

worry soon we’ll have a single simple formula for counting lists of

length ` from a set of m elements.

Before we turn to the problem of counting lists of length ` from A, I

want to introduce another way of thinking of them that’s important

in applications.

It’s very simple. Lists are also a special kind of sequence! Precisely,

every list of length ` from A determines sequence of length ` in the

alphabet A. We can think of the successively choosing the ` elements

in the list as choosing the ` letters in a sequence. What makes the

sequences that arise in this way as lists special is that they contain

no repeated letters. This is immediate from the requirement that

no element in a list may be repeated. Conversely, if a sequence of

length ` has no repeated letters, then its letters form a subset B of

A of order `. The process of passing from the list to the sequence

and back just involves deleting and inserting commas. To make the

parallel clearer, I’ll write the sequences in the same standard font as

the lists (and not in typewriter font).

Example 3.5.10: The lists L = [a, b, c, d], L′ = [b, d, a, c], and

L′′ = [c, b, a, d] of Example 3.5.2 can be viewed as the sequences

L = abcd, L′ = bdac, and L′′ = cbad.

We sum up:

Lists from A as sequences 3.5.11: The lists of length ` from a

finite set A are exactly the sequences of length ` in the alphabet A in

which no letter (element of A) is repeated.

Example 3.5.12: Let’s write down all the lists of length 3 chosen

from the set A = {a, b, c, d} as sequences. This time I’ll write them

down directly in alphabetical order, as is more natural for such word-

like sequences: abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd,
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bda, bdc, cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca,

dcb. You can check that we’ve got the same set of 24 lists as in

Example 3.5.9. But since the lists/sequences are in a different order,

we’ve got a different list of 24 lists! Yes, we can have lists of lists just

as we can have sets of sets. The good news is that they won’t appear

very often.

Problem 3.5.13:

i) Show that there are 12 lists with 2 elements from the set A =
{1,2,3,4}.
ii) Write down these lists as bracketed pairs—like [1,3]—one for

each underlying 2-element subset B of A.

iii) Write down these lists as 2 letter sequences—line 13— in in-

creasing numerical order.

Before we start to count them, let’s sum up. A list of length ` is a

set B or order ` together with an order on that set. A list of length

` from a set A can be viewed in two ways. First, it’s a list of length

` for which the underlying set B is an `-element subset of A. In

other words, its an `-element subset B of A plus an order on that

subset. Second, a list of length ` from A is a sequence of length ` in

the alphabet A that contains no repeated letters. The upshot is that

lists from A are halfway between subsets and sequences and can be

viewed either as subsets of A with an order or as sequences in the

alphabet A with no repeated letters.

Permutations: counting lists

We now want to introduce a shorthand (or name) for the number of

lists of length ` from a set A of order m. First, the same arguments

that show that the number of `-element subsets of a set A with m
elements does not depend on which set A we work with apply to

lists: the number of lists of length ` from of a set A withm elements
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depends only on m and `. This means that the following definition

makes sense.

Permutations 3.5.14: The permutation P(m, `) or mPl—read

“permutation m `” or “m permutation `”—-is defined to be the num-

ber of subsets B of order ` in any or every set A of order m.

Warning: The term permutation is used both as a shorthand for

“numbers of lists” and as a synonym for “ordering”.

Permutations of A 3.5.15: A choice of a fixed ordering on a set A
is also called a permutation of A.

In fact, word permutation originated in its sense as an ordering and

only later was used as a shorthand for the function that will count

lists for us. The connection, as we’ll see below is that the number of

orderings or permutations of a set A of order m is the permutation

count P(m,m).

Finding a formula for permutations is easy, in fact, a lot easier than

finding a formula for combinations. First note that, for any m, we

only need to deal with ` between 0 and m since the length ` is also

the order of a subset of A and that’s at most the order m of A.

As with combinations, we need to understand the trivial case ` = 0.

What’s a list of length 0? An empty list, just as a set with order 0
is the empty set. From the “subset plus ordering” point of view of

List–Formal Definition 3.5.1, it’s clear that there’s exactly 1 such

list: the underlying set must be the empty set � and then the ordering

is irrelevant. We’ll write � for this list when we need to refer to it. So

P(m,0) = 1 for any m.

To get a feel for what a permutation formula should look like, let’s

look at the case of a set of order 4—say A = {a, b, c, d}. I’ll use the

more compact “sequences with no repeated letter” representation of

lists.

Below are the lists from A ordered first by length, and then alpha-

betically within each length:
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�
a, b, c, d
ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc
abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc, cab,

cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb
abcd, abdc, acbd, acdb, adbc, adcb, bacd, badc, bcad, bcda, bdac,
bdca, cabd, cadb, cbad, cbda, cdab, cdba, dabc, dacb, dbac, dbca,

dcab, dcba
There are 1, 4, 12, 24 and 24 respectively.

The case ` = 1 is easy: we need to pick one letter from the alphabet

A and there are 4 choices. Since there’s only 1 letter P(4,1) = 4.

Likewise P(M,1) = m for any m, as there are m choices for the

letter.

The case ` = 2 is not much harder. I need to add a second letter

to one on my 1 letter sequences. There are only m − 1 possibilities

for this letter because, since I am making a list and cannot repeat

letters, I am not allowed to use the first letter. For example, there

are 4 − 1 = 3 lists of length 2 that start with a: ab, ac and ad. So

P(4,2) = 4 · 3 = 12. In general, each of the m lists of length 1 will

yield (m− 1) lists of length 2 so P(m,2) =m ·m− 1.

Problem 3.5.16:

i) Check that there are P(3,2) = 3 ·2 = 6 lists of length 2 from the

set A = {1,2,3}.
ii) How many list of length 2 are there from the setA = {a, e, i, o, u}?
List them to check your count.

We see why lists are easier to count than subsets: the fact that lists

are ordered means that I can build a list one element at a time in only

one way. In the discussion leading up to Combination Formula

3.4.15, each subset could arise from several sequences of choices and

we had to keep track of these duplications to get the right count.

With this in mind, it’s easy to see the pattern and the formula it

leads to. To make a list of length 3, I need to add one letter to a

1—
1—
2—

a ·· ·· z ? 186 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.5 Lists and permutations

list of length 2. There are now (m − 2) choices for this letter since

I cannot reuse either of the 2 letters chosen so far. Thus P(m,3) =
P(m,2) · (m−2) =m · (m−1) · (m−2). This correctly predicts that

P(4,3) = 4 · 3 · 2 = 24.

Problem 3.5.17: How many lists of length 3 are there from the set

A = {1,2,3}? List them to check your count.

At each stage, I will find that P(m, `+1) = P(m, `)·(m−`)—each list

of length ` + 1 comes from a unique list of length ` by adding one

of the (m− `) letters not used so far. This unwinds to the formula,

Permutation Formula 3.5.18:

P(m, `) =m · (m− 1) · (m− 2) · · · · · (m− ` + 1)

As with the Combination Formula 3.4.15, it’s much better to view

this as a method rather than a formula. The reason is again that it’s

much easier and much more reliable to learn and use the method

than to do the same for the formula.

Method for Computing Permutations 3.5.19:

If ` = 0, there is just 1 list. If not,

Step 1: Start with the factor m, the size of the master set A.

Step 2: Keep lowering the last factor by 1 to get the next factor to

multiply by.

Step 3: Stop when you have as many factors as the length ` of the

lists you want to count.

There’s an even simpler way to remember the permutation formula.

Notice that its simply the numerator in the combination formula.

So if you learn the latter, you’ve automatically mastered the former.

We’ll come back to this point when we discuss factorials below.

Problem 3.5.20:

i) How many lists of each length ` from 0 to 5 are there from a set

A with 5 elements?
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3.5 Lists and permutations

ii) How many lists of length 6 are there from a set of order 6 and

from a set of order 10?

iii) How many lists of length 10 are there from a set of order 6 and

from a set of order 10?

This problem should make it clear, both that it’s easy to compute

permutations and that it’s hopeless to do so by writing down the

lists involves. The numbers just get big too fast. When ` is small,

it’s easiest to just multiply out P(m, `). But when ` is large, you may

find it easier to let your calculator do this for you. Most calculators

have the permutation function version built in. On the TI-8x series,

it’s found on the Math panel as nPr. To use it, you enter the order

m, select the nPr row, enter the order ` and press ENTER. The next

challenge shows, however, that even your calculator can’t deal with

permutations when ` starts to have two digits.

Problem 3.5.21:

i) Use your calculator to check that P(30,4) = 681210 and that

P(30,8) = 254602237500
ii) What happens when you ask your calculator for P(30,20)? For

P(100,50)?

Challenge 3.5.22: Find P(100,50). Hint: It’s

30685187562549660372027304595294697392284597216\
84688959447786986982158958772355072000000000000

so don’t waste too much time on this, unless you have access to a

computer algebra system that handles large integers.

Counting orderings

Recall from Permutations of A 3.5.15, that a permutation originally

meant an ordering of a finite set A and that I claimed that the num-

ber of such orderings was P(m,m), the number of lists of length m
from A. The reason is that such a list is nothing more or less than
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3.5 Lists and permutations

an ordering of the elements of A. This is easy to see from either

of our viewpoints on lists from A. From the point of view of Lists

of length ` from a set A 3.5.7, we need to first pick an m ele-

ment subset of B of A. But there’s only one: B must equal A itself.

Then we need to pick an ordering on the elements of B: since B = A,

this is the same as an ordering on A. From the point of view of se-

quences, a list of lengthm from A is a sequence of lengthm with no

repeated letters. Such a sequence must contain all the elements of A
and the elements are then ordered by their position in the sequence.

We record this, an introduce another standard notation for P(m,m).

Ordering and Factorials 3.5.23: We define the factorial func-

tion m!—read “m factorial”—by m! = P(m,m) In other words, m! is

just a shorthand for the special permutation P(m,m). We interpret

both P(m,m) and m!, as above, as counting the number of order-

ings of a set with m elements. The Permutation Formula 3.5.18 for

P(m,m) gives the formula m! = m · (m − 1) · (m − 2) · · · · · 2 · 1,

expressing m! as the descending product of the whole numbers from

m to 1.

We will not use factorial notation much in this course. There are two

reasons. First, is the principle of least effort. we have no need for fac-

torials, since they’re just a shorthand for the permutation P(m,m).
Why learn a new formula when it’s is only a special case of a formula

you already have and use? Second, while factorials are very useful in

many algebraic manipulations—in calculus they very often appear in

asymptotic expansions and in counting problems they often let us

condense formulae—they very quickly become to large to work with,

even with a calculator.

This makes formulae involving factorials false friends. Students who

use factorial based formulae in counting problems often get overflow

errors from their calculators, even when the final answer is not so

large, because the calculator is unable to handle very large factorials

that later “almost” cancel. It’s particularly easy to fall into such traps
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3.5 Lists and permutations

because factorials are again built into most calculators. On the TI-8x

series, it’s found on the Math panel as n!. To use it, you enter the

order m, select the n! row and press ENTER.

But let me emphasize: Do not use factorials in counting and prob-

ability problems. In this course, using them will never be necessary

and doing so can only cause needless problems. Let’s start by getting

a feel for how fast factorials grow.

Problem 3.5.24:

i) Multiply out the Permutation Formula 3.5.18 to find 6! and 10!.

Check your answer using the built-in permutation function in your

calculator. Check it again using the built-in factorial function (but

don’t make a habit of using this function).

ii) What happens when you ask your calculator for 20! ? for 100! ?

Now, let’s look at the condensed factorial formulae for permutations

and combinations. These have lots of theoretical applications. But, I

stress that you do not need to learn them; indeed, you should never

use them after you’ve finished reading this section.

Factorial Formulae for Permutations and Combinations

3.5.25:

P(m, `) = m!
(m− `)! and C(m,`) = m!

(m− 1)! · `!

They are temptingly simple. instead of a whole list of factors we just

have a couple of factorials. We’ll see why these are false friends in

a moment. Let’s first verify these formulae. In doing so, we’ll shed

some light on the relation between P(m, `) and C(m,`). What’s the

difference between P(m, `) =m · (m−1) · (m−2) · · · · · (m− `+1)
andm! = P(m,m) =m·(m−1)·(m−2)·· · ··2·1. The latter has the

extra factors (m−`) · (m−`−1) · (m−`−2) · · · · ·2 ·1: this is just

formula for (m − `)! so if we divide m by (m − `)!, we get P(m, `).
There is one point we can learn from this. What if ` = m? we want

P(m,m) = m!
(m−m)! =

m!
0! . On the other hand, we want P(m,m) = m!.

So we have learned that 0! = 1.
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3.5 Lists and permutations

Now let’s ask what’s the difference between P(m, `) and C(m,`)?
They have the same numerator so the difference is exactly given by

the denominator of C(m,`) which is 1 · 2 · · · · · (` − 1) · `. But this

is just the product giving P(`, `) = `! written backwards. In other

words C(m,`) = P(m,`)
`! .

This shows us two things. First, plugging in the factorial formula for

P(m, `)we check the factorial formula for C(m,`): C(m,`) =
m!

(m−`)!
`! =

m!
(m−1)!·`! . The second insight comes from recalling the definition of `!

as a shorthand for the number of ways of ordering a set of order

`. What’s the difference between a subset of order ` and a list of

length `? The list is a subset plus an ordering of it. There are `!

choices for such an ordering so every subset gives rise to `! lists: in

other words, P(m, `) = C(m,`) · `!. We thus have a nice check on

our earlier formulae.

Since we learned something from checking both formulae, what’s so

bad about them? The next problem, which is absolutely typical of the

counting problems we’ll need to deal with later in this chapter gives

the answer.

The US Senate has three constitutionally constituted officers chosen

from amongst its members: a President Pro Tempore, a Secretary and

a Sergeant at Arms. Let’s ask how much ways there are of selecting

these officers.

How do we proceed? The key idea is that this choice amounts to

specifying a list of length 3 (the three officers) from a set with or-

der 100 (the Senate). Why a list and not a subset? The offices let us

view the choice as being a choice of 3 senators with an ordering: see

Example 3.5.6. So the answer is simply P(100,3).

Problem 3.5.26: How many ways are there to choosing the three

officers of the United States Senate?

i) Show that there are 970200 by evaluating P(100,3) using the

Method for Computing Permutations 3.5.19.
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3.5 Lists and permutations

ii) Show that there are 970200 by evaluating P(100,3) using

the Factorial Formulae for Permutations and Combinations

3.5.25.

Take your time with part ii). I’ll wait. As long as you like . . . OK, I

rest my case.

What goes wrong with the the factorial approach? From i), we see

that the answer is 100 · 99 · 98. The factorial formula asks us to

compute this product as the fraction 100!
97! which is

93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
96192759682482119853328425949563698712343813919172976158104477319333745612481875498805879175589072651261284189679678167647067832320000000000000000000000

In other words, the factorial formula asks you to first multiply to-

gether all the numbers from 100 down to 1, then multiply together

all the numbers from 97 down to 1, and finally take the quotient.

Of course, in the last step, all 97 factors in the denominator cancel

with the last 97 factors in the numerator leaving 100 · 99 · 98 =
970200. But both the numerator and the denominator choke your

calculator before it ever gets that far.

To sum up, the factorial formulae for permutations and combina-

tions may look much simpler than the product formulae for but

these are really enormously less efficient, downright unusable in

most practical applications. The solution is easy: don’t even try to

use them.

Problem 3.5.27:

i) If you have 5 rings how many ways are there to put one on each

finger of your left hand?

ii) In a conference with 8 teams, how many different seedings are

possible for the conference basketball tournament?

iii) How many ways can you shuffle a deck of cards?
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3.6 Shorthands for basic counts

We’re now coming to a part of the course where the questions are

simple, but the answers are not always obvious. The questions we’ll

be tacking are multiple choice questions with answers like “and”,

“or” or “not”, and even simpler True/False questions with answers

“Yes” and “No”. Very simple questions indeed. But also questions

that students very often get wrong! How can anyone get questions

with such simple answers wrong? Easy: by guessing. So first a word

of advice.

The two rules of guessing: Don’t and “D’oh”

Guessing the answer to the simple questions in the rest of this chap-

ter is one of the biggest sources of mistakes in this course. Such mis-

takes probably rank number two right after those with Section 1.1.

Yes, the questions are easy and there’s no need to guess, but these

questions just seem to bring out the Homer Simpson in many stu-

dents, so that no matter how often guessing them has caused them

to get a problem wrong and exclaim “D’oh!”, the next guess and the

next “D’oh!” are just around the corner. There’s really nothing hard

here. Just remember the

First Rule of Guessing 3.6.1: Don’t!

The reason this rule is so cut and dried is the

Second Rule of Guessing 3.6.2: “D’oh!”

In this course, Murphy’s Law of Guessing says that all guesses are

wrong. When you can’t recall a definition or formula and you’re

tempted to guess, stop! Breathe deeply, count to three, and think!

Go back to the text to look up the facts you need. If you’re still con-

fused, ask your instructor or a friend for help. Just remember the
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3.6 Shorthands for basic counts

First Rule of Guessing 3.6.1 and don’t guess. Because even if there

are only 2 possible answers the Second Rule of Guessing 3.6.2 will

apply. Guess and you’ll be saying “D’oh!” before you know it. Proceed

only when you know.

Shorthand Questions

In this short section, we’re going to learn how to answer the easy,

very important counting question:

Shorthand Question 3.6.3: “How many ways are there to make

` choices from a set of m possibilities ?”

The question is important because, when we are faced with a more

complicated counting problems, and have to apply a “divide-and-

conquer” strategy, all the simple pieces into which we’ll divide the

problem will be versions of this easy question (usually with a dif-

ferent m and ` in each). Why are these questions easy? Well, we’re

going to learn to answer them not with numbers, or even formulas,

but just by naming the answer with what I’ll call a shorthand.

In fact, we’ve already learned how to answer this question in the pre-

ceding sections and we’ve already learned the names or shorthands

for the answers. The only tricky point is hidden in the plurals in

the last sentences. The Shorthand Question 3.6.3 has not one, but

three answers, each with its own shorthand. Put differently, the ques-

tion comes in three flavors (each with its own shorthand answer). So

what we need to understand is how to look at one of these questions

and decide which of the three flavors we’ve got.

The three flavors—which again we’ve been studying for some time—

correspond to three different possibilities for what we’re trying to

pin down with our choices. These are: sequences, lists and subsets.

The sequence flavor is of the Shorthand Question 3.6.3 is, “How

many sequences of length ` can be chosen using an alphabet (or set)
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3.6 Shorthands for basic counts

with m letters ?” and the sequence flavor of the answer is m` by

Sequence Counting Formula 3.3.6.

The list flavor of the Shorthand Question 3.6.3 is, “How many lists

of length ` can be chosen using a set withm elements ?” and the list

flavor of the answer is P(m, `) by Permutations 3.5.14.

This example shows what I mean by a shorthand. We defined the

permutation function P(m, `) to be the number of lists of length `
from a set of size m. In other words, P(m, `) is nothing more or

less than a name for the answer to the list flavor of the Shorthand

Question 3.6.3. Eventually, we will need to use the formula (Permu-

tation Formula 3.5.18) that lets us say what number this shorthand

stands for—or better yet, the Method for Computing Permuta-

tions 3.5.19 that guides us in finding that number. But, this section

is a dégustation—a French term for a wine tasting in which the la-

bels are hidden. In a dégustation, you do not drink wine. Instead, you

taste a mouthful of each to recognize its flavor—so you can identify

it correctly—and then spit it out. So, in this section, our goal is not to

swallow the questions by computing numerical answers, but to sniff

and swirl until we can say what flavor each has and can identify the

corresponding shorthand.

The subset flavor of the Shorthand Question 3.6.3 is, “How many

subsets of order ` can be chosen using a set withm elements ?” and

the subset flavor of the answer is C(m,`) by Binomial Coefficients

and Combinations 3.4.12. Here again the combination shorthand is

nothing more than a name for the answer to the subset flavor.

The two question method

So far, so good. How then are we supposed to know which flavor

we’re dealing with when we see a Shorthand Question 3.6.3 ? The

answer must clearly be to decide whether what we’re looking for are

sequences, lists or sets. But, how do we tell that from a Shorthand
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Question 3.6.3 ? Of course, you can’t if you have no other infor-

mation. That would be like asking a wine taster to identify a wine

without tasting it, just by knowing that it’s a wine.

However, whenever a Shorthand Question 3.6.3 comes up in prac-

tice, it is embedded in a larger context. By context, I just mean that

we know something about the set of possibilities and about what

exactly the choices are pinning down. Our goal here is to learn how

to “taste” this background information and identify the flavor of the

choices being made. We’ll use a Two Question Method 3.6.4—and

both of the questions are simple “Yes/No” ones.

How hard can that be? Not very, but, as I said above, these two ques-

tions are still tricky. Don’t worry if you make mistakes at first. With

practice, you’ll develop a mental map familiar problems and you’ll

soon be able to answer the two questions and identify the three

basic flavors almost instantly. But beware of becoming too casual.

Experience is no substitute for attention. Harry Waugh, for decades

considered by many the greatest wine expert in Britain, was once

asked if he had ever mistaken a Bordeaux for a Burgundy—roughly

equivalent to mistaking beef for chicken. “Not since lunch”, was his

reply. So when using the Two Question Method 3.6.4 to answer a

Shorthand Question 3.6.3, stay alert, think, don’t guess! Here’s the

method.

Two Question Method 3.6.4: To decide what shorthand gives the

answer to “How many ways are there to make ` choices from a set of

m possibilities ?”, ask:

R? Are Repetitions allowed?

O? Does Order matter??

First ask R? That is, ask whether you are allowed to select a previ-

ously chosen possibility. If this answer is “Yes”, then you are choosing

sequences and the shorthand is m`.
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If it’s “No”, ask O? That is, ask whether making the same ` choices

in two different orders gives the same answer twice or two different

answers. If this answer is “Yes”, then you are choosing lists and the

shorthand is P(m, `), and, if it’s “No”, then you are choosing subsets

and the shorthand is C(m,`).

Before we look at some examples, I want to make a few comments.

First, the method assumes that you already know what the numbers

m and ` are. And usually this will be obvious: m is the order of the

set of possibilities from which each choice is made while ` is the

number of times you are choosing from these possibilities. If you

visualize yourself making a single choice and ask what your possi-

bilities are, you’ll have m. Then ` is the number of times you need

to make such a choice. Seems impossible to go wrong. It may be

impossible if you remain alert and think, but it’s easy if you doze.

(Remember Harry Waugh.)

Watch your `s and ms 3.6.5: Before applying the Two Ques-

tion Method 3.6.4, first ask “What do I get when a make a choice?”.

That is, identify the set of possibilities from which each choice will

be made, and find it’s order m. Then, ask “How many choices do I

need to make?” to determine `.

Second, there’s an obvious gap in this method. When the answer to

R? is “Yes”, we never ask O? We just assume that we are choosing

sequences. But we know that the order of the letters in a sequence

matters (just think of “top” and “pot”—two different words), so in

such a case, the answer to “Does Order matter?” is always “Yes”.

What if we had to make choices where the answer to R? is “Yes” and

to O? is “No”? Don’t we need to consider this possibility?

What we need to do is not hard to see. Shouldn’t we just define an

abomination to be a way of making ` choices from a set of m possi-

bilities with repeated choices allowed and order not mattering (that

is, R? “Yes” and O? “No”)? And then, couldn’t we define a function
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A(m,`) that counts the number of such abominations? We could

(and maybe we should) but we won’t just now.

It even turns out that abominations can be expressed in terms of

combinations. The bad news is that the argument needed to show

this is a good bit harder than the counting we’ve done so far. That

alone wouldn’t be enough to get you off the hook, and, later on, in

The m&m’s problem, we’ll explore how to do this as a capstone to our

study os counting. The good news is that in the counting problems

that come up naturally in probability spaces—in particular, those

that we’ll be looking at—abominations just don’t arise very often.

So I’m simply going to pretty much avoid any such problems. In

particular, I won’t ask you any Shorthand Question 3.6.3 that has

an abomination as its answer without giving you due warning. This

has one benefit that will often come in handy for you.

R Implies O 3.6.6: In any Shorthand Question 3.6.3 in this

course, if the answer to “Are Repetitions allowed?” is “Yes”, then you

may (and should) assume that the answer to “Does Order matter?”

is “Yes” too.

Finally, there are a few cases when you can answer a Shorthand

Question 3.6.3 without using the Two Question Method 3.6.4 be-

cause the number of sequences, lists and subsets is the same—that

is, all 3 shorthands give the same number of choices. When does it

not matter whether repetitions are allowed? When repeated choices

are not possible, that is, when there are 0 or 1 choices. When can we

ignore whether order matters? When there’s only one possible order,

again, when there are 0 or 1 choices. When ` = 0, the common an-

swer is not 0 but 1: the empty sequence, the empty list or the empty

set are ways of making 0 choices. When ` = 1, the common answer

is just the number of possibilities for a single choice—a one letter

sequence is a one element list is a one element subset. There are m
of these by definition.
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Easy Shorthands 3.6.7: No matter how it is described, 1 choice

(or 0) from a set ofm elements can always be made inm (or 1) ways.

Problem 3.6.8: Check that for any m,

i) m0 = P(m,0) = C(m,0) = 1.

ii) m1 = P(m,1) = C(m,1) =m.

Now we’re ready to get a feel for where the answer to the two ques-

tions lurk in common problems by working some examples and

problems.

Example 3.6.9: The Fordham squash club has 30 members. It is

run by a 3 member Executive Committee consisting of a President,

Treasurer and Ladderkeeper and a 3 member Scheduling Committee

that schedules challenge matches between members. Each week the

Ladderkeeper uses the results of challenge matches played during

the previous week to update the club’s ladder. This ladder ranks the

members from best to worst—no ties. On the last weekend of each

month, the top 6 players on the ladder play a seeded club match

against the top 6 players on the Columbia club’s ladder, with each

Fordham player matched against the Columbia opponent with the

same ladder rank.

Find the right shorthand answer to each of the following questions.

i) How many different Executive Committees can the club have?

ii) How many different Scheduling Committees can the club have?

iii) How many possibilities are there for the top player on the ladder

during the first 3 weeks of October?

iv) How many possible teams are there for the October club match

against Columbia?

v) How many seedings are possible for the October club match

against Columbia?

vi) If we are interested only in which team won in each seeding,

many different possible results from the October club match with

Columbia?
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vii) How many choices are there for the October, November and De-

cember teams?

Each part of this problem is a Shorthand Question 3.6.3. You’ll

learn a lot from it if you try to tackle it on your own before looking

at the solutions below.

First see if you can say what the m and ` are in each part except the

last (which is harder). Then see if you can apply the Two Question

Method 3.6.4 to determine whether we are counting sequences, lists

or subsets in each part. Finally, write down the shorthand you think

gives the requested count. Only then, check your answers by com-

paring them with the solutions below.

i) How many different Executive Committees can the club have?

Solution
The set of possibilities for the Executive Committee is the set of

30 club members, so m = 30. To select an Executive Committee

we need to choose 3 members so ` = 3. Thus, we are making 3
choices from a set of 30 possibilities.

Now it’s time for the Two Question Method 3.6.4. We first

ask: “Are Repetitions allowed?” What would making a repeated

choice mean? That we selected the same member more than one

time. If we did, we’d have fewer than 3 members on the Execu-

tive Committee. So the answer is “No”. Notice where this answer

was hiding, in the phrase “It is run by a 3 member Executive

Committee. . . ”.

The best way I know to bring such information into the light and

to make it obvious is to try to picture visually both possibilities.

What would an Executive Committee look like where I has picked

Susan 3 times? What would one look like where I had picked

Susan, Jill and Tiffany? Which do I want? The second, where I

see 3 members, not the first where I see only 1.

Since the answer to “Are Repetitions allowed?” was “No”, we

need to ask “Does Order matter?” Learning how to answer this
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simple “Yes/No” question reliably is probably one of the most

difficult hurdles in the entire course for many students. There’s

a huge temptation to guess. Don’t! Remember the First Rule of

Guessing 3.6.1 or you’ll be remembering the Second Rule of

Guessing 3.6.2.

Once again, there’s really no better approach than to try to visu-

alize the choices. Make a choice like Susan, Jill and Tiffany. See

your 3 choices and ask, “Do I see all the information needed to

pin down the executive committee?” Here, the answer is “No”.

I see what 3 people are on the Committee, but I don’t see who

is President, Treasurer or Ladderkeeper. How can I see who’s

President—or, who holds the other two offices? Hang a mental

sign saying “President” around Susan’s neck. And, of course, one

saying “Treasurer” around Jill’s and one saying “Ladderkeeper”

around Tiffany’s.

Now I can see who has what office. I pick the President (Susan)

first, then the Treasurer (Jill) and last the Ladderkeeper (Tiffany).

Now ask, does what I see change iff I make the same choices in a

different order. Suppose I pick Tiffany, Jill and Susan, Then what

is see is that Tiffany wears “President”, Jill “Treasurer” and Su-

san “Ladderkeeper”. That’s not what I saw before so order does

matter here.

Notice that, if we hadn’t hung the signs around the Committee’s

necks, we wouldn’t have been able to tell the difference. With-

out the signs of office, I’d just see the same three members (Jill,

Susan and Tiffany to use alphabetical order this time) as before.

So it was the 3 offices held by the members of this committee

that made the order matter. Visualizing the choices allowed me

to see how the offices do this.

Now we’re home. Since I found that R? was “No” and O? was

“Yes”, we are counting lists and the shorthand for the count is a

permutation, here P(30,3).
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3.6 Shorthands for basic counts

Did that seem like a lot of huffing and puffing to get such a

simple answer? Well, it was, but only because I was trying to

lay out carefully the mental footwork needed to reliably arrive

at the right shorthand—and especially, to correctly answer the

questions “Are Repetitions allowed?” and “Does Order matter?”

I certainly don’t expect you to write this much. For now, I recom-

mend summarizing the process. Here’s how I’d do this:

“We are choosing 3 members from a club of 30. Are Repetitions

allowed? is ‘No’ because I want 3 members on the Executive and

Does Order matter? is ‘Yes’ because the 3 offices order the mem-

bers. So I am choosing lists and there are P(30,3) possibilities.”

We’ll see a lot of such problems in the course. Pretty soon, you’ll

be able to think—or better, see—through a Shorthand Ques-

tion 3.6.3 in your head. This is fine. But if you notice that you are

making even a few mistakes in identifying shorthands, then go

back to writing down the steps, as many as you need, as above.

ii) How many different Scheduling Committees can the club have?

Solution
Why isn’t this the same as the previous question? We are still

choosing 3 members from a club of 30 so ` = 3 and m = 30.

Once again R? is “No” because I need to see 3 different members

to have “a 3 member Scheduling Committee”.

The difference becomes clear when we ask “Does Order matter?”

Now, there are no signs to hand around the necks if Susan, Jill

and Tiffany because the members of the Scheduling Committee

do not have offices. So now O? is “No” too. We are choosing a

subset, and the shorthand is the combination C(30,3).

iii) How many possibilities are there for the top player on the ladder

during the first 3 weeks of October?

Solution
We are still choosing 3 members from a club of 30 (albeit, not

at the same time) so ` = 3 and m = 30. But here R? is “Yes”.
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3.6 Shorthands for basic counts

What if Erica is the Tiger Woods of the Squash Club and has

been ranked number 1 for 67 consecutive weeks? Then, my top

ranked member all 3 weeks will be Erica. So we are choosing

sequences and the shorthand is the power 303.

Because R Implies O 3.6.6, we know order matters. But let’s check

this. What if my top ranked players were Andy the first week,

Dan the second and Dan again the third. My sequence would be

Andy/Dan/Dan or ADD for short. Can I really distinguish this

from the same members in a different order, say Dan/Andy/Dan

or DAD for short? Yes, because now Andy was ranked highest

the second week, not, as before the first. This will always be true

for the same reason that ADD is not the same word as DAD.

iv) How many possible teams are there for the October club match

against Columbia?

Solution
We are still choosing members so m = 30 but now we want to

choose a 6 member team so now ` = 6. The answer to R? is “No”

because we want to “see” 6 different players on the team. What

is the answer to “Does Order matter?” In my mind’s eye, can

I tell the difference when I reorder the team members? No, be-

cause there are no signs to put around their necks. So O? is “No”,

we are choosing subsets and the shorthand is the combination

C(30,6).
v) How many seedings are possible for the October match against

Columbia?

Solution
Again, what is different from the previous question? Only that

the answer to O? is now “Yes”: the seeding give me signs to put

around the necks of the team members, sign that carry, not of-

fice like ‘President”. But the rankings 1 through 6. Ranking the

same players in a different order changes the seeding. So we are

choosing lists, and the shorthand is the permutation P(30,6).
vi) If we are interested only in which team won in each seeding,
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many different possible results from the October club match with

Columbia?

Solution
Time to wake up. We’re finally choosing something besides mem-

bers here. Just what though? Here our possibilities are much

more limited: either Fordham won (W) or lost (L) each match so

m = 2. How many such choices do we make? One for each of the

6 seedings, so ` = 6.

OK, so “Are Repetitions allowed?” If Fordham won the #1 match,

can it also win at #2? Sure, it could even sweep so R? is “Yes”.

But this was one case where we could see this answer without

much visualization. When, as here, there are more choices than

possibilities (6 > 2), either repeated choices must be allowed or

no choices are possible. So we choosing sequences and the short-

hand is a power. Which power 62 or 26? Once again, don’t guess,

think! We want ml or 26. It may seem incredible that anyone

could mix this up, but I know that if I ask this question to a class

I will see some 36s mixed in with the 64s.

vii) How many choices are there for the October, November and De-

cember teams?

Solution
This is a bit harder. What are the possibilities here? Once again,

they are not members. This time they are 9 member teams se-

lected from the club. The number m is therefore the number

of possible teams. That’s exactly the question in part iv), so the

shorthand is C(30,6). Borrowing the evaluation of this short-

hand from the next problem, we find that m = 593775.

How many choices are we making? One for each of October,

November and December so ` = 3. Are Repetitions allowed? Can

we field the same team in November as we did in October? No

reason why not–this just means the same 6 players are at the top

of the ladder. So we are choosing sequences and the shorthand
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is the power 5937753

Whew! But, you may think we haven’t really answered the questions

in Example 3.6.9 by giving the shorthand count for each. Not quite,

but almost as the next problem should convince you. Getting from

the shorthand count to a number is an easy plug-and-chug process

using the formulae of the preceding sections. All the heavy lifting

was done in finding the right shorthands in Example 3.6.9.

Problem 3.6.10: Determine the number of possible choices for

each of the parts of Example 3.6.9 by calculating the value of the

shorthand in the solution.

Partial Solution
I am going to work out just a couple of parts.

iv) Here we want C(30,3). For this we use the Method for Com-

puting Permutations 3.5.19, getting 30 · 29 · 28 = 24360.

i) Here we want C(30,3). For this we use the Method for Com-

puting Combinations 3.4.16, getting 30
1
29
2
28
3 = 4060.

vii) This is a big number but the easiest of all: we want 5937753 =
209346509902359375. Your calculator might have to give this in

scientific notation as something like 2.093465099 · 1017.
This illustrates one advantage of shorthand answers. At least

5937753 reminds us that we were cubing a number—the number

593775 of teams. Recalling that 593775 was C(30,6) we could

also write this answer as C(30,6)3 which recalls both steps to

finding it. The base C(30,6) is the number of teams and the

exponent 3 is the number of months we choose such a team.

Here are some problems for you to practice with. A number of these

introduce you to topics we’ll work with extensively when we study

probability. Each part involves a Shorthand Question 3.6.3, but as

we move along, the phrasing of the questions will gradually become

more informal. As it does, it will become increasingly important to

first Watch your `s and ms 3.6.5 and only then apply the Two

Question Method 3.6.4. I’d like you to state your answer as a power,
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permutation or combination, as I did in Example 3.6.9. Then you can

check, by evaluating and comparing the value you have to one I give

in brackets. If you get one of the other answers, you’ve answered one

of the questions “Are Repetitions allowed?” or “Does Order matter?”

incorrectly. Go back and rethink your answer; remember to try to

visualize the choices being made. If you get none of the 3 answers

provided, you’ve probably got the wrongm or l. Go back and rethink

the sets of possibilities and the number of choices being made from

it.

Two standard dice are shown below. It won’t matter to us but the

numbers on each pair of opposite faces sum to 7—so the 1 is oppo-

site the 6 and so on. Usually both dice are the same color, but it’ll

turn out to make counting problems with dice much easier if we im-

age each die (die is the singular of dice) to have its own color. When

Figure 3.6.11: Two standard dice, blue and red

we roll dice, all we’re usually interested in is what the number on the

top face of each die is—here the blue die has “come up” 4 and the

red 6.
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Problem 3.6.12:

i) How many different ways can 1 die come up?

Solution
There are 6 ways, one for each face of the die. This is so obvious

that you may wonder “Why even bother asking?”. Because, ask-

ing this kind of “obvious” 1-choice question is the best way to

make sure we understand what the number m of possibilities in

any problem is. So it’s a good habit to mentally ask yourself this

question at the start of any problem, even if I don’t, to make sure

you Watch your `s and ms 3.6.5. Here, for example, when we

roll dice, we’re choosing numbers from the set of 6 possibilities

on the faces of each die, so m = 6.

ii) How many different ways can 2 dice come up? Hint: Now l = 2
and we need to apply the Two Question Method 3.6.4. Mentally

picture the blue die and the red die. [36 not 30 or 15]

iii) How many different ways can 5 dice come up? [7776]

iv) How many different ways can 2 dice come up with different num-

bers on the red die and blue die? [30]

v) How many different ways can 5 dice come up with different num-

bers on each die? [720]

vi) How many different ways can 7 dice come up with different num-

bers on each die? [0]

The last question makes a very obvious but still very useful point.

If ` > m, It’s Sequences or Nothing 3.6.13: If a Shorthand

Question 3.6.3 has ` bigger than m, then either no such choices are

possible or the answer “Are Repetitions allowed?” is “Yes” and we

are choosing sequences.

This point also applies in the coin tossing problems that follow.

When we toss coins, all we’re usually interested in is whether the

coins lands “heads up” or “tails up”—H or T for short. Unlike the

dice, which we colored to be able to keep straight, we’re going to try
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to work with a single coin. We’ll be a bit sloppy and speak of “tossing

2 (or 42) coins” interchangeably with “tossing a single coin 2 (or 42)

times”.

To keep keep things straight, we’ll number the tosses so we can say

what side came up on the third toss, or the fifth or the hundredth

(or on the third, fifth, or hundredth coin, if we’re thinking of many

coins tossed once rather than one tossed many times).

Problem 3.6.14:

i) How many different ways can we toss a coin 3 times? Hint: The

numbers ` and m are either 2 and 3 or 3 and 2. Which? [8 not 0]

ii) How many different ways can we toss a coin 5 times? [32]

iii) How many different ways can we toss a 20 coins? [1048576]

If you arrived at the right answers in the preceding problem, then

you saw that what we are choosing when we toss a coin ` times is

a sequence of length ` in the alphabet {H, T} (i.e. the set of m =
2 possibilities “heads” or “tails”). There are 2` such sequences by

Sequence Counting Formula 3.3.6.

In the next problems, we’ll use this count to bootstrap our way into

thinking in more detail about what happens for a fixed value of `.

I’ll first work an example with ` = 7—that is, we want to think about

tossing a coin 7 times. Please think for a moment about the first

question below before looking at my solution

Example 3.6.15:

i) If we toss a coin 7 times, how many ways can we have 6 heads

and 1 tail?

ii) If we toss a coin 7 times, how many ways can we have 5 heads

and 2 tails?

iii) If we toss a coin 7 times, how many ways can we have 3 heads

and 4 tails?

iv) If we toss a coin 7 times, how many ways can we have 2 heads

and 5 tails?
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v) If we toss a coin 7 times, how many ways can we have no tails?
Solution
The reason I asked you to think about this problem a bit first is

that illustrates the warning to Watch your `s andms 3.6.5. The

only trick in this question is deciding what the set of possibilities

is, and hence what m should be. We saw above that, when we

toss a coin 7 times, we are choosing from the set A7 7-letter

sequence in the alphabet A = {H, T} and there are 27 = 128 such

choices. So are our possibilities 7-letter sequences and do we

want m = 128 here? Definitely, not!

We do want to wind up with 7-letter sequences because, in the

end, we are talking about ways of tossing a coin 7 times. But

we can’t just go picking any old 7-letter sequence, because if we

do we’ll have no control over how many Hs and Ts it contains. In

part i), we want sequences with just 1 T like H H H H T H H and

very few 7-letter sequences have this property. What if we picked

H T T H T T H or T H T T T H T ? We want these in parts iii)

and iv), not in part i). What we need is some way to pick 7-letter

sequences that only picks those with a fixed number of Hs and a

fixed number of Ts.

The key observation to make is that we can forget all about the

Hs. If we know what letters in the sequence are Ts—say the Ts

are T , then we know the sequence—the rest of

the letters have to be Hs so the sequence is H H H H T H H . If

the Ts are T T T T or T T T T T , what’s the se-

quence?

In other words, what we need to choose is where the Ts go, that

is, which of the 7 positions in the sequence are to occupied by

Ts. So our set of possibilities if the set of 7 possible positions

for a T, and hence m = 7. How do we ensure that we get a fixed

number of Ts like 1 or 2 or 4? By choosing exactly, that many

positions to hold Ts! In other words, the number of Ts tells us

the number ` of choices to make.
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Now, and only now, are we ready for the Two Question Method

3.6.4. Are Repetitions allowed? Try to answer this question be-

fore reading on. Think, don’t guess. Ask (and visualize) what it

would it mean to repeat a choice.

Did you say yes? When we were choosing the sequences, the an-

swer was “Yes”: order matters for sequences; think of words like

“moo”. But we’re not choosing sequences now. We’re choosing

positions. Once you pick the fourth position, you’re saying you

going to put a T in it— T . You may need to lay

down some more Ts but you can no longer put them in posi-

tion four; it’s taken. (This illustrates well what I mean when I say

visualize). So here, repeated choices are not allowed.

OK, so we need to ask “Does Order matter?”. Once again, try

to answer this question before reading on. Think, don’t guess.

Visualize a choice with two Ts: say you first choose position 4,

then position 6: you’d see T T . What would you see

it you choose the Ts in the other order? Right, the same thing. So

although order did matter when we were choosing the sequences

of Hs and Ts (remember “top” and “pot”) it doesn’t here where

we are choosing not sequences but positions.

To summarize, our set of possibilities is the set of m = 7 po-

sitions in a 7 letter sequence of Hs and Ts. Sequences with

exactly ` Ts correspond to subsets of the set of 7 positions

(because R? and O? are both “No”) so the shorthand is the

combination C(7, `). For ` = 6; 5; 3; 2; and 0, there are

C(7,6); C(7,5); C(7,3); C(7,2); and C(7,0) such choices or

7; 21; 35; 21; and 1.

Is the appearance of the number 21 twice in this list of answers

an accident? On the one hand, the fact that C(7,5) = C(7,2) fol-

lows from Symmetry of Binomial Coefficients 3.4.23 because

5 + 2 = 7. But it’s easy to see this directly. Every sequence with

exactly 2 Ts has exactly 5 Hs. We can associate to it a sequence
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with exactly 5 Ts has exactly 2 Hs by just interchanging the Hs

and Ts. So there are the same number of each. Alternatively, any

choice of 2 positions also gives a choice of 5 positions—the 5
not chosen—and vice-versa.

Problem 3.6.16:

i) If we toss a coin 10 times, how many ways can we have exactly

9 heads?

ii) If we toss a coin 10 times, how many ways can we have exactly

5 heads?

iii) If we toss a coin 10 times, how many ways can we have exactly

2 heads?

iv) If we toss a coin 10 times, how many ways can we have no heads?

Problem 3.6.17: In many card games, each player is dealt a hand

from a standard deck (as in Figure 3.3.11) and then arranges his or

her hand to group the cards of the same value (e.g. Go Fish) or suit

(e.g. Bridge) or both (e.g. Poker). In such a game:

i) How many 4-card hands are possible? [270725 not 7311616 or

6497400]

ii) How many 5-card hands are possible?

iii) How many 13-card hands are possible?

Problem 3.6.18: How many different answer sheets are possible for

a multiple choice test in which:

i) there are 10 true false questions. [1024 not 100 or 0]

ii) there are 20 true false questions.

iii) there are 5multiple choice questions, each with answers labelled

A, B, C, and D and E.

iv) there are 8multiple choice questions, each with answers labelled

A, B, C, and D and E.

v) there are 5multiple choice questions, each with answers labelled

A, B, C, D, E, F, G and H.
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Now, let’s jump ahead a bit and do a few problems that involve

counting answers to more than one Shorthand Question 3.6.3. The

entire next section is devoted to developing a method for answering

counting questions that do not fit the basic Shorthand Question

3.6.3 model, by a “Divide and Conquer” approach that involves break-

ing down such questions into pieces each of which is a Shorthand

Question 3.6.3, then reassembling the counts for these pieces into

a final overall count.

Here we’ll just warm up by working a few easy counting problems

that ask us to count a set S that doesn’t fit the Shorthand Question

3.6.3 model. The problems will be easy because we’ll assume that:

i) It’s obvious that the problem involves two or more pieces, and

it’s obvious what each piece is.

ii) Each piece counts the answers to a Shorthand Question 3.6.3.

iii) The choice specified in the problem amounts to making an arbi-

trary choice for each of the pieces.

You’ll just have to take i) on faith for now.

To see how the other assumptions make things easy, lets assume

that there are just 2 pieces. What ii) ensures is that each piece counts

a set of sequences, lists or subsets. Let’s call the set counted by the

first Shorthand Question 3.6.3 A and the set counted by the sec-

ond B. Then, what iii) tell us is that the set S we want to count in the

problem is just the Product of Two Sets 3.3.8 A× B.

But then the Product of Two Sets 3.3.8 tells us that the order of

S is just the product of the orders of A and B. In other words, the

number of choices in our problem is just the product of answers to

the two Simple Questions. In fact, we’ve already worked this kind of

counting problems in Section 3.3—see Example 3.3.10 and Problem

3.3.12.

That last problem tells you what to do if there there are 3 pieces in

the problem, instead of just 2: the answer is just the product of the
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answers to all 3 Simple Questions. In fact, it really doesn’t matter

how many pieces there are: you get the count you’re after by just

multiplying together the count for each piece by the General Prod-

uct Set Counting Rule 3.3.14. Here’s a model 2 piece example.

Example 3.6.19: To have a valid MegaMillions™ ticket, you must

fill out a form like that shown in Figure 3.6.20. How many different

Figure 3.6.20: A MegaMillions™ form and odds

valid tickets are there?

As I promised, it’s obvious what the pieces are. We need to chose:

i) the 5 circled numbers between 1 and 56 on the upper part of the

form; and,

ii) the 1 circled number between 1 and 46 on the lower part of the

form.

The upper part involves making 5 choices from a set of 56. Repeti-

tions are not allowed (“circle 5”) and order does not matter (since

the machine that reads our slip will only know what 5 numbers

we picked, not the order we picked them in). So the first count

is the combination C(56,5) = 3819816. The lower part involves

the Easy Shorthands 3.6.7 of making 1 choice from 46: 46. Both
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choices are arbitrary so the number of valid tickets is 3819816x46 =
175711536.

Looking ahead, not just to the next section, but to the next chap-

ter, you can see an example of why we want to be able to find such

counts. We just calculated the chances that a random MegaMillions™

ticket will have the 6 winning numbers: it’s 1 in the number of valid

tickets as shown in the chart on the right.

We’re not yet ready to calculate any of the other chances on the right,

but it’s not too early to think bit about them. What’s my chance

of getting the 5 winning numbers on the upper part of my ticket?

There are 3819816 choices for these numbers, but the form at the

right says I only have a 1 in 3904701 chance of winning the prize

for matching these numbers and not the lower (yellow megaball)

number. Why don’t these match up? Hint: The form is wrong. You

really only have a 1 in 3904700.8 chance of winning this prize and

3904700.8 = 175711536
45 .

Problem 3.6.21: Suppose that to play GigaMillions you have circle 6
numbers from 1 to 56 and that to win you have to match 6 numbers

drawn from 1 to 56. Are your chances of winning GigaMillions better

or worse than of winning MegaMillions™?

Now here are a few more easy multipiece problems for you to try.

Problem 3.6.22: The Fordham Math Club has decided to select a

committee to organize its Christmas Party.

i) If there are 25 members in the club and 6 members on the com-

mittee, how many different committees can be chosen?

ii) If there are 16 members in the club and 4 members on the com-

mittee, how many different committees can be chosen?

iii) If there are 9 members in the club and 2 members on the com-

mittee, how many different committees can be chosen?

iv) Suppose there are 16 women and 9 men in the club. How many

of the party committees will consist of 4 women and 2 men? Hint:

Look at the two preceding parts.
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v) Suppose there are 13 women and 12 men in the club. How many

of the party committees will consist of 3 men and 3 women?

In the next problem, you’ll need to multiply 3—and even 4—numbers

together to get the answers to some of the parts.

Problem 3.6.23: An Ontario license plate consists of 3 letters from

the Latin alphabet followed by a 3 digit number (each digit can be

0-9).

i) How many valid Ontario license plates are there?

ii) How many valid Ontario license plates end in a 0? Hint: Instead

of choosing all 3 digits at once, choose the first two and the last

separately.

iii) How many valid Ontario license plates start with a vowel (a, e, i,

o, or u)? Hint: Choose the first letter separately.

iv) How many valid Ontario license plates start with a vowel and

end with a 0?

Poker is a classic source of counting problems—with real-world ap-

plications. Here we’ll do a few easy counts to begin to familiarize

ourselves with the game’s terminology.

Problem 3.6.24: In Problem 3.6.17, we saw that there were

C(52,5) = 2598960 ways to choose a 5 card Poker hand (that is

R? and O? are both “No”).

i) How many poker hands consist entirely of hearts? Hint: What’s

the only difference between this and choosing an arbitrary poker

hand?

ii) How many poker hands consist entirely of cards from a single

suit? (Such a hands is called a flush (with a few exceptions—see

Poker Rankings 3.8.58.)

iii) How many poker hands contain 4 Aces? Hint: How many non-

Aces are there in a deck?

iv) How many poker hands contain 4 cards of the same value (or

four-of-a-kind)?
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Strictly speaking, I haven’t explained how to do the last two parts of

Problem 3.6.24. But I’ll bet you didn’t have any difficulty with them.

You’ll have the same experience in many counting problems. You

may not have a formal method for making the requested count, but

if you just follow your nose and ask what choices do I need to make

and how many ways are there to make each, the answer is easy to

find. The trick is to find the right blend of arrogance (“I can do this

in my sleep”) and alertness: even in easy counting problems, you

just have to doze for a moment to make a mistake like mixing up m
and ` or getting the answer to one of the questions R? or O? wrong.

Having methods and rules helps in counting problems but is often

not necessary.

We’ll write down the rule you used to answer iii)—since there are

52 cards in a deck and 4 Aces, there are 52 − 4 = 48 non-Aces—in

Complement Formula for Orders 3.7.24.

Part iv) is a little different. There are 13 values for the 4-of-a-kind

and then 48 possibilities for the fifth card or kicker so multiplying

we get 624 possible hands. We didn’t even need any shorthands here

because both pieces involved the easy case of just a single choice

and multiplying the counts might seem like a simple application of

Product of Two Sets 3.3.8. But what we are counting here is not

a product set because each of the 13 values determines a different

set of 48 kickers: in a product A × B, the sets B of bs is the same

for every a. No worries. All that we really need to justify multiplying

the two counts is that the second count (the 48) is the same regard-

less of which choice (the value) is made in the first. We’ll see this in

Multiplication principle 3.7.1.

Problem 3.6.25: Every day after school, you order a 3 scoop cone

in an ice cream store offers 31 flavors of ice cream.

i) How many days you can go without ordering the same cone twice

if you always choose 3 different flavors and you consider two cones

“the same” if:
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a. they have the same 3 flavors in the same top-middle-bottom or-

der?

b. they have the same 3 flavors in any order?

ii) How many days you can go without ordering the same cone twice

if allows yourself to have multiple scoops of the same flavor and you

consider two cones “the same” if:

a. they have the same 3 flavors in the same top-middle-bottom or-

der?

b. they have the same 3 flavors in any order? Hint: This part is a

bit trickier because none of the three standard shorthands apply.

We are choosing 3 flavors from 31 but R? is “Yes” and O? is “No”:

this is a abomination. But you answer the question by applying

what we’ll call the Divide and conquer counting strategy

3.8.1. Every such cone either has 3 scoops of a single flavor or 2
scoops of a first flavor and 1 of a second, or 3 scoops of different

flavors. Since these possibilities are disjoint, we’ll see that the

number we’re after is just the sum of the counts for the 3 types.

Use this to show that the answer is 5456.

3.7 And, Or, and Not: the three hardest words

In the rest of this section, we’re going to learn about the operations

that can be used to apply the divide and conquer strategy to simplify

counting sets. These operations are deceptively easy. They seem easy

because they are described by very common, non-technical English

words like “and”, “or” and ”not”. What makes them tricky is that

these words will have a very precise mathematical sense. An extra

complication, especially with “and”, and “or” is that there are two

different precise meanings, and you have to pay careful attention to

the context of each problem to know which is the “right ” precise

meaning in that problem. Finally, you need to train yourself to be
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constantly alert not to confuse these precise mathematical meanings

with the informal, everyday uses of these words.

andthen: extensive and

Let’s start by looking at and. This may be the trickiest word of the

trio, partly because it seems like the easiest. Like the other simple

words, it is a conjunction—from the Latin to “join together”—and

we use it to join together two sets of choices. The real problem is

that “and” has come to stand for two important, and very different,

ways of joining together two sets.

We’ve already encountered the first meaning. Let’s think about

what’s we need to do to “Pick a card! Any card.” from a standard

deck D as introduced in Example 3.3.10. That’s easy, we have to give

the suit and the value of the card. We can pick any of the 4 suits

from the set S (without worrying about what value we’ll later select)

and then pick any of the 13 values from the set V (without worrying

about what suit we just selected).

Here we’re using “and” to connect two choices that are made in se-

quence. The second choice is an extension of the first and there is no

restriction on either choice. We’ll call this the extensive or andthen

meaning of “and”. Although I’ll use andthen in informal sentences

like this one, we’ll always “print” it in the typewriter font shown to

emphasize its mathematical meaning. This will be the more common

meaning of and in the rest of this chapter, but not in the next.

Example 3.3.10 illustrates perfectly that what we are doing in making

an andthen sequence of choices is choosing an element of a product

of sets. The deck D is the product set S×V and we specify a card like

the four of hearts or the king of spades by specifying its suit (♥ or

♠) and its value (4 or K) to get the ordered pairs (♥,4) or (♠,K). By

the Product Set Counting Formula 3.3.9, we can make this choice

in 4× 13 = 52 ways.
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More generally, making andthen choices involves choosing in suc-

cession an element for each of several sets. Each choice extends the

previous ones and is unrestricted by them so our choices correspond

to elements of the product of individual sets. Again, the General

Product Set Counting Rule 3.3.14 says that the number of ways

of making such a choice is just the product of the orders of the indi-

vidual sets.

It’s common, in counting such andthen choices, not to mention the

product set explicitly and to re-express the General Product Set

Counting Rule 3.3.14 more simply as:

Multiplication principle 3.7.1: The number of ways of making

a choice that involves an andthen sequence of component choices is

the product of the number of ways of choosing each component.

For example, there are 4 suits and 13 values so there are 4 · 13 = 52
ways to choose a card from a standard deck.

A number of the counting formulae that we already know can be

viewed as special cases of this principle. For example, the Sequence

Counting Formula 3.3.6 counts the set A` of sequences of length

` chosen from an alphabet A with m elements. Choosing such a se-

quence amounts to a sequence of ` choices of a single letter, for

which there are m possibilities each time. We get a product with `
factors, each equal to m, and that’s just m`. In this example, we’re

taking repeatedly taking the product of a set with itself.

We’ve been requiring the set of possible second choices to be the

same regardless of what first choice we made. I did not make this

explicit in the Multiplication principle 3.7.1 because, by being a

bit more flexible, we can dispense with this restriction. If we are just

trying to count choices, we need only ask that the number of possible

second choices always be the same. If for each of a first choices there

are b second choices, then the total number of pairs of choices will

be a sum of a terms, one for each first choice, all of which equal the
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number b of second choices:

b + b + · · · + b︸ ︷︷ ︸
a terms

= a · b

The Permutation Formula 3.5.18 is an example of a formula that

fits this more flexible model. For example, in counting lists of length

2 from a set A with m elements, we have m choices for the first

element a. For each of these choices, we have a different set of

possible second choices: we can choose any element of A except

a. But that always leaves us m − 1 second choices so we recover

P(m,2) =m · (m− 1).
Problem 3.7.2: Use a similar argument to show that P(m,3) = m ·
(m− 1) · (m− 2).

The andthen meaning of “and” causes few problems. It’s already

familiar in many context and, in counting problems, we tend to nat-

urally perform the multiplications is tells us to.

andalso: restrictive and

To introduce the second meaning of “and”, let’s consider a simple ex-

ample. We’ll letA be the set of 13 states that were part of the original,

pre-USA colonies, and let B be the set of 11 states that were members

of the Confederacy. For those who cut Social Studies a bit too often,

the states in A are New Hampshire, Massachusetts, Rhode Island,

Connecticut, New York, New Jersey, Pennsylvania, Delaware, Mary-

land, Virginia, North Carolina, South Carolina and Georgia. Those

in B are Virginia, North Carolina, South Carolina, Georgia, Florida,

Tennessee, Alabama, Mississippi, Louisiana, Arkansas and Texas. An-

swer the two counting questions below.

i) How many ways are there to choose an original colony and a

Confederate member?

ii) How many states were original colonies and Confederate mem-

bers?
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First off, are these the same question. Definitely not!

The first question is asking us to pick two states in sequence, first

one in A and then a second in B. We are asked to pick a original

colony andthen a Confederate state, so what we are selecting is an

element of the product set A×B. Typical possibilities for the pair of

choices are (Rhode Island, North Carolina), (Virginia, Virginia), and

(New York, Texas). By Section 3.3 or the Multiplication principle

3.7.1, we can make this choice in 13× 11 = 143 ways.

The second question is only asking us to pick one state, but it gives

us two restrictions on that choice: the state we pick must have been

both an original colony and also a member of the Confederacy. We’ll

call this use of “and” the restrictive “and” or andalso. These two

restrictions specify the 4 states Virginia, North Carolina, South Car-

olina and Georgia. In terms of the two sets of states, we’re asking

what elements (states) belong to both of the sets A and B. This

restrictive andalso meaning of and has not yet come up mathe-

matically in this course. As with andthen, andalso will always be

“printed” in the typewriter font shown to emphasize its mathemat-

ical meaning. Before going further, let’s look more closely this kind

of choice.

Intersection of Sets 3.7.3: We write A∩ B and read “A intersect

B” or “A and B” for the intersection of two sets A and B, the collection

of elements the two sets have in common. To specify A ∩ B as a set,

we give its membership test: the elements of the intersection A∩B are

exactly those objects that are both in A and also in B. That is, to pass

the test x ∈ A ∩ B, x must pass the two admission tests x ∈ A and

x ∈ B.

r It can happen that there is no element that belongs to both A and B.

We encountered examples of this in Section 3.2 and we even named

this special. but important case, saying that A and B are Disjoint

Sets 3.2.5.
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Disjoint Means Empty Intersection 3.7.4: To say that two sets

A and B are disjoint—no x is a member of both A and B—is the same

as saying that A∩ B = �.

It can also happen that every element of B is also an element of A
and hence that A ∩ B = B. We have already dealt extensively with

this possibility: it happens exactly when B is a subset of A. Let’s just

record this for future reference as it can be useful in both directions.

Subsets and Intersections 3.7.5: The set B is a subset of A—

B ⊂ A—if an only if A∩ B = B.

Let’s try a few problems to familiarize ourselves with intersections.

Problem 3.7.6: Let’s let D2 be the set of 36 possible possible ways

of rolling a blue and a red die that, in Problem 3.2.8, we viewed as

ordered pairs of numbers from 1 to 6. In that problem we defined a

number of subsets of D2:
ES is the set of pairs with an “Even Sum”.

S7 is the set of pairs with “Sum 7”.

S4 is the set of pairs with “Sum 4”.

BE is the set of pairs which are “Both Even”.

BO is the set of pairs which are “Both Odd”.

OE is the set of pairs with “one Odd, one Even”.

FO is the set of pairs with “First number Odd”.

List the elements of the following intersections. I’ll work the first few

parts to get you started.

i) S4∩ BE
Solution
The only even number less than 4 on the dice is 2, so to get a

total of 4 with both even we must roll a (2,2): so S4 ∩ BE =
{(2,2)}.

ii) S4∩ BO
Solution
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The odd numbers less than 4 on the dice are 1 and 3, so to get

a total of 4 with both odd we must roll either a (1,3) or a (3,1):
so S4∩ BO = {(1,3), (3,1)}.

iii) S4∩ FO
Solution
If the total is 4 and the first die is odd, then so it the second. So

even though BO 6= FO, S4∩ BO = S4∩ FO = {(1,3), (3,1)}
iv) S7∩ BE

Solution
If both die are even, so is their total so the sum can never equal

the odd total. This means that S7 ∩ BO = �, or that S7 and BO
are disjoint

v) S7∩ BO
vi) S7∩OE
vii) S7∩ FO
viii)FO ∩OE
ix) ES ∩ BE
x) ES ∩ BO
xi) ES ∩ FO

One point that should already be clear from looking at the answers

to this first problem is that there’s no simple arithmetical formula

for finding the number #((A ∩ B)) of elements in the intersection

of A and B from the orders of A and B individually. We’ll often be

interested in this order, but to find it, we usually need to first de-

scribe directly its elements (that is, give its admission test) without

reference to A and B.

In Problem 3.7.6, all the subsets whose intersections we wanted to

find were themselves subsets of a single “master” or “universal” set

(the set D2 here). In the examples we’ll be interested in, particularly

when we study probability, we’ll almost always be given such a mas-

ter set.
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Universal Set 3.7.7: When, in a problem or example, we agree

to consider only sets that are subsets of a fixed set S, we call S the

universal set or universe S. Many books use the letter U for universal

sets. We’ll use S because our main applications involve sample spaces

in probability problems where it’s standard to denote by S.

Here’s some more problems that confirm both these observations.

Problem 3.7.8: Consider the universal set S of ways of tossing a

coin 5 times. In Problem 3.6.14, we saw that this set could be thought

of as sequences of length 5 in the letters H and T and that it has 32
elements. Consider the following subsets of S:

4H the set of sequences with exactly 4 Hs.

3+H the set of sequences with at least 3 Hs.

2+T the set of sequences with at least 2 Ts.

EVEN-T the set of sequences with an even number of Ts.

ODD-T the set of sequences with an odd number of Ts.

LAST-TT the set of sequences with last two letters TT.

FIRST-H the set of sequences with first letter an H.

Describe as directly as possible, but without listing the elements, the

intersections of each pair of sets in this list.

This is a bit trickier than Problem 3.7.6 because of the injunction

against listing elements. Why not list them? Once again, because

soon we’ll want to be able to work with much better sets whose in-

tersections have too many elements to list. The only way to deal with

such intersections is to find a way to state their admissions tests that

does not require listing elements.

Partial Solution
Let’s find the intersections with 4H and EVEN-T.

First 4H. All but one of these are at the easy extremes where

one set in the pair is a subset of the other, or the two sets are

disjoint. Every sequence with exactly 4 Hs has “at least 3 Hs” so

4H ⊂ 3+H and by Subsets and Intersections 3.7.5, 4H∩3+H =
4H. If a sequence has exactly 4 Hs it has exactly 1 T. This tells
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us what the next 4 intersections are. First, no element of 4H is in

2+T, EVEN-T or LAST-TT and every element of 4H is in ODD-T. In

other words, 4H is disjoint from both 2+T, EVEN-T and LAST-TT

and 4H is a subset of ODD-T. So, 4H ∩ 2+T = 4H ∩ EVEN-T =
4H∩ LAST-TT = � and 4H∩ODD-T = 4H.

The one interesting case is 4H ∩ FIRST-H. Some elements of

FIRST-H are in 4H but others aren’t: for example, HTHHH is but

HTTTT is not. Likewise some elements of 4H are in FIRST-H but

others aren’t: for example, HHTHH is but THHHH is not. So the

intersection is not equal to either of the two sets, not is it the

empty set. There are lots of ways to say what the intersection is

such as “all the sequences with 4 Hs except THHHH” or “an H

followed by a strong of length 4 with exactly 3 Hs”. But these

are just roundabout ways of saying that we’re talking about

4H ∩ FIRST-H. So here there is not better answer than just to

describe the intersection as the intersection.

This answer may seem a bit silly but it conceals an important

point. Intersection is a useful concept because many sets arise

naturally in applications as the intersection of other, larger sets.

When they do, there’s often no easy way to describe them—that

is, give their admission test—except as an intersection. So we

need to be able to recognize both when an intersection has an

easier description and when it does not. You’ll see a number of

other examples of this type in working the rest of the problem.

So let’s go on to the intersections with EVEN-T. Here, there are

fewer easy cases. The set EVEN-T is disjoint from 4H and ODD-T

so these intersections are empty. But EVEN-T neither contains

nor is a subset of any of the other sets listed. Now, however, we

can sometimes describe the intersection more directly than as

the intersections. For example, a sequence with an even number

of Ts and at least 3 Hs has either 3 Hs and 2 Ts or 5 Hs and 0
Ts. So we can describe EVEN-T∩3+H as “sequences with exactly
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3 or 5 Hs” or as “sequences with exactly 2 or 0 Ts”. Likewise we

can describe EVEN-T∩2+T as “sequences with exactly 2 or 4 Ts”

or as “sequences with exactly 3 or 1 Hs”. But the intersections

EVEN-T ∩ LAST-TT and EVEN-T ∩ FIRST-H are best described as

intersections.

Just as we can make sequences of more than 2 andthen choices,

we can impose more than 2 andalso restrictions—though the latter

is less common. For example, let’s let C be the set of states with

two-word names (like “New Hampshire” or “South Carolina”). Then

we can ask what states were in the original thirteen colonies, were

members of the confederacy and have two word names. That’s usu-

ally how we’d ask, but for emphasis, we could restate this as, what

states were in the original thirteen colonies, andalso were members

of the confederacy, andalso have two word names. This is the triple

intersection of the sets A, B and C which we write A∩ B ∩ C.

Problem 3.7.9: List the elements of A∩ B ∩ C.

OK, so how do we distinguish between the two “ands”. It’s not re-

ally so hard. If what is being described involves making more than

1 choice, you are dealing with andthen and are (usually) describing

the product of the sets giving each choice. If it involves making only

1 choice, but you are given more than 1 conditions or restriction that

the choice must satisfy, then you are dealing with andalso and you

are being asked for intersection of the sets described by each con-

dition. In practice, if you simply remain alert to the fact that “and”

has two meanings, you’ll have no trouble keeping the two straight.

It’s when you don’t ask which “and” you’re faced with that mistakes

occur.

eitherorboth and orelse

To introduce the mathematical meaning of “or”, let’s ask another

question about the states: “What states were original colonies or
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Confederate members?” First, like an andalso question, the answer

is a single subset of the 50 States, even though the question involves

the two related sets of original colonies and Confederate members.

To nail down the relation between the sets in the question and the

set that’s the answer, let’s rephrase the question: “What states were

either original colonies or Confederate members?” This makes clear

the difference between an eitherorboth and an andalso question.

“And then” asks what elements belong to both sets. “Either or” asks

what elements belong to one of the two. Unfortunately, the condition

“one of the two” can be interpreted in two different ways. Does it

mean “exactly one of the two sets” or does it mean “at least one of

the two sets”? These are different because elements in both sets—

that is, elements of the intersection—are included by the latter but

are excluded by the latter: an element of both of 2 sets is in “at least

one” but not in “exactly one”.

Mathematicians use “or” to mean “at least one”. Period. This is a con-

vention, somewhat arbitrary but universally followed, like the order-

of-operations convention pogemdas 1.1.5. Well, not quite universally

followed. Many students persistently insist on using “or” to mean

“exactly one”: if you do, you can expect to get a lot of answers wrong.

So please try to get the difference straight right now and learn the

(conventionally) correct meaning: or includes both!

Since the eitherorboth meaning of or is new, we also need a way

to denote it. Once again, the typewriter font is used to emphasize its

mathematical meaning even in ordinary text.

eitherorboth Union of Sets 3.7.10: We write A∪ B and read “A
union B” or “A or B” for the union of two sets A and B, the collection

of elements that are either in A, or in B or in both. To specify A∪B as

a set, we give its membership test: to pass the test x ∈ A ∪ B, x must

pass at least one of the admission tests x ∈ A and x ∈ B. If x happens

to pass both—that is x ∈ A ∩ B, then x is in A ∪ B. More informally,

saying x is in A∪ B means that x is either in A or in B or in both.
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So the answer to the question, “What states were original colonies or

Confederate members?” is: New Hampshire, Massachusetts, Rhode

Island, Connecticut, New York, New Jersey, Pennsylvania, Delaware,

Maryland, Virginia, North Carolina, South Carolina, Georgia, Florida,

Tennessee, Alabama, Mississippi, Louisiana, Arkansas and Texas. In

particular, the four states—-Virginia, North Carolina, South Carolina,

Georgia—in both the original thirteen and the Confederacy are ele-

ments of the union of these sets.

Problem 3.7.11: Mathematicians have a name for the “exactly one”

kind of or: it’s called an exclusive or or xor. We won’t use this kind

of or in this course, but just to let you get it out of your system, find

the exclusive or of the thirteen original colonies and the members of

the Confederacy.

Problem 3.7.12: This problem is a sequel to Problem 3.7.6 and uses

the same sets of dic throws defined there.

List the elements of the following unions. I’ll work the first few parts

to get you started. You notice I list throws in “increasing order” (read

left to right) because i=this makes it easier to avoid omissions.

i) S4∪ BE
Solution
Since

S4 = {(1,3), (2,2), (3,1)}

and

BE = {(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6)} ,

we find that

S4∪ BE = {(1,3), (2,2), (2,4), (2,6), (3,1), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6)} .

Once I had listed S4 and BE this was pretty easy. I just merged

the two lists. All I had to so was to avoid duplicating (2,2) which

was in both sets (and avoid committing the “exactly one” mistake

and leaving (2,2) out).
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ii) S4∪ S7
Solution
Using

S7 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

and the listing of S4 above gives

S4∪ S7 = {(1,3), (1,6), (2,2), (2,5), (3,1), (3,4), (4,3), (5,2), (6,1)} .

Here the two sets were disjoint so I didn’t need to deal with any

elements in both.

iii) S4∪ FO
iv) S7∪ BE
v) BO ∪ FO

The answers to this first problem make a couple of points worth

noting. First, if A ⊂ B (or vice-versa), then A ∪ B = B (as in the part

v), where BO ∪ FO = FO).

Subsets and Unions 3.7.13: The set A is a subset of B if an only if

A∪ B = B.

The only other common case when there’s simpler way to describe

a union of sets than as this union is when the union equals the Uni-

versal Set 3.7.7 of a problem. The next problem gives examples,

some involving unions of more than 2 sets. We can take the union

of any number of sets. An object that belongs to at least one of the

sets belongs to their union (and that includes elements belonging to

more than one of the sets).

Problem 3.7.14: This problem is a sequel to Problem 3.7.12 and

uses the same sets of dice throws defined there.

List the elements of the following unions.

i) ES ∪OE
ii) BE ∪ BO ∪OE

Second, there’s no simple arithmetical formula for finding the num-

ber #(A ∪ B) of elements in the union of A and B from the orders
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of A and B individually. We already saw the same thing for the or-

der of the intersection #(A∩B). There is no general formula relating

just 3 of these orders. However, there is an extremely useful formula

relating the orders of all four of these sets.

And-Or Formula for Orders 3.7.15:

#(A∩ B)+ #(A∪ B) = #A+ #B

The easiest way to see this is to observe that counting a set is the

same as summing up the number 1 once for each element: that is, we

mentally write #A =
∑
x∈A
1x. The subscript x is just a label to remind us

which element x we were counting when we added the correspond-

ing 1 to the sum.

Thus, each of the four orders in the formula is a sum of terms 1x for

certain x, namely the elements of the corresponding subset. I claim

that for every x, the number of terms 1x on the left and right side

are the same, and hence that the two sides are equal. The diagram

below makes this easy to see.

A -→
←- B

A∩ B

Figure 3.7.16: Picturing the And-Or Formula

The set A is the upper rectangle, and the set B of the right one. The

set A ∩ B is the overlap at the top right and the set A ∪ B consists

everything in either rectangle.

Elements x in the top left quarter of the diagram lie in A and in A∪B
but not in B or in A ∩ B so they contribute a single 1x to each side.

Elements x in the bottom left lie in B and in A ∪ B but not in A or

in A ∩ B so they also contribute a single 1x to each side. Elements
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in the top right lie in both A and B and hence in both A ∪ B and

A∩B so they contribute two 1x’s to each side. Elements outside both

rectangles are in none of the four sets and contribute no 1x to either

side. In all cases, the contribution of x to each side is the same as

claimed.

We usually use the formula to solve for one of the 4 orders in it,

rewriting it to express the unknown order in terms of the 3 known

ones. The most common variant is #(A ∪ B) = #A + #B − #(A ∩ B)
which we use to find orders of unions.

A few examples will give you a better feel for this argument.

Problem 3.7.17: This problem is a sequel to Problem 3.7.12 and

uses the same sets of dice throws defined there.

Verify the And-Or Formula for Orders 3.7.15 for each of the pairs

of sets below by counting elements to compute both sides.

i) S4 and BE
Solution
From Problem 3.7.6i), #(S4 ∩ BE) = 1. From Problem 3.7.12i),

#(S4∪ BE) = 11. So #(S4∩ BE)+ #(S4∪ BE) = 12. On the other

hand, #S4 = 3 and #BE = 9—again from the lists of elements in

Problem 3.7.12i)—so #S4+ #BE = 12 too.

ii) S7 and BE

iii) OE and BE

iv) BO and BE

In parts ii) and iv), the two sets were disjoint and thus the (empty)

intersection had order 0. Correspondingly, the order of the union

of the two sets in each part was just the sum of their orders. This

simpler, special case happens often enough that we want to recog-

nize and take advantage of it. However, we also want to distinguish

it carefully from the general case when the intersection is not empty

for reasons I’ll explain in a moment. We’ll call the operation of taking

the union of two sets known to be disjoint an orelse union and use
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the typewriter font to emphasize its mathematical meaning even in

ordinary text.

orelse/Disjoint Union of Sets 3.7.18: If we know that A and

B are disjoint sets, then we write A∪̇B and read “A disjoint union B”

or “A orelse B” for their union. An object x is in A∪̇B if x is in A
orelse x is in B—since A and B are disjoint, x cannot be in both.

If A and B are not disjoint, then their disjoint or orelse union is not

defined.

OrElse Formula for Orders 3.7.19: If A and B are disjoint sets

(so that A∪̇B is defined) then

#(A∪̇B) = #A+ #B .

You’ve probably already noticed that, when A and B are disjoint,

the orelse union A∪̇B and the eitherorboth union A ∪ B are the

same set and hence have the same order. So why did I introduce the

extra term orelse, the extra notation A∪̇B, and the extra formula

#(A∪̇B) = #A+ #B.

For one very good reason. I’m hoping to head off at least some of the

many errors that arise when students treat eitherorboth unions of

sets that are not disjoint as if they were orelse unions. When A∩B =
�, it’s very tempting to view And-Or Formula for Orders 3.7.15 as

saying that #(A ∪ B) = #A + #B. Don’t! Don’t learn this formula!

Don’t ever even write this formula! Yes, it’s simpler to remember

and to use, when it applies, but experience shows that knowing it is

dangerous. Under pressure, you forget that the simpler form is only

correct when the sets are disjoint, and you forget to check whether

they are disjoint before applying it. Murphy’s law tells us when you

do this, the two sets will not be disjoint and you’ll get the wrong

answer.

My recommendation is to learn only the And-Or Formula for Or-

ders 3.7.15, with its builtin #(A ∩ B), when using the formula and
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to make sure you understand this order. After all, how much work

is it really to add 0 on the left side when the two sets are disjoint?

Unfortunately, few students seem to be able to stick with this rec-

ommendation, and they always seem to forget the intersection just

when it’s non-empty.

So I have bowed to the inevitable and written down the simpler

OrElse Formula for Orders 3.7.19, but I have used a special ter-

minology (orelse) and notation (∪̇) for this formula, to remind you

that #(A∪̇B) = #A + #B only applies after you have checked that A
and B are disjoint.

Ask “Which Or?” 3.7.20: Before computing the order of the union

of two sets A and B, ask “Which or?”. Do I know the sets are disjoint,

allowing me to use the OrElse Formula for Orders 3.7.19, or do I

need to use the And-Or Formula for Orders 3.7.15?

What about counting unions or intersections of more than 2 sets?

Are there formulas for these? The answer is yes, but they quickly be-

come much more complicated. Already when there are 3 sets, there

are 8 terms in the formula. It’s worth knowing such formulae exist

but, fortunately, we won’t have any need for them.

Here are some problems that illustrate the ways we can use the And-

Or Formula for Orders 3.7.15 (and sometimes OrElse Formula

for Orders 3.7.19 in its place).

Problem 3.7.21: Majors in the Mathematics department must take

courses in at least one of Algebra and Calculus but may take both.

i) If 24 math majors take Algebra, 28 take Calculus and 12 take

both, how many majors are there?

Solution
If we let M be the set of majors, A be the set of students taking

Algebra and C be the set of students taking Calculus, then we

know that M = A ∪ C since majors must take “at least one” of

these courses. We’re given that #A = 24, #C = 28 and #(A∩C) =
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12. So we can just rewrite And-Or Formula for Orders 3.7.15

and plug in to get

#M = #(A∪ C) = #A+ #C − #(A∩ C) = 24+ 28− 12 = 40 .

I introduced letters to denote the sets involved here to make

it clear how we were using the And-Or Formula for Orders

3.7.15, but this is not really necessary. I could have answered in-

stead as follows. The number of majors is the number taking

either Algebra or Calculus. This in turn is the number taking

Algebra plus the number taking Calculus minus the number tak-

ing both, so there are 24+ 28− 12 = 40 Majors. Feel free either

to write your answers in a more informal form as you become

more familiar with the formula, or to continue using formal set

notation if you find that easier.

ii) If there are 44 math majors of whom 30 take Algebra and 30
take Calculus, how many majors take both?

iii) If there are 38 math majors of whom 30 take Algebra and 20
take both Algebra and Calculus, how many majors take Calculus?

iv) Suppose we know only that 32 majors take Algebra and 23 take

Calculus. Decide whether each number below could equal the num-

ber of math majors or not. It it can, explain how. If it cannot, explain

why not?

a. 30.

b. 40.

c. 50.

d. 60.

Partial Solution
Here we know (in the notation above) neither #(A ∩ C) nor

#(A ∪ C) so we can’t just solve for the latter using the And-

Or Formula for Orders 3.7.15. But we can solve for the former

if we assume that #(A∪ C) takes on any of the given values and

plug into #(A∩ C) = #A+ #C − #(A∩ C) = #A+ #C − #M .
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For example taking #M = 30 would force #(A ∩ C) = 32 + 23 −
30 = 25. Now we need to decide if 25 is a possible value for

#(A∩C). It may seem that we have gained nothing. Not so. Since

A∩C is a subset of both A and C it’s order cannot be bigger than

the order of either. Since 25 > 23, we can’t have #M = 30. In this

case, we could reached the same conclusion more easily—since

A ⊂ M we can’t have #A bigger than #M—but in the other parts,

you’ll need to use the And-Or Formula for Orders 3.7.15.

At the end of the next subsection, we’ll work some slightly harder

problems that combine the And-Or Formula for Orders 3.7.15

with the Complement Formula for Orders 3.7.24.

butnot

This is much the easiest of the three hard words. We use it to de-

scribe a set by saying where it’s elements do not lie. The only minor

difficulty we need to address is where to stop. Suppose I’m consid-

ering several Harvard mathematics courses. I’d like to be able to talk

about the set of students who are not taking Algebra. Let’s denote

the set of students who are taking algebra by A and the set of stu-

dents who are not taking Algebra by B.

It certainly seems like this defines a perfectly good set B. Remember,

from Objects and oracles, that what that means is that I know how

to tell whether any object x is an element of B. If x is math major Joe

Blow who is taking Algebra, the answer is “No”. If x is math major

Jane Doe who is not taking algebra, the answer is “Yes”. What if x
is psychology major Wade Roe who is not taking Algebra? Now the

answer is a bit fuzzy. Did we intend B to include only math majors?

We have not described a set B unless we also give an answer to this

question because if the answer is yes, then Wade is not in B and, if

it’s no, he is. Whatever we answer, we’re still not out of the woods.

What if x is Hei Yo who’s a math major at the University of Tokyo?
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The way to avoid this kind of ambiguity is to always say both “Yes”

and “No” when defining a set by what it’s not. I’ll use butnot (in

typewriter font) to highlight when we are using “not” in this mathe-

matical sense.

Complement of a Subset 3.7.22: If A is a subset of a set S, then we

define the complement AcS to be the set whose elements are the those

elements of S that are not elements of A. In other words, x ∈ AcS
means that x ∈ S and x 6∈ A: in words, x is in S butnot in A.

Very often, the set S will be a Universal Set 3.7.7 that is clear from

the context we are in—for example, when we work probability prob-

lems, S will almost always be what’s called the sample space. In such

cases, we simplify and just write Ac instead of AcS .

A subset A of S and its complement AcS are related in several very

special and useful ways.

Complement Relations 3.7.23: If A is a subset of a set S, then:

i) A∩AcS = �: A and its complement are disjoint.

ii) A∪AcS = S: S is the union of A and its complement.

iii) A∪̇AcS = S: S is the union of A and its complement.

iv) (AcS )cS = A: A is the complement of its complement.

These are all easy to see from the tautological remark that: every

element of S is either in A or not in A and that no element of S is

both in A and not in A. In terms of complements: every element of

S is either in A or in AcS and that no element of S is both in A and

in AcS .

Parts i) and ii) just re-express the statement in italics in terms of

union and intersection. Parts i) also says that A and AcS are disjoint,

so their disjoint union is defined and given by ii). Likewise, iv) fol-

lows: elements of (AcS )cS are by definition the elements of S not in

AcS and these are just the elements of S in A. Note that, since A and

AcS are disjoint, we can rewrite ii):

A∪̇AcS = S .
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Applying OrElse Formula for Orders 3.7.19,

Complement Formula for Orders 3.7.24: For any A ⊂ S,

#(AcS ) = #S − #A .

Problem 3.7.25: Derive Complement Formula for Orders 3.7.24,

without using the OrElse Formula for Orders 3.7.19, by combining

And-Or Formula for Orders 3.7.15 and i) and ii) of Complement

Relations 3.7.23.

Example 3.7.26: Even some politicians know the Complement For-

mula for Orders 3.7.24. Benjamin Disraeli, a 19th century British

Prime Minister, once, as Leader of the Opposition, complained that

their recent conduct showed that “Half the cabinet are asses”. Mem-

bers of the cabinet protested loudly, leading the Speaker to demand

that Disraeli retract his remark. Disraeli rose and said, "Mr Speaker,

I withdraw. Half the Cabinet are not asses."

Problem 3.7.27: Explain why Disraeli, far from having retracted his

insult, had managed to repeat it.

There’s one point about complements that’s best explained with an

example.

Problem 3.7.28: Consider a State Legislature with 235 members.

i) If the Legislature contains 120 men, how many women does it

contain?

ii) If the Legislature contains 90 golfers, how many tennis players

does it contain?

Of course, the first answer is 235 − 120 = 115 because the subset

of women legislators is the complement of the subset of male leg-

islators. And we can’t answer the second question, because there’s

no such complementary relation between golfers and tennis players.

Note that the word “not” is in neither question. We had to recognize

that “women” is an antonym to “man” which is just a fancy way to

say it describes the complement. Pay attention to such opposites.
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It’s easy no miss them, and find a question like the first above as

puzzling as the second.

Antonyms Describe Complements 3.7.29: In relating subsets

of a universal set be alert for complements that are described by

antonyms, without using the word “not”.

The Four Quadrants and the Three Hard Words

wLet’s now introduce a classic schematic picture that we’ll see many,

many times in the rest of the course. The situation we want to model

is a that of a universal set S (shown as the large square), and two sub-

sets that I’ve called A (shown as the upper rectangle) and B (shown as

the right rectangle). In addition to these sets, each of the four quad-

rants defines a subset of S that we’ll often need to identify. These are

marked in the venerable Figure 3.7.30 which we’ll call a Q-diagram.

S -→

A -→

←- B

A∩ Bc A∩ B

Ac ∩ BAc ∩ Bc

Figure 3.7.30: A standard Q-diagram

We introduce a few terms. Although these are not standard, they

make it easier to talk about such problems.

Q-sets and Q-problems 3.7.31: We call Figure 3.7.30, the Q-

diagram (Q for quadrants) of a universal set S and two subsets A
and B. A set C is a Q-set Q-set if C is a union of one or more of the

quadrants in Figure 3.7.30. A Q-problem is any problem in which

we are given the order of several Q-sets and asked to compute the
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other of one or more other Q-sets. In a proportional Q-problem, we

are given and asked for, not #C but the proportion #C
#S as fraction or

percentage.

Problem 3.7.32:

i) Which quadrant is not in each of the Q-sets below?

a.A∪ B or “A andalso B”

b.A∪ Bc or “A and not B”

c.Ac ∪ B or “not A and B”

d.Ac ∪ Bc or “not A and not B”

ii) Both A and B are Q-sets containing exactly 2 quadrants. Find 4
more such 2-quadrant Q-sets.

Problem 3.7.33: Here’s a little counting problem involving Q-sets.

i) Show that there are exactly 16 different Q-sets? Hint: There’s

exactly 1 Q-set for each subset of the set of 4 quadrants in Figure

3.7.30.

ii) Let Q be the set consisting of the 14 non-trivial q-sets (that is,

we leave out S itself and the empty set). How many 3 and 4 element

subsets does Q have?

First, some good news. Q-problems are generally very easy; that’s

good because we’ll have to solve a great many in studying probabil-

ity. The only difficulty Q-problems pose is that they come in a great

many flavors, corresponding to the different Q-sets whose orders

are given and asked for in these problems. Usually the we are given

the order of either 3 or 4 non-trivial Q-sets. If you worked Problem

3.7.33, you’ll realize that that’s well over a thousand possible flavors.

Even though most of these flavors never occur, we’ll still see lots of

variants.

For this reason, many students like have a systematic way to answer

such questions. I’m now going to explain my favorite system, the

on that over the years my students have found easiest to use. On

the other hand, there are many students who find it easy to solve
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such problems using their native intelligence. If you are one of these

students, you can just ignore this method that follows and solve

these problems in whatever way is easiest for you.

The basic idea of the system is very easy. The order of Q-set is just

the sum of the orders of the quadrants in it. That’s because the in-

tersection Q ∩Q′ of any two quadrants is empty, which means that

the And-Or Formula for Orders 3.7.15 simplifies to #(Q ∪Q′) =
#Q+ #Q′. So we can immediately read off the order of any Q-set we

may be asked about, once we know the orders of the 4 quadrants.

These can always be found by solving some very easy equations ex-

tracted from the problem at hand. Proportional Q-problems work

the same way except that we add up proportions rather than orders.

Here’s the method.

Quadrant Method 3.7.34: To solve a Q-problem:

Step 1: Identify the sample space S in the problem and the subsets

A and B: we’ll see you’re free to give these more mnemonic

names.

Step 2: Each number given in the problem is the order (or proportion)

of someQ-set. Identify the quadrants that make up thisQ-set

and write down the equation that expresses this number as a

sum of orders (or proportions) of quadrants.

Step 3: Usually, you’ll have 4 numbers and hence 4 equations. If you

see only 3 numbers, you have a proportional Q-problem. Use

the fact that the proportion #S
#S equals 1 (or 100%) to get a 4th

equation.

Step 4: Solve your equations. This usually involves only 2 simple op-

erations. Substitute an known value, or subtract one equation

from another to solve for an unknown value. Occasionally,

you may need to subtract one equation from the sum of two

others.

Step 5: Each number asked for in the problem is the order (or pro-
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portion) of some Q-set. Identify the quadrants that make up

this Q-set and find this number by adding up the orders (or

proportions) of these quadrants.

This may sound a bit scary, since it asks you to solve 4 equations

in 4 unknowns (the orders of the quadrants). Don’t worry; solving

these doesn’t even call for any multiplication or division, just a bit

of very easy addition and subtraction. In fact, the only place where

you’re likely to go wrong and need to pay attention is in the steps of

matching quadrants to numbers and questions in the problem. And

here the difficulty is all about interpreting the meaning of informal

descriptions accurately. A few examples will make all this clear, and

convince you these problems are not so bad.

Example 3.7.35: Of 110 students in the Economics department, 35
have taken Calculus and 85 have taken Finance and 10 have taken

both. How many have taken neither Calculus nor Finance? How many

have taken exactly one of the two courses?

Solution

Step 1: The sample space is the set of economics students (E)

and the subsets are those who have taken calculus (C) and

Finance (F ). Notice I used names that remind what these sets

stand for, not the generic S, A and B. Ordinarily, you needn’t

repeat the diagram but let’s set it down just this once:

E

C ∩ Fc C ∩ F

Cc ∩ FCc ∩ Fc

Step 2: What quadrant(s) does each number in the problem de-

scribe? The number 110 is the order of E which is the union

of all 4 quadrants. The number 35 is the order of C which is

the union of the two top quadrants and the number 85 is the
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order of E which is the union of the two right quadrants. The

number 10 is the order of bottom left quadrant, in neither C
nor F . This translates to the equations:

#(C ∩ F) + #(C ∩ Fc) + #(Cc ∩ F) + #(Cc ∩ Fc) = 110

#(C ∩ F) + #(C ∩ Fc) = 35

#(C ∩ F) + #(Cc ∩ F) = 85

#(Cc ∩ Fc) = 10

Step 3: We have the expected 4 equations in 4 orders.

Step 4: Now we solve equations. Here, substituting #(Cc ∩ Fc) =
10 in the first equation we get #(C∩F)+#(C∩Fc)+#(Cc∩F) =
100. Then subtracting the second equation from this gives

#(Cc ∩ F) = 65. Now we substitute this value in the third

equation to get #(C∩F) = 20. Substituting this in the second

equation gives us #(C ∩ Fc) = 15. As a check, just plug your

values back into all 4 equations and check that the two sides

of each match.

Step 5: Notice that we haven’t worried at all, up to this point,

about what the question asked. But the work we have done

now makes answering these questions easy. Students who

took both courses are those in the upper right quadrant

C ∩ F so there are 20 of these. Students who took exactly

one of the two courses are those in top-left and bottom right

quadrants, so the number of these is #(C ∩Fc)+#(Cc ∩F) =
15+ 65 = 80.

As I said, many students can see their way through the same steps

without writing down explicit equations, and if you can you’ll usu-

ally be able to shorten your solution a bit—though such informal

solutions are more prone to errors. But many students find having

a clear method in mind worth the slight extra effort. As I said, use

whatever method works best for you. Even if you prefer informal at-
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tacks, you can always write down equations if a particular problem

stumps you.

Example 3.7.36: A recent survey of American voters revealed that

60% were opposed to using Federal funds to bailing out Wall Street

investment banks in 2008 but in favor of bailing out US automakers

in 2009, that 44% were opposed to bailing out US automakers but in

favor of bailing out the investment banks and that 33% supported

both bailouts. How many opposed both bailing out the banks and

bailing out the automakers?

Solution This sounds harder than Example 3.7.35, but when we

write down equations we’ll see it’s simpler.

Step 1: The sample space is the set of voters surveyed (V ) and

the subsets are those who supported the bank bailout (B) and

those who supported the automaker bailout (A). We’ll have to

be careful about complements here.

Step 2: Notice that here we have just 3 numbers and these num-

bers are percentages. Both these facts tell us that we have

a proportional problem here and that our 4th equation will

come from saying that the total in all 4 quadrants is 100%.

The equations will turn out to be much simpler than in Ex-

ample 3.7.35, even though the story here seems more com-

plicated.

#(A∩ B) + #(A∩ Bc) + #(Ac ∩ B) + #(Ac ∩ Bc) = 100
#(A∩ B) = 33

#(A∩ Bc) = 60
#(Ac ∩ B) = 44

Step 3: We already found the “missing” 4th equation above.

Step 4: Here all we have to do is substitute the values for the

three known quadrants to find the fourth: 33 + 60 + 44 +
#(Ac ∩ Bc) = 100 so #(Ac ∩ Bc) = 37.

Step 5: Those opposed to bailing out the banks are just those in

Bc and as Bc = (A∩ Bc)∪ (Ac ∩ Bc), these were #Bc = #(A∩
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Bc) + #(Ac ∩ Bc) = 60 + 37 = 97 or 97% of voters. Likewise,

those opposed to the automaker bailout were #Ac = #(Ac ∩
B)+ #(Ac ∩ Bc) = 44+ 37 = 81 or 81%.

Here are some more problems for you to practice with.

First some easy ones.

Problem 3.7.37: A valid ballot in Florida must have exactly 1
punched chad. A precinct officer in the 2000 Presidential election

counted 2240 votes, of which 1120 had a punched Bush chad, 1103
has a punched Gore chad and 230 had no chad punched. How many

valid votes did he report for each candidate?

Problem 3.7.38: The fraction of Canadian families with a pet polar

bear is 0.05 and with a pet moose is 0.18. If the fraction with neither

animal as a pet is 0.80, what fraction have a very nervous moose?

Problem 3.7.39: If 22% of people are left-handed, 6% are left-

handed and blonde, 35% are left-handed or blonde, and nobody is

ambidextrous, find what percentage of the population is in each

group below.

i) right-handed.

ii) blonde.

iii) neither left-handed nor blonde.

iv) right-handed and blonde.

Finally, one that’s a bit harder.

Problem 3.7.40: On the first midterm of the year, 22 students got

As and on the second 26. There were 10 who got an A on neither test

and the same number of students got an As on exactly 1 test as did

on both. How many students were in the class?

When conjunctions collide

The aim of this short subsection is to call your attention to a couple

of points about “and”, “or” and “not” that often trip up the unwary.
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3.7 And, Or, and Not: the three hardest words

You’ll only encounter a few of these traps in this course, but you will

see all of them in later life, so I thought it worth making you aware

of them while we’re discussing the three hardest words.

First, it’s very common to see “and” used in informal English where

“or” is meant. Here are a couple of typical examples:

“Mathematics majors should take at least one of physics, computer

science and statistics.”

“Almost 5,000,000 people live in Houston, Dallas and San Antonio.”

Neither of these is likely to cause much confusion. In the first, the “at

least one of” tells us that the writer meant “or” instead of “and”. Of

course, take this away and the difference is critical. If “Mathematics

majors should take physics, computer science and statistics” there

are three breadth requirements instead of one. The second sentence

is nonsense as it stands. Nobody lives in “all three of” Houston, Dal-

las and San Antonio. But again this is harmless: because, when read

literally, the sentence is so wildly false, we mentally change the “and”

to the “or” the writer clearly must have meant. So my advice here is

to make an effort, in your own writing, to avoid this kind of confu-

sion and to be alert for it when reading what others write.

Things get a bit more serious when “and” and “or” collide. Consider:

“Mathematics majors must take physics and computer science or

statistics.” “Southwest hopes to start flying into Houston or Dallas

and San Antonio.”

Both sentences are ambiguous. In the first, the requirement may be

either both of physics and computer science, or just statistics; or

maybe physics is required along with either computer science or

statistics. In the second, does Southwest want to fly either to Hous-

ton or to both of Dallas and San Antonio (or to all three)? Or does

it want to fly to at least one of Houston or Dallas, as well as to San

Antonio? The issue in both cases is one of order of operations. Chang-

ing the order in which the semantic operations represented by “and”

(both true) and “or” (at least one true) are carried out changes the
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3.8 Counting by the “divide and conquer” method

meaning of the sentence. As for arithmetic operations, such ambigu-

ities can be resolved either by applying a convention like pogemdas

1.1.5 (the standard one is “and before or”) or by the semantic equiv-

alent of parentheses. The latter is how I made the alternatives clear

above and, here, it’s the only reliable way to make sure your meaning

is clear. The moral when mixing “and”s and “or”s be sure to make

the order you intend clear in what you write.

Even more caution is called for when “not” gets into the act. The fol-

lowing trap is the one you are most likely to fall into in Math4Life.

“I didn’t take physics, computer science and statistics.”

Is the student in this sentence saying she didn’t take all 3 subjects?

Or is she saying that she didn’t take any of them? Here it’s impos-

sible to say with any certainty. If we write P , C and S for the set of

students who have taken each subject, then those who have taken

“physics, computer science and statistics” are the set P ∩ C ∩ S. To

belong to this set, you need to have taken all 3. So the sentence

as written means she did not take them all; that’s how you should

read such sentences in this course. But, in everyday speech, what

is usually meant is that the speaker took none of these subjects.

“And” has been used where “or” was meant—“I didn’t take physics,

computer science or statistics”. The difference from the sentence we

started with is that nothing like the “at least one” before the list over-

rules the incorrect “and”. Had the speaker said “I didn’t take any of

physics, computer science and statistics”, we’d be sure she meant

“or”. So, when a negative or “not” is used, pay especial attention to

“and” versus “or”.

3.8 Counting by the “divide and conquer” method

We have now developed all the technology needed to answer the

counting problems that will arise in our study of probability. Still,
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3.8 Counting by the “divide and conquer” method

if I started asking you the kinds of questions we’ll need to answer

right now, I know that, while a few of you would find them a breeze,

most of you would get very frustrated. Why? Well, the lucky few can

just see how to reduce complicated counting problems to simple

ones naturally. The aim of this section is to teach you a simple, very

direct method for making such simplifications, and a set of standard

divisions that you need to recognize to carry out this plan.

The method

There are three basic steps to our method.

Divide and conquer counting strategy 3.8.1: To answer a

counting or problem—that is a “How many ways?” or “How many

choices?” question—try to apply the following three steps:

Step 1: Divide Try to break up the choice into simpler choices con-

nected by andthen, orelse and butnot. If a simpler choice

asks for the answer to a Shorthand Question 3.6.3, stop.

If not, try to divide that choice into still simpler choices, again

connected by andthen, orelse and butnot. Repeat until each

choice is the answer to a Shorthand Question 3.6.3.

Step 2: Shorthands Use the Two Question Method 3.6.4 to write

down the shorthand count that answers each Shorthand

Question 3.6.3 you have isolated in the Divide step. This

step is easy; you just need to remember the First Rule of

Guessing 3.6.1 Don’t!

Step 3: Reassemble Reassemble the shorthands, working bottom-up

from the simplest choices back to the original choice, into a

single multi-shorthand answer and evaluate this answer. For

simpler choices that were connected by andthen, multiply

the shorthands. For simpler choices that were connected by

orelse, add the shorthands. For two choices that were con-

nected by butnot, take the difference of the counts.
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3.8 Counting by the “divide and conquer” method

Before we start to work some examples to get a feel for this method,

a few general comments. First, although the Divide and conquer

counting strategy 3.8.1 may appear a bit complex, most of the

time you just follow your nose. We’ve already seen how the Two

Question Method 3.6.4 makes the Shorthands step pretty cut and

dried. I’ll just note one additional point about using Shorthands.

Shorthands Remember 3.8.2: When applying the Divide and

conquer counting strategy 3.8.1, leave all answers to Short-

hand Question 3.6.3 in unevaluated shorthand form, until you need

a final numerical answer.

For example, if you have two component choices with counts the

shorthands C(10,3) and C(8,4) just leave them in this form rather

than evaluating them as the numbers 120 and 84. If you need to

make both these choices and hence multiply, leave the product as

C(10,3)·C(8,4). Only when you need a final answer should evaluate

to get 120 · 70 = 8400.

Why? In many problems, you’ll need answer variants of the prob-

lem you just solved with one or two small changes. Very often, the

Shorthand Question 3.6.3 applies in the same way to this vari-

ant problem and you can just write down the answer by altering the

shorthands to reflect the changes in the question. In our example,

we might be asked to make the first 3 choices from 12 possibilities

instead of 10. The shorthand answer C(10,3) remembers how the

number 10 of possibilities entered the count and tells us that the

new answer should be C(12,3). The answer 120 has forgotten the

role of the number 10 and is of no help in writing down the new

answer. Or, we might want to make 5 choices from amongst the 8
possibilities in the second count. Again, from the shorthand C(8,4),
it’s easy to see that the new answer should be C(8,5)—the combi-

nation again remembers how the 4 was being used—and impossible

from the number 84.

The Reassemble step is also easy. When a choice involves making all
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3.8 Counting by the “divide and conquer” method

of several simpler choices (we divided it into making the first simple

choice, andthen making the second, and so on), then the number of

ways of making that choice is the product of the number of ways of

making each of the simpler choices. This is just the Multiplication

principle 3.7.1.

When a choice involves making one of several simpler choices (we di-

vided it into making the first simple choice, orelse making the sec-

ond, and so on), then the number of ways of making that choice is the

sum of the number of ways of making each of the simpler choices.

Here we’re just using the OrElse Formula for Orders 3.7.19.

Finally, when a choice involves making one simpler choice butnot

a second simpler choice, then the number of ways of making that

choice is the difference of the number of ways of making the first and

second choices by the Complement Formula for Orders 3.7.24.

To have a concise way of recalling these rules when working exam-

ples, we sum them up with the acronym amoans 3.8.3.

amoans 3.8.3: To reassemble shorthand counts, just remember:

All or Andthen : Multiply, One or Orelse : Add, butNot : Subtract.

This leaves the Divide step. This calls for more thought than the

other two, but, with practice, you’ll see that it, too, is straightforward.

What you learn with practice is a toolkit of standard divisions that

can be used to divide almost any problem into Shorthand Ques-

tion 3.6.3 pieces. Only very rarely will we have to put on our think-

ing caps to see how to divide a problem. So all you really need to

do to master the Divide step is to work problems. The catch is that

its impossible to say how many problems you’ll need to work before

you get the knack. Some lucky students seem to be born knowing

the how to apply the toolkit; others need to struggle through many

problems. You’ll have to decide for yourself when you’ve caught on:

you’ll know you have when you stop having to struggle and start to

just “see” how to divide.

1—
1—
2—

a ·· ·· z ? 249 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.8 Counting by the “divide and conquer” method

First Examples and the Most Common Patterns

Each of examples that follow introduces a new trick for dividing.

Let’s start with a couple of the most common andthen divisions. As

we’re working through this, we’ll discover several ideas that come in

handy in many problems.

First we’ll look at a variant of Problem 3.6.17. This dealt with card

games in which each player is dealt a hand and then arranges his

or her hand to group the cards of the same value or suit or both.

We saw that, if the deck has m cards and a hand has `, then we are

choosing ` times from m possibilities and the shorthand for this

count is C(m,`). In applying the Two Question Method 3.6.4, rep-

etitions are not allowed (since we deal ` different cards) and order

does not matter (it’s the same hand after we sort it). Now let’s ask

some questions about bridge hands, where m = 52 and ` = 13.

Example 3.8.4: How many bridge hands contain 5 red and 8 black

cards?

Solution
The important word in that question is the “and”. We need to

pick 5 cards from the 26 red cards “and then” 8 cards from the

26 black cards. We have the andthen flavor because we are mak-

ing 2 choices (red cards and black cards, not one choice with 2
restrictions) and the two choices do not restrict each other in

any way. We saw this type of division more informally in Prob-

lem 3.6.22.

That’s the divide step here: our choice divides into two Short-

hand Question 3.6.3 choices. Now we use the Two Question

Method 3.6.4 to find the right shorthand for each count. Let’s

do the red cards first. Once again, our answers are R? “No” (we

can’t deal any card more than once, regardless of color) and O?

“No” (on what cards we are dealt matters, not what order they

are dealt in) so the shorthand is C(26,5).
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3.8 Counting by the “divide and conquer” method

Problem 3.8.5: Show that there are C(26,8) choices for the 8 black

cards.

All that’s left now is to reassemble. Since our two shorthand

choices are linked by an andthen (or since we need to make

both—in this case that’s all— choices), we multiply the short-

hands and then evaluate to get the answer C(26,5) · C(26,8) =
65,780 · 1,562,275 = 102,766,449,500.

We can draw one very useful lesson from this example.

Preservation of Shorthands 3.8.6: When we alter the param-

eters ` and m of a Shorthand Question 3.6.3 without otherwise

changing what we are choosing, the type of shorthand for the new

count(s) and the old are the same.

In Problem 3.6.17, we were choosing 13 cards from the 52 in the

deck. In the previous example, we changed the ` and m (to 5 cards

from the 26 red cards, and to 8 cards from the 26 black cards). But

we were still choosing cards to make up a bridge hand; and since,

in a bridge hand, repeated cards are not allowed and order does not

matter, the shorthands for these new choices were again combina-

tions.

Preservation of Shorthands 3.8.6 can be a big timesaver, though

you do need to exercise caution in applying it. Even if we’re talking

bridge, if we need to choose suits and not cards, that “otherwise”

comes into play and we’d need to start from scratch. But in many

problems, you’re faced with a series of like choices differing only

in their ` and m. When you are, there’s no need to apply the Two

Question Method 3.6.4 more than once.

Example 3.8.7: How many bridge hands contain 4 red and 9 black

cards?

Solution
Here’s the first of many illustrations of the idea that Short-

hands Remember 3.8.2 and make it easy to apply standard
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3.8 Counting by the “divide and conquer” method

divisions—from the previous problem—to a new situation. All

that’s changed from the previous question is that instead of

5 red and 8 black cards, we have 4 and 9. Exactly, the same

reasoning tell us to divide into these two choices separately,

find the shorthands C(26,4) and C(26,9) by Preservation

of Shorthands 3.8.6, and reassemble by multiplying to get

C(26,4) · C(26,9) = 14,950 · 3,124,550 = 46,712,022,500.

Example 3.8.8: How many bridge hands contain 5 red and 7 black

cards?

Solution
The answer is not C(26,5)·C(26,7). That number is the number

of ways of choosing 5 red and 7 black cards, but these choices

do not give us a bridge hand. There are only 12 cards, not 13 as

required. The number of bridge hands with 12 cards, however,

colored, is 0.

Stupid as this question is, it makes 2 good points. First, always

stay on your toes when doing counting problems. It’s all too easy

to just start calculating without thinking and the result is usually

a brisk slap of palm to forehead. I won’t ask you trick questions

like this one very often in this course, but I know that if I did put

this on a midterm I’d see 43,270,084,000 a lot more often than

0.

Second, and more important, this problem underlines the fact

that even though it looks like there are 2 new numbers on the

previous part (the 5 and 8), there’s really only 1, because the

context—we’re dealing bridge hands—demands that the num-

bers sum to 13.

It’s worth recording this last point.

Conservation of ` andm 3.8.9: When we divide ` choices from

a set ofm possibilities using “andelse”, the number of choices in the

pieces must total ` and the number of possibilities in the pieces

must total m.

1—
1—
2—

a ·· ·· z ? 252 Comments welcome at �̂�

mailto:morrison@fordham.edu


3.8 Counting by the “divide and conquer” method

Example 3.8.10: How many bridge hands contain 3 red cards?

Solution
The answer is not C(26,3). That number is the number of ways

of choosing 3 red cards, but we want a bridge hand and that

calls for 13 cards. Conservation of ` and m 3.8.9 tells us

that we need to pick 10 more cards, and to end up with 3 red

cards these will all need to be black. Having avoided this trap, we

can make an andthen division, apply Preservation of Short-

hands 3.8.6, and, since our Shorthands Remember 3.8.2, mul-

tiply to get the count C(26,3) · C(26,10) = 2,600 · 5,311,735 =
13,810,511,000.

Example 3.8.11: How many bridge hands contain 3 ♥, 4 ♦, 5 ♠ and

2 ♣?

Solution
The only new element in this problem is that instead of divid-

ing it into 2 simpler choices by color, we need to divide into

4 choices by suit: we choose 3 ♥ andthen 4 ♦ andthen 5 ♠
andthen 2 ♣. Since there are 13 cards in each suit, the m will

be 13 in each Shorthand Question 3.6.3. By Preservation

of Shorthands 3.8.6, all the shorthands are combinations and

amoans 3.8.3 tells us to multiply these shorthands getting

C(13,3)·C(13,4)·C(13,5)·C(13,2) = 286·715·1287·78 = 20,527,933,140 .

Example 3.8.12: How many bridge hands contain 6 red cards, 5 ♠
and 2 ♣?

Solution
Here there are 3 simpler choices by (red, ♠ and ♣) and the only

novelty is that the sets into which we have divided the 52 cards

in the deck are not all of the same order. All that’s required is

to keep track of these orders in our choices: m is 26 for the red

cards but 13 for the ♠ and ♣. By Preservation of Shorthands

3.8.6, all the shorthands are combinations and amoans 3.8.3 tells

us to multiply these shorthands getting
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3.8 Counting by the “divide and conquer” method

C(26,6) · C(13,5) · C(13,2) = 230230 · 1287 · 78 = 23,111,868,780 .

Here are a few variants for you to try.

Problem 3.8.13:

i) Find the number of bridge hands with 6 red cards and 7 black

cards.

ii) Find the number of bridge hands with 4 ♥, 4 ♦, 3 ♠ and 3 ♣?

iii) Find the number of bridge hands with 5 hearts, 4 ♣ and 4 ♠.

iv) Find the number of bridge hands with 5 red cards and 4 ♣ and

4 ♠.

v) Find the number of bridge hands with 5 ♣.

vi) Find the number of bridge hands with 4 ♥ and 3 ♦.

There’s one point hidden in this problem that’s worth noting.

Use Empty Pieces as Placeholders 3.8.14: It’s often smart

to include an empty piece in a choice—even when it’s not strictly

needed to get the answer.

This, like Shorthands Remember 3.8.2, makes it easier to work with

multiple variations of a problem by making answers with and with-

out empty pieces look alike. A typical example where this can come

in handy can be seen by comparing the answers to Example 3.8.11

and part iii) of Problem 3.8.13. Choosing 3 ♥, 4 ♦, 5 ♠ and 2 ♣ leads

to the shorthand C(13,3) · C(13,4) · C(13,5) · C(13,2). Choosing 5
♥, 4 ♠ and 4 ♣ leads to the shorthand C(13,5) · C(13,4) · C(13,4).
The first has 4 factors and the second only 3, so we don’t see them

as two variations on a common problem.

We can cure this by mentally changing the second question to ask

for choices of 5 ♥, 0 ♦, 4 ♠ and 4 ♣. Those 0 diamonds are an

empty piece that can be chosen in only C(13,0) = 1 way (and not

0!). Including this empty piece does not affect the numerical an-

swer 657,946,575, but it does let us write the shorthand answer as
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3.8 Counting by the “divide and conquer” method

C(13,5)·C(13,0)·C(13,4)·C(13,4) to match the first answer where

there were no empty pieces.

Problem 3.8.15:

i) Show that there are 11,404,407,300 bridge hands with 4 ♥, 4 ♦,

3 ♠ and 2 ♣.

ii) Show that there are 16,726,464,040 bridge hands with 4 ♥, 3 ♦,

3 ♠ and 3 ♣.

I hope you’re find all this easy enough to be a bit boring by now.

Seems like we’ve done a lot of huffing and puffing to answer some

pretty easy questions. Before you go on, please read over the previ-

ous problem (whether or not you attempted it—the answers given

are correct) and use it to answer the following even easier question:

“Which suit distribution is more common in bridge, 4–4–3–2 or

4–3–3–3?”

Do I hear any “Well, duh!”s? Good, because there are more than twice

as many 4–4–3–2 hands as there are 4–3–3–3 hands. It’s surprises

like this that make counting so much trickier than it at first seems.

Just when you’re over your fear of climbing and ready to dash to the

top of the ladder there’s a rung missing.

How can we simultaneously have half again as many hands dis-

tributed (4♥,3♦,3♠,3♣) as (4♥,4♦,3♠,2♣) (precisely, 1.47 times

as many) and yet less than half as many 4–3–3–3 hands as 4–4–3–2
hands? The answer is that these ratios arise from answering two dif-

ferent questions.

The difference is subtle but (clearly) critical. In the first question, we

specify the number of cards in each suit. In the second, we specify in

the number of cards in 4 suits, but we do not specify which suit has

each number of cards. We know how to answer the first question—

we did so in Example 3.8.11 and Problem 3.8.15—and in a moment

we’ll see it’s not so hard to use this to answer the second question.

But first, let me draw a moral:
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3.8 Counting by the “divide and conquer” method

Phillip’s Law 3.8.16: Eternal alertness is the price of accurate

counting2.

Phillip’s Law 3.8.16 is the Murphy’s Law of counting problems. The

moment your attention flags and you stop paying attention to small

differences is when they’ll matter and your counts will be wrong. Go

back and double check your answer to Problem 3.8.13.ii)

OK, let’s count those distributions, say the 4–3–3–3 distribution as

an first example. We’re almost there. Amongst all the bridge hands

with this distribution are the 16,726,464,040 with 4 ♥, 3 ♦, 3 ♠ and

3 ♣. The others just have 4 cards in a different suit than ♥ and

there are 4 choices for that 4-card suit. So choosing a 4–3–3–3 hands

amounts to choosing a suit andthen choosing a bridge hand with 4
cards in the chosen suit and 3 in each of the others. By amoans 3.8.3,

the number of choices is 4 · 16,726,464,040 = 66,905,856,160.

With a bit more effort, the same approach handles the 4–4–3–2 distri-

bution. There are 2 wrinkles. We need to choose not 1 but 2 suits to

have 4-cards andthen we also need to choose which of the remaining

suits will have 3 cards and which 2. This last choice didn’t come up

with the 4–3–3–3 distribution because we “number of cards” didn’t

distinguish between the three 3 card suits.

First let’s choose the 4 card suits. This is a Shorthand Question

3.6.3—we are choosing 2 suits from 4—so we need to apply the Two

Question Method 3.6.4. The answers are no to both R? (we need

2 different 4 card suits) and to O? (for example, 4 ♥ and 4 ♠ gives

the same distribution as 4 ♠ and 4 ♥), so the shorthand is C(4,2).
Now there are 2 suits left from which we must choose the 3 card

suit so the answer3 is 2. We multiply these, finding this time that

2This law is named for Wendell Phillips whose “Eternal vigilance is the price of
liberty” it paraphrases.

3If we had been very picky and used the Two Question Method 3.6.4, we’d
have found the shorthand C(2,1) by Preservation of Shorthands 3.8.6. In future,
when dealing with Easy Shorthands 3.6.7, I’ll just give the count and let you dot the
shorthand i’s.
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3.8 Counting by the “divide and conquer” method

there are C(4,2) · 2 = 6 · 2 = 12 choices for the suits4. So there are

12 · 1,404,407,300 = 136,852,887,600 4–4–3–2 bridge hands.

Is there a systematic way to make the kinds of choices that just came

up? The bad news is that the answer is yes. Worse, there’s a formula

for the number of choices, a big ugly formula (If you want you can

look it up and convince yourself. It’s called the multinomial formula).

The good news is that I’m not going to explain the system to you;

I’m not even going to write down the multinomial formula. We don’t

really need it, as the example of the two distributions shows.

All we used to find those counts was our Divide and conquer

counting strategy 3.8.1. That’ll work equally well with the few

other multinomial counts we’ll need to deal with. More generally,

counting is a very complex craft and there are literally thousands

of other formulas, like the multinomial formula, that can be used to

“dry clean” specific problems. We’re not going to learn any of them.

Whatever we need to count, we’ll be able to handle using what we’ve

already learned and our Divide and conquer counting strategy

3.8.1, and most of the time we’ll just be dumping the counts in and

pressing “normal wash”. We’ll just need to remember Phillip’s Law

3.8.16 and be willing to do the odd piece of hand laundry.

Problem 3.8.17:

i) How many ways are there to choose a pair of suits (like the 2 red

suits)?

ii) How many ways are there to divide the suits into 2 pairs of suits

(like the 2 red suits and the 2 black suits)?

Hint: The answers to the two parts are not the same.

One more word of advice about what’s involved in learning to count.

The biggest benefit of getting lots of practice in counting is that you

4This, by the way, is another typical case in which the Multiplication principle
3.7.1 can be used even though the second set from which we choose depends on
the first choice made: if we chose ♠ and ♥ as our 4-card suits, the second choice is
between ♣ and ♦; if we chose ♠ and ♦, it’s between ♣ and ♥, and so on. Again, I won’t
mention this again but I encourage you to look out for it.
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3.8 Counting by the “divide and conquer” method

develop the ability to recognize that an idea you’ve used in one con-

text can be applied in another. Counting really becomes easy when

you can just about always see that “this one is really just like . . . ”.

You can’t achieve this by memorizing cases because, as the bridge

hand examples we’ve already seen should make clear, even sticking

close to a single topic, there are just too many variations and wrin-

kles to codify.

See Similarities, not Differences 3.8.18: When a counting

problem involves a new situation, focus on the ways that it’s like

problems you already understand, not the ways that it’s different.

Use these similarities as your guide in the Divide and conquer

counting strategy 3.8.1. They’ll let you apply divisions, short-

hands and other ideas you already know to the new situation.

Here are a few more bridge counts for you to practice with. While

all the ideas are in the examples above, I have tried to make these

problems a bit different and have provided pointers to the examples

that share the same idea.

Problem 3.8.19:

i) How many bridge hands have no red cards? Hint: This is almost

the same as Example 3.8.10.

ii) A bridge hand with no cards in a suit is said to have a void in

that suit. How many bridge hands have a void in hearts?

Problem 3.8.20: Let us suppose that there are 59 Democrats and

41 Republicans in the 100 member US Senate. The Senate Budget

Committee has 5 members.

i) How many ways can the budget committee be chosen?

ii) How many ways can the budget committee be chosen if it must

consist of 3 Democrats and 2 Republicans?

Problem 3.8.21: Once again, let us suppose that there are 59
Democrats and 41 Republicans in the 100 member US Senate, but

this time let us suppose that the Senate Budget Committee has a

Chair and 4 other members.
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3.8 Counting by the “divide and conquer” method

i) How many ways can the budget committee be chosen?

Solution
What’s different from i) of Problem 3.8.20 where you should

have got the answer C(100,5) = 75,287,520? We can now distin-

guish Budget Committees with the same 5 members but differ-

ent Chairs. To handle this, we need a new way of dividing. The

solution is both obvious and widely applicable. If part of a choice

is special in some way, make that part of the choice separately.

Here, we need to choose the chair andthen the other members

separately.

There are 100 choices for the chair (by Easy Shorthands 3.6.7).

Then we need to choose the other 4 members but from 99 Sen-

ators (not 100) because we’ve already picked a Chair and the

choice of committee members is one where R? (and O?) are both

“No”. So there are C(99,4) choices for the members and in all

100 · C(99,4) = 376,437,600. As a check, notice that each com-

mittee in Problem 3.8.20.i) turns into 5 committees here (each

of the 5 members can be singled out as chair) and the answer

indeed differ by a factor of 5.

ii) How many ways can the budget committee be chosen if the

chairman must be a Democrat?

iii) How many ways can the budget committee be chosen if the

chairman must be a Democrat and 2 of the other members must

come from each party?

Next let’s look at some problems that show the most common types

of orelse division. The most common way orelse divisions arise

is when we know how to count choices given a specific value for a

parameter (usually the ` in some Shorthand Question 3.6.3) but

the problem only gives us inequalities for that parameter.

Divide Inequalities Using orelse 3.8.22: If you encounter

words involving inequalities—like “at least”, “at most”, “fewer than”,

“no more than” and so on, replace the inequalities with with several
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3.8 Counting by the “divide and conquer” method

exact values connected by orelse.

Example 3.8.23: To prepare for the orelse questions below, lets

first ask: How many ways can a 6 member committee be chosen if it

must contain exactly ` Democrats?

Solution
In analogy with Example 3.8.10, choosing ` Democrats does not

specify a complete committee, but we can fix this by adding the

right number of Republicans. If, for example, we take ` = 2, then

we’d divide into choosing 2 of 59 Democrats (C(59,2) choices)

andthen 6 − 2 = 4 of 41 Republicans (C(41,4) choices); multi-

plying we’d get (C(59,2) · C(41,4)).
The general case works identically: we’d divide into choosing `
of 59 Democrats (C(59, `) choices) andthen 6− ` of 41 Republi-

cans (C(41,6− `) choices). Multiplying we get:

C(59, `) · C(41,6− `) .

This is a typical example of the principle that Shorthands Re-

member 3.8.2. It also illustrates the advice to Use Empty Pieces

as Placeholders 3.8.14. If ` happens to equal 0, then we’ve in-

cluded an empty set of Democrats with count C(59,0) so we’ll

always have a “Democrat factor” on the left. The same applies

(with no Republicans) when ` = 6 i.e. 6− ` = 0.

Example 3.8.24: Let us suppose that there are 59 Democrats and

41 Republicans in the 100 member US Senate. The Senate Judiciary

Committee has 6 members.

i) How many ways can the budget committee be chosen if it must

contain at least 3 Democrats?

Solution
The words “at least” in the question tell us that we need to di-

vide using orelse. More specifically, Divide Inequalities Us-

ing orelse 3.8.22 tells us that we should replace the inequality

“at least 3 Democrats” with several simpler pieces involving an

exact number of Democrats.
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3.8 Counting by the “divide and conquer” method

Since there are 6members on the Committee, at least 3 Democrats

is equivalent to exactly 3 Democrats orelse exactly 4 Democrats

orelse exactly 5 Democrats orelse exactly 6 Democrats. There’s

no real need to say “exactly” each time. I did it here to emphasize

how we were implementing Divide Inequalities Using orelse

3.8.22 but in future we’ll omit it.

Each of the counts with an exact number of Democrats is the

answer to Example 3.8.23 for the corresponding value of `. So

we can just plug into the formula given in that example. Since

they are connected by orelses, amoans 3.8.3 tells us to sum

these contributions to get(
C(59,3) · C(41,3)

)
+
(
C(59,4) · C(41,2)

)
+
(
C(59,5) · C(41,1)+ C(59,6)

)
·
(
C(41,0)

)
= 970,068,560

Note how the empty piece at the end is needed to maintain the

pattern of the terms in the sum. The parentheses around the

products are not needed (by pogemdas 1.1.5) by I included them

to emphasize that we want to compute the number of commit-

tees with each distribution first, and then sum up.

There’s one other point we haven’t addressed. We’re only al-

lowed to use orelse to connect two sets that we know are dis-

joint. Of course, the sets above don’t intersect because you can’t

have two different numbers of Democrats on a committee, so

we’re in good shape here. The same observation applies quite

generally whenever we rephrase inequality conditions as several

exact values.

ii) How many ways can the budget committee be chosen if it must

contain at least 3 Democrats and at least 2 Republicans?

Solution
Here it’s easier to make the exact choices specify the number

from both parties. The inequalities “at least 3 Democrats” and

“at least 2 Republicans” are equivalent to (3 Democrats and 3
Republicans) orelse (4 Democrats and 2 Republicans). Here we

get
(
C(59,3) · C(41,3)

)
+
(
C(59,4) · C(41,2)

)
= 719,749,260.
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3.8 Counting by the “divide and conquer” method

iii) How many ways can the budget committee be chosen if it must

contain at least at least 1 Republican?

Solution
We could handle this like the previous two parts. At least 1 Re-

publican is equivalent to exactly 1 Republican orelse exactly

2 Republicans orelse exactly 3 Republicans orelse exactly 4
Republicans orelse exactly 5 Republicans orelse exactly 5 Re-

publicans orelse exactly 6 Republicans.

If you think this looks a bit tedious to evaluate, I agree and for-

tunately there’s a better way. Instead of saying the committees

we want to include, let’s ask what committees we want to ex-

clude. That’s easy: those with 0 Republicans. In other words we

can express the committees we are trying to count as all choices

of 6 members of the Senate butnot choices of 6 Democrats. The

former count is C(100,6) (just change the 5 to a 6 in part i) of

Problem 3.8.20) and the latter is C(59,6) (change the 100 Sena-

tors to 59 Democrats) and then amoans 3.8.3 tells us to take the

difference to obtain

C(100,6)−C(59,6) = 1,192,052,400−45,057,474 = 1,146,994,926 .

Problem 3.8.25: Check this answer by using the orelse division

above.

iv) How many ways can the budget committee be chosen if it must

contain at least at least 2 Republicans?

v) Are there more committees with an even or an odd number of

Republicans?

Solution
This problem is an example of a more general division using

orelse. The even and odd conditions do not involve inequalities,

but we can nonetheless use orelse to re-express them in terms

of several simpler counts with an exact number of Republicans.

An odd number of Republicans is equivalent to 1 Republican

orelse 3 Republicans orelse 5 Republicans. This gives
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3.8 Counting by the “divide and conquer” method

(
C(59,5) · C(41,1)

)
+
(
C(59,3) · C(41,3)

)
+
(
C(59,1) · C(41,5)

)
= 596,022,248

Problem 3.8.26: Show that the number of committees containing

an even number of Republicans is 596,030,152 in two ways. First,

add up the numbers of committees with each even number of Re-

publicans. Second, take a difference to check your first answer.

So there slightly more committees with an even number of Re-

publicans than with an odd number.

Now a few problems dealing with coin tosses that illustrate the prin-

ciple See Similarities, not Differences 3.8.18 because the ideas

from the preceding problems work in them too.

Problem 3.8.27: This problem uses two counts from Problem

3.6.14, Example 3.6.15 and Problem 3.6.16.

a. We view a sequence ofm tosses of a coin as a sequence of length

m in the 2-letter alphabet H and T, and there are 2m of these.

b. To determine a sequence of m tosses of a coin that contains

exactly ` Hs, we need to choose the `-element subset of the

m tosses on which a head comes up, and this can be done in

C(m,`) ways.

Use these fact to find the following counts:

i) The number of ways of obtaining exactly 2 heads in 8 tosses.

ii) The number of ways of obtaining at most 2 heads in 8 tosses.

iii) The number of ways of obtaining at least 6 heads in 7 tosses.

iv) The number of ways of obtaining between 48 and 52 heads in

100 tosses.

v) The number of ways of obtaining at least 1 head in 100 tosses.

vi) The number of ways of obtaining at most 98 heads in 100 tosses.

Problem 3.8.28: Here are a couple of slightly harder variants:

i) Is the number of ways of getting an even number of heads when

you toss a coin 7 times, greater than, equal to, or less than the num-

ber of ways getting on odd number of heads?
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3.8 Counting by the “divide and conquer” method

ii) Is the number of ways of getting an even number of heads when

you toss a coin 8 times, greater than, equal to, or less than the num-

ber of ways getting on odd number of heads?

More Challenging Examples

Challenge 3.8.29: Here are two counts that I pose as challenges.

i) Is the number of ways of getting an even number of heads when

you toss a coin 777 times, greater than, equal to, or less than the

number of ways getting on odd number of heads?

ii) Is the number of ways of getting an even number of heads when

you toss a coin 888 times, greater than, equal to, or less than the

number of ways getting on odd number of heads?

These are examples of problems that you’d be able to solve if some-

body put a gun to your head and threatened to shoot you unless

you worked out the answer, but that you’d never try to solve un-

less somebody put a gun to your head and threatened to shoot you

unless you worked out the answer. To answer the problem—say for

777—we just need to add up the numbers C(777, `) first for every

odd ` between 1 and 777, and then for every even ` between 0 and

776, and finally compare the totals. In principle, these problem are

no harder than those in Problem 3.8.28. But “Not”, to quote Dana

Carvey in his Bush XLI mode, “gonna happen.”

However, the answers to Problem 3.8.28 suggest that the two num-

bers might be equal and, if so, maybe there’s an easier way. Maybe

we can see they’re equal without ever having to total them up. For

an odd m like 777, it’s quite easy to see this. For a clue, first answer

these questions.

i) Compare the number of ways of ways are there of obtaining 7
heads in 777 and the number of ways of obtaining 770 heads in 777
tosses.
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3.8 Counting by the “divide and conquer” method

ii) Compare the number of ways of ways are there of obtaining 8
heads in 777 and the number of ways of obtaining 769 heads in 777
tosses.

It’s no accident that the two counts are the same in each case. Equal-

ity is guaranteed by Symmetry of Binomial Coefficients 3.4.23

because 770+ 7 = 669+ 8 = 777. In general we know that the num-

ber of ways of getting ` heads in 777 tosses equals the number of

ways of getting 777− ` heads because C(777, `) = C(777,777− `).
i) Explain why this tells us that the number of ways of getting an

even number of heads when you toss a coin 777 times equals the

number of ways getting on odd number of heads. Hint: If ` is even,

what can you say about 777− `?

ii) Show that the number of ways of getting an even number of

heads when you toss a coin m times equals the number of ways

getting on odd number of heads whenever m is an odd number.

This approach breaks down when m is an even number like 888 be-

cause if ` is even—say ` = 10, then so is m − `—here m − ` = 878.

Fortunately, there’s an even easier way to hand both odd and even

m. We can bootstrap our way up, one m at a time. The key remark is

that:

Every sequence S of length m in the letters H and

T can be written as S′H orelse S′T for a unique

sequence S′ of length (m− 1) in H and T.

The sequence S′ is just what’s left after you cross out the last letter

in S. What’s more, either S′ is a sequence E of length (m−1) with an

even number of Hs orelse its a sequence O of length (m − 1) with

an odd number of Hs. So we can write each sequence S of length m
as a sequence EH orelse as a sequence ET orelse as a sequence

OH orelse as a sequence OT.

Use this to show that if the number of sequences of length (m − 1)
with an even number of Hs equals the number with an odd number

of Hs (that is, if the number of Es equals the number of Os), then the
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3.8 Counting by the “divide and conquer” method

number of sequences of lengthm with an even number of Hs equals

the number with an odd number of Hs. What do you conclude for

m = 888?

Challenge 3.8.29 is a good illustration of why mathematics if often

described as the art of being “intelligently lazy”.

Think twice, calculate once 3.8.30: This is the mathemati-

cians version of the old carpenter’s maxim “Measure twice, cut once”.

In mathematics, it’s not lumber that you might waste, it’s your own

time and effort. Before committing to any potentially lengthy calcu-

lation, it’s always worth asking yourself if there isn’t an easier way.

If you make this a habit, you’ll be surprised how often a bit of

thought can take the place of a lot of arithmetic. If no inspiration

strikes, you can always get out your TI-8x, but if you won’t be struck

by inspiration if you don’t look for it.

Here’s one more harder problem, followed by a few hints to guide

you to a solution:

Problem 3.8.31: Show that 32,427,298,180 bridge hands have a

void in some suit?

In part ii) of Problem 3.8.19, we computed the number of hands

with a void in ♥. We need to choose 13 of the 39 non-♥ andthen

0 of the 13 ♥. This gives C(39,13) · C(13,0) = 8,122,425,444. A

hand with a void needn’t have a void in ♥ but it ,must have a void in

one of the 4 suits so why isn’t the answer just 4 · 8,122,425,444 =
32,489,701,776?

The answer is because the larger number counts some hands more

than once. This kind of difficulty—counting all the things you want

but counting some of them more than once—is called overcounting.

It’s a source of a great many pitfalls in counting problems and it’s

often quite a nuisance to get around it.

The cause is almost always using orelse where eitherorboth is

correct: that is, adding several counts as if the sets they stood for
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3.8 Counting by the “divide and conquer” method

were disjoint when they are not. Here, for example, the set of hands

with a void in ♥ and the set with a void in ♠ are not disjoint. Any

hand that contains only ♦ and ♣ (and there are a lot!) is in both sets

and so is counted twice in that 32,489,701,776.

How do we get around such problems? We could avoid the over-

counting if we knew the number of hands with a void in ♥ and no

void in any other suit. Lets say that such a hand has an onevoid in ♥.

Now the sets of hands with a onevoid in ♥ and the set with a onevoid

in ♠ are disjoint.

However, this creates a new problem, undercounting. Now, we’ve en-

tirely omitted to count hands that have only ♦ and ♣, or in general

that have voids in more than one suit. The first part is easy.

Problem 3.8.32: Show that C(26,13) bridge hands contain only ♦
and ♣

But can you see what will happen if we try to use this count to find

the number of bridge hands that have voids in more than one suit?

Right, we’ll overcount one-suiters like the hand that consists of all

13 ♣. This hand will be counted 3 times: once for containing only ♦
and ♣, once for containing only ♥ and ♣, and once for containing

only ♠ and ♣.

The right solution is usually not to work, as we have just done, from

the more common to the special. Instead we try to count the most

special objects—here the one-suiters—first. Then we try to use work

our way up step by step. Here’s how to carry this out for hands with

voids.

Problem 3.8.33: We start from the obvious remark: each suit gives

rise to just 1 one-suiter, the hand containing the 13 cards in that

suit.

i) Show that there are 4 hands that have a threevoid (that is, a void

in exactly 3 of the 4 suits). Of course, these are just one-suiters.
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3.8 Counting by the “divide and conquer” method

ii) Use this to show that there are C(26,13) − 2 bridge hands that

contain only ♦ and ♣ but are not one-suiters. Hint: Use the ns in

amoans 3.8.3.

iii) Show that there are C(4,2) ·
(
C(26,13)− 2

)
two-suited bridge

hands—that is, hands that contain cards from only 2 suits but that

are not single suiters. Hint: How many ways are there to choose the

2 suits?

iv) How many bridge hands have a twovoid (that is a void in exactly

2 of the 4 suits)? Hint: You have already computed this answer above.

v) Show that there are C(3,2) ·
(
C(26,13)− 2

)
two-suited bridge

hands that contain no ♠. Hint: How many ways are there to choose

the 2 suits if neither can be ♠?

vi) Show that there are 3 one-suited bridge hands that contain no♠.

Hint: How many ways are there to choose the 1 suit if it cannot be

♠?

vii) How many bridge hands contain no ♠ and are one-suiters

orelse two-suiters? That orelse shows what we gained by work-

ing from the bottom up: we avoided overcounting.

viii) How many bridge hands contain no ♠?

ix) How many bridge hands contain no♠ and are neither one-suiters

nor two-suiters? These hands contain cards from each of ♥, ♦ and ♣
but no spades. That is they have a onevoid in spades. Hint: Reassem-

ble the two previous answers.

x) How many bridge hands have a onevoid in some suit?

xi) How many bridge hands have a onevoid orelse a twovoid

orelse a threevoid? Again, all this work was to be able to say orelse

correctly.

xii) How many bridge hands have a void? Hint: Although the ques-

tion does not say it, “have a void” means “have a void in at least 1
suit”.

Believe it or not, this is the easy way to count voids. Here’s the hard

way as a check on our calculations.
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Examples with Permutations and Powers

At this point, you may be wondering why we included the sections on

Section 3.3 and Section 3.5, since the corresponding shorthands,

powers and permutations, have hardly appeared. While it will re-

main true that combinations arise most often, here are some typical

examples of questions that lead to the other shorthands.

First a very easy example, similar to Problem 3.6.23, that uses only

the obvious, direct divisions.

Example 3.8.34: A local phone number consist of 7 decimal digits

from 0 to 9.

i) How many “raw” local phone numbers are there?

Solution
We need to choose 7 digits from a set of 10 possibilities. The an-

swer to “Are Repetitions allowed?” is “Yes”—taxi companies and

pizzerias especially like such repetitions—so phone numbers are

sequences and there are 107 = 10,000,000 of them.

ii) How many “raw” local phone numbers have no repeated digits?

Solution
We still need to choose 7 digits from a set of 10 possibilities but

withe the difference that now R? is “No”. So we need to ask O? to

which the order is yes, either by visualizing how we use phone

numbers (we always dial the digits in a phone number in the

same order) or by recalling R Implies O 3.6.6. So such a phone

number is a list and the shorthand is P(10,7) = 604,800.

iii) A “real” phone number cannot begin with a 0 or a 1 which are

reserved as escapes to long distance services. How many “real” local

phone numbers are there?

Solution
To handle the special conditions on the first digit,we pick it sep-

arately. So we want to first pick 1 digit butnot 0 or 1, possible in

10− 2 = 8 ways, andthen 6 more digits, possible in 106 ways by
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Preservation of Shorthands 3.8.6 since we are again picking

digits. In all, we get 8 · 106 = 8,000,000 “real” phone numbers.

Problem 3.8.35: Here are some local phone number variants for

you to work yourself.

i) How many “real” local phone numbers have no repeated digits?

Hint: The answer is not 8 · P(10,6).
ii) How many “real” local phone numbers are even?

iii) How many “raw” local phone numbers use only odd digits?

iv) How many “real” local phone numbers use only odd digits?

v) How many “real” local phone numbers use only distinct odd dig-

its?

Now let’s roll a few dice. This is a lot like tossing coins except that

each roll gives us 6 rather than 2 possibilities. However, while we

picture tossing a single coin several times in succession, we usu-

ally want to think of rolling several dice at the same time. To keep

the various rolls straight, we’ll imagine that each die has a different

color, and when you visualize rolls in counting them, you should try

to see dice of different colors. In these problems, See Similarities,

not Differences 3.8.18 applies again and again.

Example 3.8.36: In this example, we’ll consider rolls of 3 dice.

i) How many different ways can the 3 dice come up?

Solution
We are choosing 3 numbers from the possibilities 1 through 6
and R? is “Yes” because there’s no reason two or more of the

dice can’t come up the same way. So the shorthand is 63 = 216.

This is reminiscent of Example 3.8.34

Problem 3.8.37: Show that the number of ways that m dice can

come up is 6m.

ii) How many of these rolls have no repeated number?

Solution
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As in Example 3.8.34, we have now made the answer to R? a

“No” but, by R Implies O 3.6.6, the answer to O? is still a “Yes”

so there are P(6,3) = 120 possibilities.

iii) On how many rolls do exactly 2 dice come up 6?

Solution
This reminds us of trying to count the number of coin tosses

where a fixed number of heads appears. We have replaced coins

by dice and H by 6 but in both cases we are looking for sequences

with a fixed number of a specific letter. The idea that worked for

Hs—ask what subset of the positions in the sequence (for coins,

which tosses and for dice, which colors) the letter occupies—is

again effective.

Just in that word “subset” See Similarities, not Differences

3.8.18 has paid off: by remembering that what we chose was a

subset we can bypass the Two Question Method 3.6.4 (though

we can check that the answers to R? and O? are both “No”) and

predict that the shorthand will be the combination C(3,2). The

only difference is that, whereas in tossing coins, we knew that

any toss that wasn’t an H had to be a T, here we only know that

the dice that don’t come up 6 come up with a number from 1
to 5. We still have to choose that number which we can do in 5
ways. Since we need to know which tosses cam up 6 andthen

what number came up on the other toss, there are C(3,2) · 5 =
3 · 5 = 15 possibilities.

iv) On how many rolls does exactly 1 dice come up 6?

Solution
This is almost the same as the previous part. We need to choose

a subset of 1 of the 3 tosses to come up 6 which we can do in

C(3,1) ways, and then decide how many possibilities there are

for the other 2 tosses. This last involves making 2 choices from

the numbers 1 to 5.

Because the ` = 2 here, we no longer have one of the Easy

Shorthands 3.6.7 and must apply Two Question Method
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3.8 Counting by the “divide and conquer” method

3.6.4. But all that’s changed from i) is that ` = 2 and m = 5,

so the answers remain “Yes” to both R? and O? and we get the

shorthand 52. So there are C(3,1) · 52 = 3 · 25 = 75 such rolls.

We can help ourselves see a pattern that will be useful in sim-

ilar problems by going back and rewriting the answer to iii) as

C(3,2) · 51.

Problem 3.8.38: Show that the number of rolls of m dice when

any given number (like the 6 above) comes up exactly ` times is

C(m, l)∗ 5(m−l).
v) On how many rolls of 3 dice do no dice come up 6 and on how

many do all the dice come up 6?

Solution
These are just the cases m = 3, ` = 0 and m = 3, ` = 3 of

the formula so we get C(3,0) · 53 = 125 and C(3,3) · 50 = 1
respectively.

As a check, the number of 6s on any roll of 3 dice is exactly

0 orelse exactly 1 orelse exactly 2 orelse exactly 3 which

predicts that 125+ 75+ 15+ 1 should, as it does, total 216.

I hope this example has reminded you of the game Chuck-a-luck

(and its variants like Sic Bo). We can now justify, at least informally,

the claim made there that, “On average, $ 17
216 ' 0.07870370370 or

roughly 7.87 cents for every dollar bet.”

Imagine that you played chuck-a-luck 216 times, betting on 6
each time—I hope its clear that what number you bet makes no

difference—and that each of the 216 possible rolls came up exactly

once. Of course, this would essentially never happen in real life but

it models perfectly something we’ll study later called an expected

value.

How much would you win or lose? Well, on 125 rolls you’d get no 6
and lose your $1, on 75 you’d get one 6 and win $1, on 15 you’d get

two 6s and win $2 and on 1 you’d get three 6s and win $3. You’d net
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3.8 Counting by the “divide and conquer” method

$(−125+ 75+ 2 · 15+ 3 · 1) = −$17: in other words, you lose 17 of

the 216 dollars you bet as claimed.

We can also check the argument that you’ll break even playing chuck-

a-luck. This, remember, was based on the idea that you expect to see,

on average, 12 a 6 come up every time you roll 3 dice. The number of

6s we’d see in our 216 rolls is 75 + 2 · 15 + 3 · 1 = 108 = 1
2216 as

predicted.

So what gives here? The answer is that you’d break even if, instead of

getting your bet back plus $1 for each 6 that came up, you received

$2 for each 6 that came up. Your bets $216 would just match your

winnings $2·(75+2·15+3·1) = $216. Once it’s been explained, the

difference is so obvious that it’s hard to remember that we couldn’t

see at first. The proof that people can’t see the difference is that

chuck-a-luck remains a widely popular betting game.

Here are a few easy dice problems for you to try.

Problem 3.8.39:

i) If we roll 5 dice, how many ways can we have exactly 4 dice come

up 3?

ii) If we roll 5 dice, how many ways can we have exactly 2 dice come

up 3?

iii) If we roll 5 dice, how many ways can we have no repeated num-

ber appear?

Problem 3.8.40:

i) If we roll 7 dice, how many ways can we have exactly 3 dice come

up 2?

ii) If we roll 7 dice, how many ways can we have exactly no die come

up 2?

iii) If we roll 7 dice, how many ways can we have no repeated num-

ber appear?

Problem 3.8.41: The most common dice games involve 2 dice and

the bets concern the total of the 2 numbers on the dice. Make a table
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showing the number of rolls that yield each of the possible totals

from 2 to 12 Hint: Imagine that we have, as usual a red die and a

blue die. If we want a total of t and the red die comes up r then the

blue die must come up t − r : i.e. the red die determines the blue one.

Thus at most 6 rolls can give any total, but there are usually fewer

because we must also have 1 ≤ t − r ≤ 6.

The next problem is conceptually straightforward, but the short-

hands that arise are too big for your calculator. Some are too big

even to write down so I have given floating point approximations.

Example 3.8.42: Let’s assume that the Census Bureau’s estimate

that there are 227,719,424 Americans citizens is exactly right and

that each citizen has a distinct social security number. You are build-

ing a spreadsheet with 18,000 rows, each of which will contain data

about one such American. In the first column of each row of your

spreadsheet you enter a social security number chosen at random

from the Census Bureau’s master list.

i) How many different first columns can the spreadsheet have?

Solution
We are making 18,000 choices from 227,719,424. To determine

the flavor,we need to ask “Are Repetitions allowed?” The clue

in this question—one that be very common when we move on

to probability—is the phrase “at random”. What this means is

that each time a choice is made each of the 227,719,424 so-

cial security numbers is equally likely to be picked; in particu-

lar, numbers already chosen may be chosen again. So the first

column of our spreadsheet is a sequence and the shorthand is

22771942418000 ' 0.158993449964× 10150434. This number has

150,434 digits and takes up 46 pages—see for yourself—so I

won’t write it down here.

ii) In how many of these first columns, are all 18,000 social security

numbers in the first column different?

Solution
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3.8 Counting by the “divide and conquer” method

Now the answer to R? is “No” but, by R Implies O 3.6.6, the an-

swer to O? is still a “Yes” so the shorthand is the permutation

P(227719424,18000) ' 0.780603324655 · 10150433. This also

has over 150,433 digits but I did not put in a file.

iii) In how many of these first columns, is there at least one social

security number in two or more different rows?

Solution
This asks for those first columns that are answers to i) but

not to ii) so amoans 3.8.3 tells us to take the difference

22771942418000 − P(227719424,18000) ' 0.809331174981 ·
10150433.

iv) Which are more common, those first columns with all social se-

curity numbers different or those with at least once social security

number duplicated?

Solution
We’re asking which is bigger, the answer to ii) or to iii). There

both big, but the they have the same number of digits (the same

exponent) and the former starts with a 7 while the latter starts

with an 8. So there are more with a duplicate somewhere.

Did you recognize this problem? These are the counts that under-

lie AIG gives back: a fairy tale with a moral. The chance that

someone will win two or more million dollar prizes must be more

than 50% because the answer to part iv) is that columns with dupli-

cates are more common. When we’ve defined equally likely outcome

probabilities, we’ll see that that chance is the ratio of the number of

first columns with duplicates to the total number of first columns.

This gives

22771942418000 − P(227719424,18000)
22771942418000

' 0.809331174981 · 10150433
0.158993449964× 10150434 '

0.809331174981
1.58993449964

' 0.50903428737 .

as was claimed.

Here’s a variant you can calculate that deals with a group of 23 Army

recruits all born in 1991. Before working it, would you guess that the
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chance that 2 recruits in such a group share the same birthday is

less than 10% or more than 10%?

Problem 3.8.43: At an Army induction ceremony on 2009, the pre-

siding Sergeant has a chart of 23 recruits, all born in the 1991, show-

ing their names (in alphabetical order) and their birthdays:

i) How many different ways can birthday column of the chart be

filled?

ii) In how many, are all 23 birthdays different?

iii) In how many, are there at least two recruits with the same birth-

day?

iv) Which is more likely, that all 23 recruits will have different birth-

days, or that at least one pair will have the same birthday?

Here are a few problems that introduce some common applications

of counting orderings.

Example 3.8.44: At a graduation ceremony, 9 dignitaries—5women

and 4 men—are to be seated in 9 chairs in the font row on the

podium.

i) How many different seating arrangements are possible?

Solution
We can think of this as making 9 choices—one for each chair—

from the set of 9 dignitaries. Repetitions are not allowed (we

can’t put the same person in more than one chair) and order

matters (we can tell what chair is assigned to which person by,

say, counting in from the left) so the shorthand is the permu-

tation P(9,9) = 362,880. More directly, what we are doing is

choosing an ordering of the 9 dignitaries (from left to right, by

seat), and by Ordering and Factorials 3.5.23, this can be done

in P(9,9) ways.

ii) How any arrangements are possible with 5 women all seated to

the left of the 4 men?

Solution
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The condition divides this into two problems like the preceding

one. Seat (or order) the 4 men in the 4 left seats, which can be

done in P(4,4) ways, andthen seat the 5 women in the 5 right

seats, possible in P(5,5) ways. Reassembling there are P(4,4) ·
P(5,5) = 2,880 ways.

iii) How any arrangements are possible with 5 women all seated to-

gether and the 4 men all seated together?

Solution
This is almost the same as the preceding part, but we now also

need to choose which sex to put on the left and which to put on

the right. This amounts to ordering 2 sexes, possible in P(2,2) =
2 ways, so there are P(2,2) · P(4,4) · P(5,5) = 5,760 seatings.

iv) How any arrangements are possible with 5 women are all seated

together (but the 4 men are not necessarily all be seated together)?

Solution
Once again, what we need to figure out is how many ways there

are to allocate blocks of seats to each sex. For each of these, we

can fill the men’s and women’s blocks in P(4,4) · P(5,5) ways.

Everything is determined once we know how many men are to

the left of the block of 5 women? If, for example, there are 3,

then the seating pattern is M M M W W W W W M. This number

can be between 0 and 4 inclusive, so overall there are 5 ·P(4,4) ·
P(5,5) = 17,400 seatings

v) How any arrangements are possible with the women and men

alternated (no woman is seated next to a woman and no man next to

a man)?

Solution
Here there’s only a single pattern by sex—W M W M W M W M

W—so there are again P(4,4) · P(5,5) = 2,880 seatings.

Problem 3.8.45: At a graduation ceremony, 9 dignitaries—5women

and 4men—are to be seated in the font row on the podium. The mid-

dle seat is reserved for the University President. Answer the ques-
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tions in Example 3.8.44, assuming in addition that the middle seat

is reserved for the University President and:

a. the President is a woman.

b. the President is a man.

Problem 3.8.46: Suppose you have a small bookshelf that contains

your 3 favorite books by each of your 4 favorite authors.

i) How many ways are there to choose 4 of these books?

ii) How many ways are there to choose your first through fourth

favorite books?

iii) How many ways are there to choose 1 book by each of the 4
authors?

iv) How many ways are there to line up the books on the shelf?

v) How many ways are there if the books by each author are kept

together?

Problem 3.8.47: A dining club consisting of 12 (heterosexual) mar-

ried couples meets each week for an ethnic meal. The meal is cooked

by a team of chefs consisting of 3 male and 4 female members.

i) How many ways are there to choose the team of chefs?

ii) How many ways are there if no couple is on the team?

iii) How many ways are there if at least one couple is on the team?

iv) How many ways are there exactly 2 couples are on the team?

Problem 3.8.48: Your wardrobe contains 4 shirts, 4 pants and 4
jackets, one of each in each of the 4 colors red, white, blue and black.

Each day you pick an outfit consisting of a shirt a pair of pants and

a jacket.

i) How many outfits can you choose?

ii) How many outfits contain garments of only 1 color?

iii) How many outfits contain garments of exactly 2 different colors?

iv) How many outfits contain garments of exactly 3 different colors?

Hint: In the latter parts, first choose the colors.
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A Classic Example: Poker Rankings

OK, now you’re ready for the classic test of whether you’ve learned

how to count: poker. Remember that poker hands consist of 5 cards

chosen from a standard deck.

Problem 3.8.49: Rework Problem 3.6.17.ii) and show that there are

2,598,960 poker hands.

The values are ranked, low to high, as [2, 3, 4, 5, 6, 7, 8, 9 , 10, J, Q,

K, A ]. Adjacent values in this list are called consecutive, and for this

purpose only, an A may rank either at the bottom (below a 2) or top

(above a K). consecutive values in the list [2, 3, 4, 5, 6, 7, 8, 9 , 10, J,

Q, K, A ]. That is an A can be the low or high value in a sequence of

consecutive values but not a “middle” value.

Certain hands are special and have names to indicate this.

Poker Types 3.8.50:

straight The 5 cards have 5 consecutive values.

flush All 5 cards belong to the same suit.

straight flush The hand is both a straight (the 5 cards have 5 con-

secutive values) and a flush (all 5 cards belong to

the same suit).

pair The hand contains 2 cards with the same value.

two pair The hand contains 2 sets of 2 cards with the same

value.

three-of-a-kind The hand contains 3 cards with the same value.

four-of-a-kind The hand contains 4 cards with the same value.

full house The hand consists of 3 cards of one value and 2
cards of another (that is, contains three-of-a-kind

and a pair).

high card Any hand not listed above—that is, all 5 cards have

different values but these values are not consecutive

and the cards do not all lie in the same suit.
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We’ve been a bit imprecise in this list, because, by convention, using

one of these types to describe a hand implies that the hand is not of

any more special type. Thus, calling a hand a straight rules out the

possibility that it is a flush: if it were, we’d call it a straight flush.

Saying that a hand has a pair rules out the possibility that it has

three-of-a-kind.

The rules of poker rank these types (but not in the order I have listed

them). Any hand of a higher ranked type beats any hand of a lower

ranked type. If two hands have the same type, further rules that we

won’t go into, are applied: these usually, but not always, break the

tie. Counting enters into the discussion because the ranking of types

of hands can be very concisely summarized by the rule:

The Less Common Hand Wins 3.8.51: If there are fewer poker

hands of one type than of a second, then the first type outranks the

second.

Challenge 3.8.52: Use the principle that The Less Common Hand

Wins 3.8.51 to determine the ranking of types of poker hands.

Basically, all you need to do is to count the hands of each type and

compare. I’ll suggest a good order to attack the types and give you

some gentle help at a few tricky points along the way.

Let’s start by counting straights. The key thing to note here is that

the low value in a straight must be one of [A, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Once I know this value, I know all the others (if low value is 7, the

others are 8, 9, 10, and J).

How many ways are there to choose 7, an 8, a 9, a 10, and a J? Hint:

This amounts to choosing a suit 5 times. Use this to show that there

are 10240 straights.

Unfortunately, that first answer is wrong. Some of those straights

are actually straight flushes and shouldn’t be included in our count

of “true” straights. How many?
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Show that the low card in a straight flush determines the entire

hand. Use this to show that there are 40 straight flushes and 10200
straights.

Flushes are easier. You should have found in Problem 3.6.24.ii) that

there were 5148 poker hands containing 5 cards in the same suit.

Use this to find the number of flushes (which is not 5148—why?).

Likewise, You should have found in Problem 3.6.24.iv) that there

were 524 poker hands consisting of 4 cards of one value and a kicker.

Note than if a hand contains 2 (or more) cards of the same value,

it cannot be either a straight or a flush. In counting the “of-a-kind”

hands, we’ll have to worry quite a bit about not counting “more-

of-a-kind” hands too, but this remark tells us that at least we can

ignore straights and flushes. For example, we immediately find that

the number of four-of-a-kind hands is 524.

Rather than approach the “of-a-kind” hands piecemeal, let me lay out

a general strategy.

Strategy for Counting “of-a-kind” Hands 3.8.53: To count

“of-a-kind” hands, first pick the values that appear in the hand, then

pick the cards of each value.

Let’s try full houses next. Here the Divide and conquer counting

strategy 3.8.1 says you need to pick 2 values from 13, one for the

three-of-a-kind and one for the pair. What’s the right shorthand for

this? This trips up a lot of students so draw some hands to illustrate

what the each possible answer to R? and O? would mean.

Picking the cards of each value is always easy.

Problem 3.8.54: To complete an x-of-a-kind whose value is known,

you need to choose x of the 4 cards in that value. What’s the short-

hand for this? Hint: if x = 4, the number of ways is 1.

Problem 3.8.55: Show that there are 3744 full houses.
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Now we’re almost home. To choose a three-of-a-kind-hand, you need

to choose 3 values—1 for the three-of-a-kind and 2 for the kickers

(unpaired cards). Certainly R? is “No” or we’d have a better hand,

but O? is neither entirely “Yes” nor entirely “No”. Of the hands

J J J 9 7 , 9 9 9 J 7 and 9 9 9 7 J

the first is different from the second and third but the last two are

the same.

Explain why, in general, swapping the order of 2 or more x-of-kinds

with the same x (like the 2 kickers) does not matter, but swapping

an x-of-kind with a y-of-kind with x 6= y (like a three-of-a-kind and

kicker) does matter. Illustrate your argument with hands having two

pairs and a kicker.

The solution is to to pick the values with one common x together

(since, for these, order does not matter, we get a combination)

andthen to pick the values with the next common x from the re-

maining values. Looking back to to a full house, we pick 1 value

from 13 for the three-of-a-kind andthen 1 value from the remain-

ing 12 for the pair, getting 13 · 12 choices. This is just the value the

Permutation Formula 3.5.18 gives for the permutation P(13,2) we

arrived at above. For the three-of-a-kind hands, we pick 1 from 1 for

the three-of-a-kind and then 2 from 12 for the kickers.

Problem 3.8.56: Use the guidelines above to show that:

i) There are 54,912 three-of-a-kind hands.

ii) There are 123,552 two pair hands.

iii) There are 1,098,240 one pair hands.

iv) There are 1,302,540 high card hands. Hint: Here there’s one extra

wrinkle because, in this case, we have to choose 5 values for the 5
cards butnot 5 consecutive values. Why?

Problem 3.8.57: Every poker hand is one and only one of of the

types in . Use this and fact that there are 2,598,960 poker hands to

check the counts we have derived for all the types
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Poker Rankings 3.8.58: The ranking of poker hands by type,

from highest to lowest, and the number of each is:

straight flush 40
four-of-a-kind 524
full house 3744
flush 5108
straight 10200
three-of-a-kind 54,912
two pair 123,552
pair 1,098,240
high card 1,302,540

Here’s a final problem you can use to test yourself.

Problem 3.8.59:

i) List the special hands in a form of poker in which there are only

4 cards in a hand and determine the ranking of the types using the

principle that The Less Common Hand Wins 3.8.51.

ii) (Harder)Do the same for a form of poker in which there are 6
cards in a hand.

The m&m’s problem

In this subsection, I want to guide you to discover how to carry out

one kind of count that we cannot apply our Divide and conquer

counting strategy 3.8.1 to. Our goal will be to answer the question:

The m&m’s Problem 3.8.60: How many ways are there to color 56
m&m’s using the 6 colors•m ,•m ,•m ,•m ,•m and•m ?

This problem came up in class in 2002 when m&m’s held a contest to

select a new color (purple won) and offered a prize of 100,000,000
yen (then about $700,000) to the buyer of a bag containing only pur-

ple m&m’s. Discussion about the probability of finding such a bag “at
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random” (so small, it might as well be zero) led to a discussion of

how many different bags of m&m’s there could be. Based on data on

the m&m’s website, we expect to find about 56 m&m’s in a standard

1.69 ounce package of the milk chocolate variety; this type comes in

6 colors.

Let’s see why the Divide and conquer counting strategy 3.8.1

fails here. Saying that we are coloring the m&m’s means that we are

making 56 choices from 6 possibilities so, by If ` > m, It’s Se-

quences or Nothing 3.6.13, R? is “Yes”. On the other hand, O?

must be “No” as we don’t change the colors in the bag by shaking

it up before opening it. So what we’ve got here is what is dubbed an

abomination in The two question method–and we don’t have any

shorthand for these.

On the other hand, it’s clear that whatever the answer to The m&m’s
Problem 3.8.60 is, it’s a big number. We’re crazy if we think we can

just count the bags on our fingers. If you don’t believe me, feel free

to try. I’ll be waiting at the start of the next paragraph when you give

up.

OK then. Big counts don’t scare us. We worked out a 46 page long

count above. But we did so by plugging into a formula. So what we

need is a formula for abominations, like the Combination Formula

3.4.15 or the Permutation Formula 3.5.18. That is we want a for-

mula for the number of abominations A(m, l)—which we’ll think of

as the number of ways to color m m&m’s (if you’ll forgive the pun)

with ` colors—for any values of m and `. If we had such a formula,

we’d just plug in ` = 56 and m = 6 and we’d have our answer.

We have already learned a very important lesson. Often the only way

to answer a particular question you’re interested in is to understand

how to answer a whole range of similar questions. Here the only way

to find the value A(6,56) that we’re after is to find a formula for

A(m, l).
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Here’s where we hit a bit of a brick wall. The formulas I cited as

models were all built up by making one choice at a a time. That

won’t work here. Suppose, to the contrary, that we had some choice-

by-choice way of building up A(m, l). To be definite, say we have

arrived at A(6,14) having chosen 3 each of•m ,•m and•m , 2 each of•m
and•m , and 1•m . When we make the next choice, we need to multiply

by 6 since we can choose any color. Suppose we choose•m . Then we

no longer have an unordered set of blue m&m’s: we have 3 unordered

and 4th. That we can handle, as with combinations, if we just divide

by 4 to “forget” the position of the last•m . But if we’d chosen•m ,

we’d need to divide by 3 not 4 (the 3rd yellow is now special) and

if we’d chosen•m , we’d need to divide by 2. In other words, the cor-

rection we need to divide by depends, not on something universal

like the number 14 of choices we have made so far, by on something

particular—how many of the first 1 choices were the same color as

the 15th. So no formula can incorporate the necessary corrections.

Well, maybe we could try reducing m instead of `. That is, we pick a

first color—say blue—and try to divide the count in simpler counts,

one for each possible number k of blue m&m’s in the bag. That works

a bit better: we can at least say what these simpler counts are. After

coloring k m&m’s blue, we’re left with ` − k m&m’s and with m − 1
colors. In other words, we’re left with the count A(m − 1, ` − k).
This may, at first, seem reminiscent of say counting the permutation

P(m, l) where, after making the first choice we are left with the sim-

pler problem of making ` − 1 choices from the m − 1 possibilities

still not used—that is with P(m− 1, l − 1) choices.

But there’s an important difference. With the permutations, every

first choice left us with the same simpler problem. With the abomi-

nations, every first choice leaves us with a different simpler problem.

Instead of looking for the single abomination A(m,`), we’re now

looking for `+1 different abominations A(m−1, `−k), one for each

value of k between 0 and `. All these simpler problems together are
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3.8 Counting by the “divide and conquer” method

more complicated even if the numbers are smaller in each.

However, we have learned something. Let’s see just what and then

how it can be used.

m&m’s Relation 3.8.61: A(m,`) =
∑̀
k=0
A(m− 1, ` − k).

This just says that we can color any number k of m&m’s blue, and

then we have one fewer color to use on the remaining ` − k m&m’s.

But is the formula that says this too messy to be of use? The answer

is “Yes”, if the use we want to put it to is to get a formula for A(m,`),
but it’s “No”, if instead, we only want to build a table of values of

A(m, l).

Why would we want to do that? Well, our toolbox of ideas for count-

ing doesn’t seem to be much use in computing A(m,`). We need a

new idea to understand abominations, and our best chance of get-

ting that idea is to get our hands dirty with a bunch of values. This

may seem strange, but it’s a basic idea—indeed, a ubiquitous one—

in mathematical research. If something seems too complicated to

understand, study some simple examples in the hope of seeing a

pattern in them. So let’s make a table.

Problem 3.8.62: The following questions ask you to check the val-

ues that have been entered in Table 3.8.63, and then to go on to

complete the table.

i) Explain why the counts A(1, `) and A(m,0) shown in blue are

all 1.

ii) Explain why A(m,1) =m.

iii) Use the idea behind the m&m’s Relation 3.8.61 to obtain the

values in the second column, A(2, `) = ` + 1.

iv) Below are picture of the 6 possible bags containing 2 m&m’s in

the 3 colors•m ,•m and•m in “chromatic” order. Draw similar pictures

that verify the counts A(3,3) = 10 and A(3,4) = 15.

•m•m •m•m •m•m •m•m •m•m •m•m
1—
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3.8 Counting by the “divide and conquer” method

v) Find the value A(4,4) in two ways. First draw pictures of possi-

ble bags of 4 m&m’s in the colors•m ,•m ,•m and•m . Then, as a check,

apply the m&m’s Relation 3.8.61: this says that the value is obtained

by summing the numbers in the m = 3 column from the 1 at the top

to the 10 to the left of the A(4,4) cell.

`
m 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9 10

2 1 3 6

↓↓↓↓-→10

3 1

↓↓↓↓-→4 10

4 1 5 15

5 1 6

↓↓↓↓-→21

6 1 7

7 1 8

8 1 9

9 1 10

10 1 11

Table 3.8.63: Table of values of A(m,`)

vi) Fill in the values in the blank cells in Table 3.8.63. The proce-

dure, based on the m&m’s Relation 3.8.61, for doing this is indi-

cated in the 3 colored cells. To find the value in a cell, simply total

the values that lie opposite or above it in the column immediately

to its left. The easy way to fill in the table is to fill one column at

a time, working from left to right: you can then find each entry by

adding the value in the cell immediately above to the value in the cell

immediately to the left.

vii) Look at the completed table. Where have all the numbers in this
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3.8 Counting by the “divide and conquer” method

table arisen earlier in the course? What name did we give this table

then?

That’s right. Our table of abominations is nothing more or less than

a rotated version of Pascal’s triangle (Table 3.4.18). The entries in

Pascal’s triangle are the combinations. So by computing some values,

we have discovered that abominations are combinations! If we can

just figure out which combination each abomination is, we’ll have a

formula for A(m, l).

Comparing the two tables shows that Table 3.8.63 is obtained from

Pascal’s triangle by rotating it 45 degrees counterclockwise. We can

use this observation to match up abominations and combinations.

Table 3.8.64 is a version of Table 3.8.63 in which is have replaced

each value by the corresponding binomial coefficient
(
M
L

)
from Ta-

ble 3.4.18. The script letters have been chosen to avoid confusing

the abomination and combination indices.

`
m 1 2 3 4 5 6 7 8 9 10

0
(
0
0

) (
1
1

) (
2
2

) (
3
3

) (
4
4

) (
5
5

) (
6
6

) (
7
7

) (
8
8

) (
9
9

)
1

(
1
0

) (
2
1

) (
3
2

) (
4
3

) (
5
4

) (
6
5

) (
7
6

) (
8
7

) (
9
8

) (
10
9

)
2

(
2
0

) (
3
1

) (
4
2

) (
5
3

) (
6
4

) (
7
5

) (
8
6

) (
9
7

) (
10
8

) (
11
9

)
3

(
3
0

) (
4
1

) (
5
2

) (
6
3

) (
7
4

) (
8
5

) (
9
6

) (
10
7

) (
11
8

) (
12
9

)
4

(
4
0

) (
5
1

) (
6
2

) (
7
3

) (
8
4

) (
9
5

) (
10
6

) (
11
7

) (
12
8

) (
13
9

)
5

(
5
0

) (
6
1

) (
7
2

) (
8
3

) (
9
4

) (
10
5

) (
11
6

) (
12
7

) (
13
8

) (
14
9

)
6

(
6
0

) (
7
1

) (
8
2

) (
9
3

) (
10
4

) (
11
5

) (
12
6

) (
13
7

) (
14
8

) (
15
9

)
7

(
7
0

) (
8
1

) (
9
2

) (
10
3

) (
11
4

) (
12
5

) (
13
6

) (
14
7

) (
15
8

) (
16
9

)

Table 3.8.64: What combination
(
M
L

)
gives A(m,`)?

Looking at Table 3.8.64, it’s immediately clear that in each column

where m is fixed the value of L is also fixed and that the two are

related by L = m − 1. As for the value of M, it increases by 1 both

when we go down a column (that is, when ` increases by 1) and when
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3.8 Counting by the “divide and conquer” method

we go across a row (that is, when m increases by 1). In other words,

M and ` + m vary identically, However they do not quite match,

comparing them on a few cells we see thatM= ` +m− 1.

When a mathematician has a guess that they’re pretty sure of, they

call it a conjecture. Our comparison makes us pretty sure that

Abomination Conjecture 3.8.65: A(m, l) =
(
`+m−1
m−1

)
= C(` +

m− 1,m− 1).

Problem 3.8.66: Use Table 3.8.63 and the Combination Formula

3.4.15 to check Abomination Conjecture 3.8.65 for the following

choices of (m, `):

i) (m, `) = (3,2).
ii) (m, `) = (3,5).
iii) (m, `) = (3,9).
iv) (m, `) = (4,3).
v) (m, `) = (4,6).
vi) (m, `) = (4,10).
vii) (m, `) = (7,7).
viii) (m, `) = (9,8).

Looks pretty good. If our guess is right, we can immediately answer

the The m&m’s Problem 3.8.60: the number of to color 56 m&m’s us-

ing 6 colors is A(6,56) = C(56+6−1,6−1) = C(61,5) = 5,949,147.

Are we done? Well, yes and no. We have a lot of computational ev-

idence that abominations are combinations, we think we can see in

the Abomination Conjecture 3.8.65 what the pattern is, and we’ve

got a lot of computational evidence that this formula does indeed

tell us which combination gives which abomination. This kind of ev-

idence is called inductive because, like the evidence used in testing

our answer to Problem 2.1.21, it’s based on many observations. As

in that problem, we’re pretty convinced by it. That’s the “Yes” part

of the answer. If I offered to bet you my $1 against your $10 that the
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3.8 Counting by the “divide and conquer” method

answer to the The m&m’s Problem 3.8.60 is not 5,949,147, you’d say

yes in a New York minute, and you’d feel like you found a dollar in

the street without even having to bend over to pick it up. Before we

discuss the “No” part of the answer, let’s look at a couple of prob-

lems.

Problem 3.8.67: Recall that a whole number bigger than 1 is called

prime if it has no positive whole number divisors except 1 and itself.

For example, 2, 3, 5, 7 and 11 are prime, but 4 = 2 · 2, 6 = 2 · 3, 8 =
2·2·2, 9 = 3·3 and 10 = 2·5 are not. To test if a number n is prime

is easy, if a bit tedious when the number is large. You just find b = n
a

for every whole number a between 2 and (n−1). If b is ever a whole

number, then n is not prime and if b always has a fractional part,

then n is prime. You can speed things in many ways. For example,

note that, if n = a · b and a < b, then a ≤ √n ≤ b—if both a and b
were bigger than

√
n then a · b > √n√n = n and likewise if both are

smaller, then a · b < n. Therefore, if you haven’t found a divisor by

the time a reaches
√
n, then you can stop: n is prime. You can also

skip any divisors a that are not prime themselves; for example, there

no point in dividing by 6 because of 6 divides n evenly, then so do

its factors 2 and 3 and we’d already know that n was not prime.

Consider the conjecture:

Prime Conjecture 3.8.68: For any positive whole number x,
P(x) = x2 + x+ 41 is prime.

i) Verify the Prime Conjecture 3.8.68 for x from 1 to 10 by divid-

ing P(x) by all prime numbers less than its square-root.

Partial solution
I’ll do x = 10 when P(10) = 102 + 10 + 41 = 151. I check that
151
2 = 75 12 , 151

3 = 50 13 , 151
5 = 30 15 , 151

7 = 21 47 and 151
11 = 13 8

11 .

Since 132 = 169 > 151, this shows that P(10) = 151 is prime as

conjectured

ii) Verify the Prime Conjecture 3.8.68 for x from 11 to 30 by look-

ing up the value P(x) in this table of prime numbers.
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3.8 Counting by the “divide and conquer” method

Partial solution
I’ll do x = 11. Here P(11) = 112 + 11 + 41 = 173 and since 173
is the last entry in the 4th row of the table, it’s prime.

Once again, we have a lot of inductive evidence for the Prime Con-

jecture 3.8.68. Can we stop?

iii) Check the Prime Conjecture 3.8.68 for x = 40. Hint: The square

root of 1681 is 41.

So P(40) is not prime even though every one of P(1) to P(39) is!

Conviction is not Knowledge 3.8.69: Inductive evidence may

convince us that a statement is true, but we can never know with

absolute “impossible that it could be false” certainly that a statement

is true unless we have inductively checked every last case.

Here’s another example that makes the same point. You may have

heard of Fermat’s Last Theorem which says that you can’t write the

nth-power of a positive whole number as the sum of two other nth-

powers for any n > 2—that is, xn + yn = zn has no positive whole

number solutions with n > 2. Pierre Fermat claimed, but did not

prove, this in 1637. His conjecture was only proved by the English

mathematician Andrew Wiles in 1995—357 years later.

But many mathematicians had struggled with the problem through-

out those centuries. Leonhard Euler, who we met at the end of Sec-

tion 1.4 as the man who named The number e 1.4.47 conjectured,

in 1769, that no nth-power could be written as a sum of fewer than

n other nth-powers. For n = 3, this is what Fermat claimed but for

n ≥ 4, Euler’s conjecture is an even stronger claim. Euler’s conjecture

was also unresolved for almost 300 years, and an immense amount

of inductive evidence that it was true was amassed over this period.

Here’s your chance to disprove a conjecture by the great Euler.

Problem 3.8.70: Show that 275 + 845 + 1105 + 1335 = 1445 =
61,917,364,224.

1—
1—
2—

a ·· ·· z ? 291 Comments welcome at �̂�

http://doc.trolltech.com/3.2/primes.html
mailto:morrison@fordham.edu


3.8 Counting by the “divide and conquer” method

This example was found in 1966 by Leon J. Lander and Thomas R.

Parkin and it is known to be the smallest. Counterexamples, as math-

ematicians like to call an example which shows that a statement is at

least sometimes false, with 4 4th-powers were found by Noam Elkies

in 1988 but the smallest of these (found by Roger Frye) is

958004+2175194+4145604 = 4224814 = 31,858,749,840,007,945,920,321 .

Again the moral is that statements can be true almost all the time

and still be fail to be universally true. You may have verified the first

million cases of the statement, but there’s no guarantee that it won’t

be wrong in the million and first. Or you may have to wait until the

billion and first case to find the counterexample.

If we want to really know, in the absolute certainty sense, that a

statement is true, we must find arguments that show why it is true

in every case. In down to earth terms, we need an explanation not

just a calculation. In fancier language, we need a deductive argument

or proof that applies to every case.

In the Prime Conjecture 3.8.68, the ways we checked that values

of the polynomial P(x) were prime had nothing to do with P(x). We

just took the value and either started doing trial divisions or looked

it up in the online table. The fact that any value happened to be

prime gave us no clue as to why it was prime, and made it no easier

to check the next value.

Our evidence for the Abomination Conjecture 3.8.65 is of the

same nature. We use the m&m’s Relation 3.8.61 to generate a ta-

ble of values, but nothing about any of those values suggested the

kind of R? “No” and O? “No” choice that we associate with a com-

bination. Looking at the table did make it clear that we were indeed

computing combinations, and it was easy enough to identify which

ones they were, but again, we have gained no insight into why these

counts match up. Why, for example, does the m in the abomination

turn (after being decremented) into the L in the combination? We
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3.8 Counting by the “divide and conquer” method

have no idea. So all our calculation provides no better guarantee that

A(6,56) = 5,949,147 than all our calculations with P(x) offered that

P(40) would be prime.

What we need is a way to associate to any of the C(`+m− 1,m− 1)
combinations arising from making (m − 1) choices from a set of

` +m − 1 possibilities, a bag of ` m&m’s in m colors. Can we make

a picture of the combinations that at least suggests m&m’s? To avoid

too many complications, let’s set ` = 10 andm = 5 and fix the colors

to be•m ,•m ,•m ,•m and•m . And let’s try using white (i.e. uncolored) m&m’s
for the set of possibilities and black ones for our actual choices. Here

is a typical choice.

©m ©m•m ©m ©m ©m•m ©m•m ©m ©m ©m•m ©m
Looking at this picture, we see that the placement (i.e. choice) of

the 4 black m&m’s has left 10 white m&m’s that are divided into 5
groups. That’s exactly what coloring 10 m&m’s using 5 colors would

do. This suggests that we use one color for each group. To keep

things definite lets color the groups from left to right in the order•m ,

•m ,•m ,•m ,•m . What we’ll then see is:

•m•m•m•m•m•m•m•m•m•m•m•m•m•m
Problem 3.8.71: Color the white m&m’s corresponding to the com-

binations below in the same way.

©m ©m•m ©m ©m•m ©m ©m•m ©m ©m ©m•m ©m
©m•m ©m ©m ©m•m ©m•m ©m•m ©m ©m ©m ©m

So far so good. Unfortunately, we won’t always see 5 groups of white

m&m’s. How, for example, should we color the following combina-

tion?

©m•m ©m ©m•m ©m•m•m ©m ©m ©m ©m ©m ©m ?

Take a moment and see if you can convince yourself that there’s only

one logical way.
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I hope you saw that instead of worrying about groups,we just need

to view the black m&m’s as instructions telling when to stop using

one color and start using the next. We start coloring white m&m’s red

until we reach the first black m&m. It tells us to switch to blue and we

color white m&m’s blue until we reach the second black m&m which

switches us to yellow.

Likewise the third and fourth black m&m’s switch us from yellow to

green and from green to orange respectively. In coloring the combi-

nation above, we’re using yellow when we hit those two consecutive

black m&m’s, the third and fourth. As we cross over these, we switch

from yellow to green and from green to orange without coloring any

white m&m’s. In other words, what we have above is bag that hap-

pens to contain 0 green m&m’s . We really still have 5 groups of white

m&m’s, it’s just that one of them happens to be the empty group. We

get:

•m•m•m•m•m•m•m•m•m•m•m•m•m•m .

Problem 3.8.72: Color the white m&m’s corresponding to the com-

binations below which one or more of the 5 groups is empty.

©m ©m ©m•m ©m ©m•m ©m ©m ©m•m ©m ©m•m
•m•m ©m ©m ©m•m ©m ©m ©m ©m•m ©m ©m ©m
•m•m ©m ©m ©m ©m ©m ©m ©m ©m ©m ©m•m•m

Was there anything special about ` = 10 and m = 5?

Problem 3.8.73:

i) Color the white m&m’s corresponding to the combinations below

with ` = 14 and m = 6 using tan as the 6th color.

©m•m ©m ©m•m ©m ©m ©m ©m•m ©m•m ©m ©m ©m ©m•m ©m
•m ©m•m ©m ©m ©m ©m ©m ©m ©m•m ©m•m•m ©m ©m ©m ©m

ii) Color the white m&m’s corresponding to the combinations below

with ` = 16 and m = 4 dropping the color orange.

©m ©m•m•m ©m ©m ©m ©m•m ©m ©m ©m ©m ©m ©m ©m ©m ©m
1—
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©m ©m ©m•m ©m ©m ©m ©m ©m ©m•m ©m ©m ©m ©m•m ©m ©m
OK, we now understand how to go from the combinations with count

C(`+m−1,m−1) to the abominations—bags of m&m’s—with count

A(m, l). We’re still not done. How do we know we get all the abomi-

nations in this way? We need to see that our procedure is reversible,

or to use the preferred term, to find its inverse. In essence, we’ve got

a “logarithm” and we need an “exponential”.

That’s easy. Given a bag of m m&m’s in ` colors, we just lay out

the m candies from left to right, grouping those of each color and

putting the colors in the same order used above. Then we insert a

black m&m after each group and white wash all the colored m&m’s.

The only point that calls for any care is handling missing colors.

If the bag contains no green m&m’s, we still have to put down an

(empty) green group delimited by a black m&m. Here are a couple of

examples, showing the ‘raw” bag of m&m’s, the intermediate colored

row with black m&m’s added, and the final black-and-white row that

gives a combination.

•m•m•m•m•m•m•m•m•m•m
•m•m•m•m•m•m•m•m•m•m•m•m•m•m
©m ©m•m ©m ©m ©m•m ©m•m ©m ©m ©m•m ©m
•m•m•m•m•m•m•m•m•m•m
•m•m•m•m•m•m•m•m•m•m•m•m•m•m
©m•m ©m ©m•m ©m•m•m ©m ©m ©m ©m ©m ©m

Of course, these were the first two examples I did, chosen to make it

visible that this inverse procedure really takes an abomination back

to the combination it came from.

Problem 3.8.74: Diagram the three stages of the abomination-to-

combination procedure for the bags of m&m’s constructed in Prob-

lem 3.8.71 and Problem 3.8.72.
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What have we achieved? We have paired off each of the C(` +m −
1,m− 1) combinations with one (and only one) of the A(m, l) abom-

inations and vice-versa. That’s only possible if the number of com-

bination and the number of abominations are the same. So we have

deduced Abomination Conjecture 3.8.65.

And that means that we now know—not just are pretty sure but

know with absolute certainly—that the answer to the The m&m’s
Problem 3.8.60 is 5,949,147.

Yes, it was a lot of work to get from conviction to knowledge. But

knowledge like this, that can be relied on unquestioningly, is never

easy to come by—in most situations, impossible. Perhaps the great-

est key to the power of mathematics is that it enables us, if we think

long enough and work hard enough, to command such knowledge in

ways that almost no other discipline can. And it’s just as powerful in

handling situations that really matter as it is in counting m&m’s.

Having done all this work, we’re ready to record what we’ve accom-

plished and I need to come clean and tell you that the standard name

for an abomination is a multiset. The “multi” indicates that “Are

Repetitions allowed?” is “Yes” and the set indicates that, as with

sets, “Does Order matter?” is “No”. There’s also a more standard

notation for the count A(m, l), namely
((
m
l

))
, which is intended to re-

mind you that this count is just a “rotated” combination or binomial

coefficient. So I’ll state our formula as:

Multiset or Abomination Formula 3.8.75: The multiset or

abomination count
((
m
l

))
= A(m, l) equals the combination

(
`+m−1
m−1

)
=

C(` +m− 1,m− 1).

I said earlier that you won’t need to count abominations in this

course and I’ll stand by that. However, problems which involve

counts where repetition is allowed but order does not matter do

arise fairly often enough in mathematics. The Multiset or Abom-

ination Formula 3.8.75 has been known for at least 100 years, and
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3.8 Counting by the “divide and conquer” method

probably much longer, but it was only in the late 1960s that the name

multiset was coined by the Dutch mathematician Nicolas de Bruijn in

correspondence with the great American computer scientist Donald

Knuth. The notion of a multiset has had many other names (among

them bunch, bag and heap but not abomination) and while today

these are becoming less common they have still not completely dis-

appeared.
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Chapter 4

Fat chance

In Chapter 2, we took an informal look at some of the many ways

that intuition goes wrong when thinking about events with an uncer-

tain or random element. Take a moment to recall the experiments

you carried out in playing “$7’ll get you $12” and their crazy re-

sults, or the paradox of the playoffs in “We wuz robbed”. These

examples show that we need a careful mathematical way to describe

questions involving random events if we hope to draw correct con-

clusions about and make intelligent decisions involving them. Proba-

bility provides this guide to discovering what the right expectations

about uncertain phenomena are.

We also saw, for example in looking at Chuck-a-luck, that, even

when we think we understand the theory of a random process well

and have precise expectations, it can still be very difficult tell if ex-

perimental observations support our predictions. If our expectations

are correct and we can make a large enough number of experiments,

our observations will more and more clearly match our expectations.

But this is almost never practical, so if we want practical tests of pre-

dictions we need to understand how reliably they are confirmed by

the observation we are actually able to perform. Statistics allows us
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4.1 Experiments, outcomes and sample spaces

to quantify how much confidence about the correctness of our ex-

pectations we can derive from any collection of observations.

In Chapter 3, we built up the language of sets and strategies for

counting that will enable us to address these two needs. We’re going

to compute probabilities by counting. Indeed, in many of the exer-

cises in that chapter, we’ve already used these tools to verify claims

and predictions from Chapter 2. Now we’re ready apply these tools.

Very few new definitions or techniques are needed. Coming fully

to grips with probability will not be easy, but the difficulties are in

learning how to ask the right questions. Once these are asked, find-

ing the answers usually involves only straightforward counting of

the type we’ve already mastered. So let’s cut to the chase.

4.1 Experiments, outcomes and sample spaces

The good news in this section is that we are already very familiar

with the basic setup for studying probability. Almost all problems

reduce to questions about the number of elements in subsets of a

universal set. The bad news is that we don’t use the familiar terms

“universal set”, “element” or “subset”. You need to start off by learn-

ing the tiny dictionary in Table 4.1.1.

Set term Probability term

universal set sample space

element outcome

subset event

disjoint mutually exclusive

Table 4.1.1: Set–Probability Dictionary
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4.1 Experiments, outcomes and sample spaces

Why do we introduce 4 new terms for perfectly familiar concepts?

It’s not because there’s any tricky difference in meaning between

the terms in the left and right columns. They really mean exactly the

same things. In one way, that’s good: there’s nothing new to learn

and no worry about keeping subtle differences between the two sets

of terms straight. In another way, it’s maddening. There’s really no

need for the right column at all, so why bother with it.

Reason one is a feeble one. The terms sample space, outcome, event

and mutually exclusive are traditional in probability. So you simply

need to know them to read about or discuss probability, in the same

way that, however illogical the spellings or pronunciations of many

English words may be, you need to know how them to read and con-

verse.

Reasons two and three are better. Elements and subsets come up

in a great many contexts, so seeing these terms doesn’t give you

any context. When you see any of sample space, outcome, event or

mutually exclusive, you immediately know what’s up because these

terms are only used to discuss probability. This is one big advantage.

The other advantage is that the right column of Table 4.1.1 con-

veys the active spirit in which we think about probability. The key

metaphor is that of an experiment. Don’t think Erlenmeyer flasks

and white labcoats here. Doing almost anything and observing what

happens counts as a probability experiment. the only requirements

are the doing and the observing.

Example 4.1.2: Here are some experiments we’ve already discussed

(without referring to them as experiments), and that we’ll look at in

the sequel. I have colored the doing and the observing to distinguish

them.

i) Roll 2 dice and observe the numbers that come up on each die.

ii) Toss a coin 3 times and record the sequence of Hs and Ts that

appear.
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4.1 Experiments, outcomes and sample spaces

iii) Deal 5 cards from a standard deck and note what poker hand

you get.

iv) Choose a committee of 6 Senators and list its members.

v) Elect a President Pro Tempore, a Secretary and a Sergeant at

Arms from the Senate and record who holds each office

It’s common to specify only the experiment that is performed and

leave it up to the reader to infer what observation to make. Usually,

but not always, there’s only one sensible set of observations. For ex-

ample, the experiment in i) above might come up in study a dice

game like craps in we are only interested in the total of the num-

bers on the two dice. Could we then just observe this total and not

the two numbers in the individual dice? Or in ii), we might only care

how many heads appear, and not what tosses they occur on. Could

we then just observe this number and not the individual tosses? The

answer, in both cases, is “No”, but I need to show you a few more

ideas before I can explain why. The full story can be found in Ob-

serve Sequences not Summaries 4.3.14. Until then, I’ll always make

explicit what observation should be made.

How do we tie in the probability terms with such experiments? Two

are very easy. An outcome is simply any one of the observations that

might result from our experiment. The sample space is simply the

set of all such observations or outcomes. We usually denote out-

comes by lower case letters like x and y or a, b and c, and denote

the sample space by a capital letter, most commonly by S.

Example 4.1.3: Here are the sample spaces S for the experiments in

Example 4.1.2, described—remember a sample space is just a set—

by giving the admission test for each, or what’s the same, by saying

what are the possible outcomes (translation: elements of S).

i) Ordered pairs of numbers from 1 to 6 (or two letter sequences

in the alphabet {1,2,3,4,5,6}). This S is just the set D2 of Problem

3.2.8.
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ii) Three letter sequences in the alphabet { H, T }. We counted this

S—it has 23 = 8 elements—in Problem 3.6.14.

iii) 5-element subsets of the 52 cards in a standard deck. Of course,

we think of this S as the set of poker hands and we counted it in

Problem 3.6.17.ii).

iv) 6-element subsets of the set of 100 Senators. We counted this S
in Example 3.8.23.

v) 3-element lists from the set of 100 Senators. We counted this S
in Problem 3.5.26.

An event is just a subset of some of the outcomes in the sample

space. As with subsets we use upper case letters to describe events,

but the most common letters used are E (for event), F and so on. It’s

in dealing with events that the active spirit of probability comes to

the fore. Since an event is, like every subset, a set in its own right,

you might think we’d specify events by giving their admission tests.

In a sense, we do. But that’s definitely not how we think of events.

We almost always describe an event by saying what happened when

we performed our experiment.

Problem 4.1.4: Here are some events we might be interested in

when we consider some of the experiments in Example 4.1.2. Use

each “what happened” description to tell if each outcome listed is or

is not an element of the event (which is, remember, just a subset of

the sample space).

i) When we roll 2 dice:

a. the total on the dice is 8: (5,4), (6,2).
b. the first die comes up odd: (3,4), (4,4).
c. both dice come up even: (3,4), (2,2).

ii) When we toss 3 coins:

a. the first toss is a head: TTH, HHT.

b. there are exactly 2 tails: THT, HTH

c. there is at least one head: HHH, TTT

iii) When we pick a poker hand, we get:
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4.1 Experiments, outcomes and sample spaces

a. a full house: J♥ J♠ J♣ 9♥ 9♦, J♥ 9♥ 6♥ 4♥ 3♥.

b. a straight: J♥ 10♠ 9♣ 8♥ 7♦, J♥ J♠ J♣ 9♥ 9♦.

c. a flush: J♥ 10♠ 9♣ 8♥ 7♦, J♥ 9♥ 6♥ 4♥ 3♥.

Once we have described an event, the next thing we’ll want to do in

almost every case is count it. Doing this involves exactly the kind of

counting we spent the last chapter mastering.

Problem 4.1.5: Here are some events we might be interested in

when we consider experiments in Example 4.1.2. Use each “what hap-

pened” description to count the number of outcomes in the subset

associated to each event, using the Divide and conquer counting

strategy 3.8.1. I’ll work a few parts for you because they provide a

quick review of most of the main ideas involved.

i) When we roll two dice:

a. the total on the dice is 5.

b. the first die comes up a 3.

c. the first die comes up odd.

Solution
There are 3 odd possibilities for the number on the first die

andthen 6 for the number on the second dice, so by amoans

3.8.3 we get 3 · 6 = 18.

d. both dice come up odd.

Solution
There are 3 odd possibilities for the number of each of the

two dice. Since we want to count rolls with the first odd

andthen the second odd we multiply to get 3 · 3 = 9.

e. exactly 1 of the dice comes up odd.

Solution
Here we must have either the first die odd andthen the sec-

ond die even orelse the first die even andthen the second

die odd. (Why is this orelse and not eitherorboth?) Since

there are 3 odd and 3 even numbers of each die, amoans

3.8.3 tells us the count is 3 · 3+ 3 · 3 = 18.
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f . at least 1 of the dice comes up odd.

Solution
We can do this in three ways by giving three different

“divide-and-conquer” descriptions of this event.

We can apply the principle Divide Inequalities Using

orelse 3.8.22 to reexpress this event as exactly 1 of the

dice comes up odd orelse exactly 2 (that is, both) come

up odd and apply amoans 3.8.3 and parts i)d and i)e to get

9+ 18 = 27.

We can also say that we want all of the 36 rolls butnot those

with both dice even (I’ll leave you to check that there are 9
of these) and again apply amoans 3.8.3 to get 36− 9 = 27.

Finally, we can say that we want the event “first die odd” or

“second die odd”—there are 18 outcomes in each by apply-

ing i)c. Here we have an eitherorboth or because the two

events intersect in the event “both dice odd” of which there

are 9 by i)d. But now we have all the counts needed to apply

And-Or Formula for Orders 3.7.15 to get 18+18−9 = 27.

In the next two parts, assume that the Senate contains 60 Democrats

and 40 Republicans.

ii) When we pick Senate officers:

a. All 3 are Republican.

b. The President Pro Tempore and Secretary are Democrats and the

Sergeant at Arms is a Republican.

c. The President Pro Tempore is a Democrat.

iii) When we pick the Senate committee:

a. all 6 Senators are Democrats.

b. exactly 4 Senators are Republican.

c. at least 2 Senators are Democrats.
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4.2 Probability measures

4.2 Probability measures

Our study of probability will be based on what we’ve learned about

sets and counting, but more is involved. Now that we’ve learned to

use the Table 4.1.1 to translate from set terminology to probability

terminology, we’re ready to look at the key extra ingredient. This is

the notion of a probability measure (also often called a probability

distribution) on a sample space S.

Probabilities of Outcomes and Events

Remember the key probability metaphor: we perform an experiment

and make an observation. Each possible observation is an outcome x
of our experiment and the set of all possible outcomes is the sample

space S. We’ll often want to carry out the same experiment many

times and record the outcome each time. When we do, we’ll call each

repetition of the experiment a trial (and we’ll speak of performing or

carrying out a trial, just as we do an experiment).

What a probability measure Pr amounts to is a numerical prediction

or expectation, for each outcome x in the sample space S, of how

often we expect to observe x. More precisely, a probability measure

gives us a number Pr(x) for each outcome x and predicts that, if we

perform a large number of trials, then the fraction of those trials in

which the observed outcome will be x will be close to Pr(x).

The basic idea is thus very simple, as we can see from an example.

Consider the experiment: toss a coin and observe which side lands

up. Our sample space S = {H,T}. If the coin is fair—by which we

mean simply that each face is is equally likely to come up—then

we expect to see each of the outcomes H and T half the time. The

probability measure with values Pr(H) = 1
2 and Pr(T) = 1

2 encodes

this expectation.
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This apparent simplicity is deceptive. The difficulty is hidden in the

vagueness of the italicized words large and close to. Both terms

weaken the force of the prediction made by the number Pr(x), but

both are essential. First, the number Pr(x)makes no sensible predic-

tion about any single trial. It we toss a coin once, we’ll see either 1
head or 0, never 1

2 a head.

Even if we toss the coin many times—that is, make a large number

N of trials—we don’t expect to the fraction of trials in which we see

a head to be exactly 1
2 . The number of trials NH in which we’ll see

a head is a whole number, so if the number of trials N is odd the

fraction NH
N can’t possibly equal 1

2 . But even if N is even and it’s

possible for NH
N to equal 1

2 , this possibility won’t be very likely. For

example, as I mentioned in He’s on Fire!, if N = 100, we’ll only see

exactly 1
2 · 100 or 50 Hs about 8% of the time.

So the most we can say is that in a large number of trials, the fraction

where we observe a head will be close to 1
2 . Even this mealy mouthed

prediction is not very clear. Just how many trials is large number?

Just how close to 1
2 do we expect the fraction of trials in which we

observe a head to be? The plain fact is that we get no guidance on

either of these questions from our probability measure. So the pre-

dictions that a probability measure makes are maddeningly difficult

to stick a fork into; that fraction 1
2 seems so precise until we try to

say what it tells us about an actual series of coin tosses.

There is a solution. Statistics tells us how to use probability mea-

sures to make precise quantitative predictions that we can test by

performing trials. But statistics stands on the shoulders of probabil-

ity. Before we can profitably study it, we first need learn probability

itself much better. While we’re doing this, we’ll just have to be sat-

isfied to view the predictions made by probability measures as an

abstract idealization of what happens when we really perform ex-

periments.

Fortunately, there are a few consequences that we can draw from
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these predictions. Let’s make a virtue out of a vice and make the

idealistic assumption that Pr(x) is the fraction of trials in which we

observe the outcome x. What can we conclude?

First, if we never observe x, that fraction is 0; if we always observe

x, that fraction is 1. So any Pr(x) must lie between 0 and 1. Second,

in any single trial we will observe exactly 1 of the outcomes in the

sample space S. This means that, when we make any number N of

trials and sum up the number of times Nx that we observe x for all

outcomes x in S, we’ll get exactly N. Dividing by N, this says that

if we sum the fractions Nx
N for all x, we’ll get exactly 1. But if, as

we idealize, Pr(x) equals Nx
N , then this means that the sum of Pr(x)

and for all x must equal exactly 1. This may seem bit complicated

but actually, you knew this all along. When I set out the example of

tossing a fair coin, I said what fair meant: the probabilities of heads

and tails should be equal. But how did we know that the common

value P had to be 1
2? Because we know that the chance of seeing

either a head or a tail is 1, so P + P = 1 and that forces P to be 1
2 .

It turns out that these are the only restrictions that every probability

measure satisfies, so it’s worth recording them in a formal definition.

Probability Measure 4.2.1: By a probability measure on a sample

space S, we mean the choice of numbers Pr(x) for each outcome x in

S that satisfy:

i) For every x ∈ S, 0 ≤ Pr(X) ≤ 1 .

ii) The sum of Pr(X) for all the outcomes x ∈ S is exactly 1:∑
x∈S

Pr(x) = 1 .

When we think of Pr(x) as an idealized fraction of trials in which we

expect to observe the outcome x, we can restate these properties.

i) The fraction of trials on which we expect to observe x is between

0 (never) and 1 (always).

ii) In every trial, we observe one and only one outcome x in S.
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Next, we can assign probabilities not just to outcomes (elements of

S) but also to events (subsets of S).

Probability of an Event 4.2.2: A probability measure on the

outcomes x of a sample space S defines a probability Pr(E) for any

event E ⊂ S by the rule

Pr(E) =
∑
x∈E

Pr(x) .

In words, the probability of an event E is just the sum of the probabil-

ities of all the outcomes x that belong to E.

Like the probability of an outcome, we can think of the probability

Pr(E) of an event E as the (idealized) fraction of trials in which we

expect to observe an outcome x that belongs to E. Indeed, the frac-

tion of trials when the observed outcome belongs to E will just be

the sum, over the outcomes (elements) x of E, of the fraction of tri-

als in which the outcome equals x, and this is just a restatement of

the definition of Pr(E) above.

Basic Probability Formulae

Next observe that the each term in the sum
∑
x∈E Pr(x) that de-

fines Pr(E) is a term in the sum
∑
x∈S Pr(x) in Probability Measure

4.2.1ii). What terms in the sum for S are missing from the sum for E?

Exactly those for which the outcome x does not lie in E, what’s the

same, exactly those for which x belongs to the complement EcS . Since

we’ll almost always have in mind subsets of a fixed sample space S,

we’ll generally use the simpler notation Ec in which the S is omitted.

In other words, because every outcome x in S lies in E orelse in EcS ,
we can split up ∑

x∈S
Pr(x) =

∑
x∈E

Pr(x)+
∑
x∈EcS

Pr(x) .

We can think of the sum
∑
x∈S Pr(x) on the left hand side of this

equation in two different ways. First, we can simply say this sum
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equals 1 by Probability Measure 4.2.1.ii). Since the two terms on

the right hand side equal Pr(E) and Pr(Ec) respectively, we find that:

Complement Formula for Probabilities 4.2.3: For any event

E ⊂ S, Pr(E)+ Pr(Ec) = 1. Equivalently, Pr(Ec) = 1− Pr(E),

In words, the probability that E does not happen is 1minus the prob-

ability that E does happen. This way of putting the formula makes it

seem obvious that it ought to be true. We can view the fact that it fol-

lows from the definition of Probability Measure 4.2.1 as evidence

that this definition agrees with our intuition about probability.

The second way of viewing
∑
x∈S Pr(x) is as the probability Pr(S) of

the event S itself—after all, an event is just a subset of S and S is

always a subset of itself. This means that we rewrite the Comple-

ment Formula for Probabilities 4.2.3 as Pr(Ec) = Pr(S)−Pr(E). In

this form, it looks just like the Complement Formula for Orders

3.7.24 except that we relate the probabilitities of E, Ec and S instead

of their orders.

This makes it natural to wonder whether the other formulae involv-

ing orders in Section 3.7 have probability versions. The answer is

yes, and, as above, the formulae are identical except that every or-

der (#) becomes a probability (Pr). First we have an analogue of the

And-Or Formula for Orders 3.7.15.

And-Or Formula for Probabilities 4.2.4: For any events E
and F of S,

Pr(E ∩ F)+ Pr(E ∪ F) = Pr(E)+ Pr(F) .

Exactly the same argument that shows why the And-Or Formula

for Orders 3.7.15 holds also shows why this formula is true. Each

of the four probabilities is a sum of terms Pr(x) for certain outcomes

x, namely those in the corresponding event. I claim that for any out-

come x the number of terms Pr(x) that appear on the left and right

side are the same. Figure 4.2.5 below makes this easy to see.
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S -→

E -→

←- F

E ∩ F

Figure 4.2.5: Picturing the And-Or Formula

Elements x in the top left quarter of the diagram lie in E and in E∪F
but not in F or in E∩F so they contribute a single Pr(x) to each side.

Elements x in the bottom left lie in F and in E ∪ F but not in E or in

E ∩ F so they also contribute a single Pr(x) to each side. Elements in

the top right lie in both E and F and hence in both E∪F and E∩F so

they contribute two Pr(x)’s to each side. Elements in the bottom left

are in none of the four sets and contribute no Pr(x) to either side. In

all cases, the contribution of x to each side is the same as claimed.

There’s also a probability form of the OrElse Formula for Orders

3.7.19 but with one small wrinkle. You may have noticed that we have

never mentioned or used the last entry in Set-Probability Dictionary

in Table 4.1.1. In set theory, when two sets E and F have empty

intersection—that is, have no elements in common—we say that E
and F disjoint. In probability, when two events E and F have empty

intersection—that is, have no outcomes in common—we say that E
and F are mutually exclusive.

In terms of our active spirit in which we think about probability ex-

periments, the notion “mutually exclusive” is commonly rephrased

in several ways. saying that E and F are mutually exclusive means

that they cannot both happen (or be observed) in a single trial. If the

outcome lies in E, it can’t lie in F and vice-versa. If we observed E,

the possibility that we might have observed F is excluded. In terms

of operations, mutually exclusive sets are those for which an orelse

or disjoint union E∪̇F is defined. We then have:
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OrElse Formula for Probabilities 4.2.6: If E and F are

mutually exclusive events of S (that is, the subsets E and F of S are

disjoint so that E∪̇F is defined), then

Pr(E∪̇F) = Pr(E)+ Pr(F) .

As with the version for orders, this is just the special case of the

And-Or Formula for Probabilities 4.2.4 in which (since E∩F = �),

the term Pr(E ∩ F) = 0.

Two warnings are in order here. First, just as with subsets, a very

common cause of dope-slapping errors is to treat eitherorboth

unions of events that are not mutually exclusive as if they were

orelse or disjoint unions. The OrElse Formula for Probabilities

4.2.6 is simpler than the And-Or Formula for Probabilities 4.2.4

and, under pressure, it’s easy to forget that the simpler form only

applies when the events are known to be mutually exclusive. If you

do not check whether they are mutually exclusive before applying

the OrElse Formula for Probabilities 4.2.6, Murphy’s law tells

us that two events will not be mutually exclusive and you’ll get the

wrong answer.

The second warning is about one of the great unsolved mysteries

of contemporary mathematics. In Independence, we’ll look at the

extremely important notion of independent events. Like “mutually

exclusive”, “independent” is a property that any pair of events E and

F may or may not have. Other than this the two concepts have noth-

ing in common. Yet, students confound these two concepts on tests

again and again. So please, repeat after me three times:

“The checks for ‘mutually exclusive’ and for ‘independent’ are completely

different.” “The checks for ‘mutually exclusive’ and for ‘independent’ are

completely different.” “The checks for ‘mutually exclusive’ and for ‘indepen-

dent’ are completely different”.

OK. I know some of you will still get these mixed up, but as least I’ve

tried.
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Here are a couple of easy problems to let you work with the ideas

and formulae. I have worked a few parts of each to get you started.

Problem 4.2.7: Consider the experiment of drawing a card from a

standard deck and recording the card you picked. The sample space

S for this experiment has 52 outcomes which we’ll think of as the

cards shown in Figure 3.3.11 and a probability measure for this ex-

periment assigns each card x a probability of 1
52 .

i) Verify that the given values of Pr(x) do meet the conditions for

a Probability Measure 4.2.1.

Solution
Since 0 ≤ 1

52 ≤ 1, condition i).i) holds for each card x. The sum∑
x∈S Pr(x) in i).ii) consists of 52 terms each equal to 1

52 so it

equals 1 as required.

ii) Find the probabilities of observing the following events.

a. a Jack.

b. a heart.

c. a black card.

d. a black jack

e. a red card.

f . a black card or a Jack

g. a face card (K, Q or J)

h. a spot card (one that is not a face card).

i . a red face card

j . a red card or a face card

k. neither a red card nor a face card.

Solution to parts ii)a to ii)f
The basic idea here is that, since all the outcomes have probabil-

ity 1
52 , when we add up Pr(x) for the outcomes x in any event E,

we’ll get 1
52 exactly #E times for a total of #E

52 . So the probability

of getting one of the 4 Jacks is 4
52 , of getting one of the 13 hearts

is 13
52 of getting one of the 26 black cards is 26

52 , and of getting

one of the 2 black jacks is 2
52 .
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For events E in ii)e and ii)f, we can either use counting formulae

to express #E in terms of orders we know, or use the correspond-

ing probability formulae to express Pr(E) in terms of probabili-

ties we know. In the next problem, only the latter approach will

work, so to get warmed up, that’s what I’ll use here. Try to use

these ideas in working the other parts.

The events ‘red card’ is the complement of the event ‘black

card’ so by the Complement Formula for Probabilities 4.2.3,

Pr(‘red card’) = 1− Pr(‘black card’) = 1− 26
52 =

26
52 .

The events ‘a black card’ and ‘a Jack’ intersect as we saw in

ii)d: that is they are not mutually exclusive. So we need to

use the And-Or Formula for Probabilities 4.2.4 to find the

probability of the union event ‘a black card or a Jack’. We find

Pr(‘a black card‘ ∪ ‘a Jack’) = Pr(‘a black card‘) + Pr(‘a Jack‘) −
Pr(‘a black card‘ ∩ ‘a Jack’) = 26

52 +
4
52 −

2
52 =

28
52 .

iii) The solution above used the fact that the vents ‘black card’ and

‘red card’ were complements of each other. Which other pairs of

events in ii) are complements of each other?

iv) Complementary subsets (like ‘black card’ and ‘red card’) are al-

ways disjoint so complementary events are always mutually exclu-

sive. Which other pairs of events in ii) are mutually exclusive?

In working the previous problem, we started by observing that the

probability of any event E was the fraction #E
52 . Notice that the denom-

inator of all this fractions is the same—52. This means that we can

add or subtract two such probabilities by simply adding or subtract-

ing their numerators—which are whole numbers! So even though all

the probabilities in the problem are fractions, the only arithmetic

you need to perform with them is whole number arithmetic.

Unless, of course, you converted these fractions to decimals, say

using a calculator. As soon as you do this, the probability of each

event becomes a messy decimal with no apparent relation to any

other probability and now you need your calculator add them.
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4.2 Probability measures

Take part ii).ii)f. Which calculation is easier? The decimal version

0.500000000 + 0.076923076 − 0.038461538 = 0.538461538 or the

fraction version 26
52 +

4
52 −

2
52 =

28
52 . For the same reason, you should

avoid reducing probability fractions to lowest terms because doing

so throws away the common denominator.

Leave Probabilities as Fractions 4.2.8: Whole number arith-

metic is usually all you need when probabilities are kept as fractions

so converting to decimal form makes calculations messier and more

error prone. We’ll also see later that the numerator and denominator

of a probability fraction often contain information that’s lost when

you convert to decimal form.

Problem 4.2.9: Consider the experiment of drawing a tile from a

bag containing a set of 100 English Scrabble™ tiles and recording the

letter on the tile.

The sample space S for this experiment consists of the 26 letters of

the alphabet plus the blank which I’ll indicate by a ‘_’ (but refer to as

a letter). To avoid confusion with the letter ‘x’, I’ll denote a typical

outcome of this experiment by an italic `. The table below gives a

probability measure for this experiment.

` a b c d e f g h i j k l m n o p q r s t u v w x y z _

Pr(`) .09 .02 .02 .04 .12 .02 .03 .02 .09 .01 .01 .04 .02 .06 .08 .02 .01 .06 .04 .06 .04 .02 .02 .01 .02 .01 .02

i) Verify that the given values of Pr(`) do meet the conditions for

a Probability Measure 4.2.1.

ii) Find the probabilities of observing the following events.

a. a vowel (consider ‘y’ to be a consonant here).

Solution
We proceed as in Problem 4.2.7 except that since the out-

comes now all have different probabilities we actually have

to add up the probability of each vowel. We get Pr(a)+Pr(e)+
Pr(i)+ Pr(o)+ Pr(u) = .09+ .12+ .09+ .08+ .04 = .42

b. a vowel or a ‘_’.

Solution
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4.3 Equally Likely Outcomes

The events ‘a vowel’ and ‘_’ have probabilities .42 and .02
and are mutually exclusive so we can apply the OrElse For-

mula for Probabilities 4.2.6 to get .42+ .02 = .44.

c. a consonant.

Solution
We could add up the probabilities of the 21 consonants but

it’s easier to observe that this event is the complement of

a vowel or a ‘_’ and apply the Complement Formula for

Probabilities 4.2.3 to get 1− .44 = .56.

d. a letter contained in the word “mathematics”.

Solution
Once again, we have no alternative to adding up. The only

point to note is that we only want to add up the probabili-

ties of the repeated letters ‘m’, ‘a’ and ‘t’ once each. We get

Pr(m)+ Pr(a)+ Pr(t)+ Pr(h)+ Pr(e)+ Pr(i)+ Pr(c)+ Pr(s) =
.02+ .09+ .06+ .02+ .12+ .09+ .02+ .04 = .46

e. a letter not contained in the word “mathematics”.

f . a vowel or a letter contained in the word “mathematics”.

g. a letter contained in the word “life”.

h. a consonant or a letter contained in the word “life”.

i . a letter neither a consonant nor contained in the word “life”.

j . a letter contained in the name “Barack_Obama”.

k. a letter contained in both “mathematics” and in “Barack_Obama”.

iii) Which pairs of events in ii) are complements of each other?

iv) Which pairs of events in ii) are mutually exclusive?

v) What property should we not confuse with “mutually exclusive”?

4.3 Equally Likely Outcomes

Now that we know what probability measures are and their most im-

portant properties, we can ask “Where do they come from?” Suppose
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4.3 Equally Likely Outcomes

we have an experiment in mind and we know the sample space S and

all the outcomes x. How do we come up with the numbers Pr(x)?

We can at least say what won’t work. We can’t find Pr(x) by perform-

ing a bunch of trials and recording what fraction of the time the ob-

served outcome was x. Sure, such a procedure will give us a fraction

that we expect to be close to Pr(x). But just as Pr(x) is almost always

different, often very different, from this observed fraction, so this

fraction will very rarely equal the ideal probability Pr(x). At best,

we can get a rough guess in this way. Worse still, if we performed

a second series of trials we’d almost certainly get rather different

guesses than those we saw the first time. Finally, to get even crude

estimates in this way, you have to perform many trials, or collect a

lot of data from trials that others have performed. This is often just

not possible, and even when it is, it’s a lot of work.

Despite all this, people do attempt to determine probability mea-

sures in this way. Because the measures are deduced from exper-

imental trials, they are often called experimental probability mea-

sures. Other common terms are empirical probability or relative fre-

quencies. Often, finding empirical probabilities is the only way to get

your hands on a probability measure you want to study. But, in this

course, we won’t use experimental probability measures very much

because we just don’t have time for the onerous process of data col-

lection that’s required.

Basic Equally Likely Outcomes Formulae

Instead, we will usually restrict ourselves to studying experiments

where it’s possible to pin down the right probability measure math-

ematically. To do so, we need to make one key assumption that gen-

eralizes the coin toss example above. We assume that all the out-

comes in the sample space are equally likely to occur—that is, the

probability Pr(x) is the same number for every outcome x in S. It’s
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4.3 Equally Likely Outcomes

easy to see that this equally likely outcomes assumption determines

a unique probability measure. Let’s check this and see what conse-

quences it has. Then I’ll address the more tricky question of when

we can expect this assumption to hold.

The key lies in the equation in ii) of the definition of a Probability

Measure 4.2.1. We are assuming that all the terms Pr(x) in the sum∑
x∈S Pr(x) are equal. There are #S such terms, one for each x in S.

So we can rewrite the sum as

Pr(x)+ Pr(x)+ · · · + Pr(x)︸ ︷︷ ︸
#S terms

= Pr(x) · #S .

But ii) says that this sum equals 1, so Pr(x) · #S = 1 and hence

Pr(x) = 1
#S .

As a bonus, the assuming equally likely outcomes let’s us eliminate

the sum from the formula for the Probability of an Event 4.2.2.

We just substitute Pr(x) = 1
#S and find that Pr(E) =

∑
x∈E Pr(x) =∑

x∈E
1

#S . Now we are just adding up #E terms (one for each x ∈ E)

all of which equal 1
#S so we get the product #E · 1

#S =
#E
#S . We can also

see why this ought to hold by just considering the interpretation of

Pr(E) as the fraction of trials when we expect the observed outcome

x to belong to E. Since we expect all outcomes x equally often, the

fraction Pr(E) should just be the fraction of all the outcomes in the

sample space S that belong to E. That’s just another way of saying
#E
#S .

Equally Likely Outcomes Probability Measure 4.3.1: For

any sample space S, there is a unique probability measure Pr with

the equally likely outcomes property that every outcome x in S has

the same probability—that is, is equally likely to be observed in any

trial. This probability measure is given by the formula that, for every

outcome x,
Pr(x) = 1

#S
.
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4.3 Equally Likely Outcomes

Equally Likely Outcomes Formula 4.3.2: If S is an equally

likely outcomes probability space and E is any event in S, then

Pr(E) = #E
#S
.

Since we’ll use these formulae constantly in working with probabili-

ties, I want to pause to make a few comments about doing so. First,

this formula is a sort of warp drive for calculating probabilities that

makes it practical to deal with experiments with very large sample

spaces and events. Imagine for a moment trying to study an experi-

ment with a few thousand outcomes whose probabilities vary from

outcome to outcome. Just to describe the probability measure for

such an experiment, we’d have to provide a table of values of Pr(x)
like the table of probabilities in Problem 4.2.9; except that instead

of having 27 columns, this table would have to have thousands of

columns. Worse still, most interesting events E would also contain

thousand of outcomes x and, to calculate the probability of such an

event E, we’d have to add up thousands of values Pr(x) from our

table. Neither the table nor the sums are impossible, but I’d need a

bodyguard if I assigned such problems as homework.

By contrast, an equally likely outcomes probability measure is com-

pletely determined by the single value 1
#S . More important still,

there’s no need to do any outcome-by-outcome summing to calcu-

late the probability of an event E. All we need to be able to do is to

count E to find #E. And that’s something we can do very efficiently

even if our experiment has a sample space (and events) that contain

not thousands, but billions of outcomes.

Moreover, we can often have our cake and eat it too, to some extent.

Quite often, when we’re collecting data, we have in mind an equally

likely outcomes sample space but we have no way to perform exper-

iments that utilize it. A typical example arises when trying to under-

stand opinions or voting patterns. One man (or woman), one vote is

just a way of saying that counting votes is modelled by an equally
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4.3 Equally Likely Outcomes

likely outcomes sample space S. We can think of opinions as a less

formal type of vote. But, to use S we’d need to be able to observe

every vote (or opinion) which is usually a practical (or legal) impos-

sibility. What we can do is survey a sample of the population and

get estimates for how likely people are to vote, or think, in certain

ways. Such surveys can be viewed as estimates of the probabilities of

various events of S (“registered Republicans voting for Obama”) and

we can often use the S we have in mind to analyze these estimates.

We also see, in the next section, that it’s often possible to construct

sample spaces in which outcomes have differing probabilities out of

equally likely outcomes spaces (as in Example 4.4.15 and the follow-

ing examples). Although the arithmetic becomes a bit more compli-

cated, we can understand probabilities in such spaces by using the

component equally likely outcomes spaces.

But for now we’ll stick to equally likely outcomes sample spaces

themselves. In these cases, the upshot is that calculating probabili-

ties comes down to counting, not adding. We can—and should—view

the formula Pr(E) = #E
#S as expressing the probability of E as a frac-

tion whose numerator and denominator are both counts. Thus, each

of the numerator and denominator separately are answers to “how

many?” questions and carry useful information. The numerator an-

swers “How many outcomes are in E?” and the denominator “How

many outcomes are in S?”

This provides one more reason to Leave Probabilities as Frac-

tions 4.2.8. When you convert an equally likely outcomes probability

from fraction to decimal form, you throw away the information—the

counts—that comprise the numerator and denominator. And, as I

already noted, you make more, not less work for yourself. Every sin-

gle probability arising from an equally likely outcomes sample space

S has the same denominator #S. So you can add or subtract such

probabilities (as you’ll often need to so) simply by adding or sub-

tracting the whole number numerators. For the same reasons, it’s
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4.3 Equally Likely Outcomes

not smart to cancel common factors from the numerator and de-

nominator. You find the numerator as #E and the denominator as

#S: leave them both just as you found them.

We can apply these ideas to give equally likely outcomes versions of

the Basic Probability Formulae of the previous section with the

common denominator #S built in for convenience. You’ll use a sin-

gle formulae to solve for several of its terms, so I have given version

for each as a convenience while you are novices. Rather than memo-

rize all these variants, I recommend that you practice using the key

formula Pr(E) = #E
#S to get each from the master version in Basic

Probability Formulae as you work the problems in the rest of this

chapter.

Equally Likely Outcomes Formulae for Probabilities 4.3.3:

Let Pr be the equally likely outcomes probability measure on a sample

space S. Then:

i) If E and F are any events of S,

a. Pr(E ∪ F) = #E + #F − #(E ∩ F)
#S

.

b. Pr(E ∩ F) = #E + #F − #(E ∪ F)
#S

.

c. Pr(E) = #(E ∪ F)+ #(E ∩ F)− #F
#S

.

ii) If—and only if—E and F are mutually disjoint events of S,

a. Pr(E∪̇F) = #E + #F
#S

.

b. Pr(E) = #(E∪̇F)− #F
#S

.

iii) If E is any event of S, Pr(Ec) = #S − #E
#S

.

Here are a few problems for practice.

Problem 4.3.4: Consider the experiment of rolling a blue die and a

red die and observing the number that comes up on each and assume

that every possible pair of numbers is equally likely to be observed.
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4.3 Equally Likely Outcomes

i) What is the order #S of the sample space S? Hint: Refer to Prob-

lem 3.6.12.ii).

ii) In Problem 3.8.41, you should have found the following table for

the number of rolls that give each total from 2 to 12.

Total 2 3 4 5 6 7 8 9 10 11 12

Number of Rolls 1 2 3 4 5 6 5 4 3 2 1

Table 4.3.5: Counts for totals on 2 dice

Use this table to find the probabilities of each of the events below.

Leave each probability in fraction form.

a. A total of 11.

b. A total of 11 or 12.

c. A total less than or equal to 10. Hint: It’s easiest to use the pre-

ceding answer.

d. A total less than or equal to 4.

e. A total of of 6 or 12
f . A total divisible by 6. Hint: You just computed this.

g. A total divisible by 3.

h. A total divisible by 2.

i . An odd total. Hint: A total is odd exactly when it’s not divisible

by 2.

j . A total divisible by 2 or divisible by 3. Hint: A number is divisible

by both 2 and 3 exactly when it is divisible by 6.

In the next problem, it’s possible to count the given events either by

giving a shorthand count for the subset or by listing the elements

of the subset. The same shorthands will come up in the next prob-

lem, but the events will be to big to list, so you’ll need to use the

shorthands there. To warm up, Try to find the shorthands first in

this problem, and then list elements to check your count.

Problem 4.3.6: Consider the experiment of tossing a fair coin 3
times and recording which side comes up on each toss. In Example

4.1.3.ii), we saw that the sample space for this experiment is the set
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of 3-letter sequences in H and T,

S = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }
and #S = 8. Assume that each 3-letter sequence of Hs and Ts appears

equally often.

i) Show that the probability of seeing any given number of heads is

given by Table 4.3.7. Hint: You may want to refer to Example 3.6.15

Heads 0 1 2 3

Probability 1
8

3
8

3
8

1
8

Table 4.3.7: Probabilities for heads in 3 coin tosses

ii) What is the probability of each of the following events?

a. The first toss is a head.

b. At least 1 toss is a head.

c. The first toss is a head and at least 2 tosses are heads.

d. The first toss is a head and the last toss is a head.

e. The first toss is a head or the last toss is a head.

Problem 4.3.8: Consider the experiment of tossing a fair coin 10
times and recording which side comes up on each toss, and assume

that each 10-letter sequence of Hs and Ts appears equally often.

i) What is the order #S of the sample space for this experiment?

ii) Fill in the probabilities of seeing each given number of heads in

the table below.

Heads 0 1 2 3 4 5 6 7 8 9 10

Probability

Table 4.3.9: Probabilities for heads in 10 coin tosses

iii) What is the probability of each of the following events?

a. At least 8 tosses are heads.

b. At least 2 tosses are heads.

c. The number of heads is even.

d. The first 3 tosses are heads.

e. The last 2 tosses are heads.
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f . The first 3 tosses are heads and the last 2 tosses are heads.

g. The first 3 tosses are heads or the last 2 tosses are heads.

Here’s another dice problem based on the game chuck-a-luck. The

necessary counting formulae are in Problem 3.8.37 and Problem

3.8.38 and some applications are given in Example 3.8.36.

Problem 4.3.10: Consider the experiment of rolling 5 dice and ob-

serving the number that comes up on each and assume that every

possible quintuple of numbers from 1 to 6 is equally likely to be

observed.

i) What is the order #S of the sample space S?

ii) Find the probabilities of each of the events below. Leave each

probability in fraction form.

a. Exactly 2 dice comes up showing 6.

b. No die comes up showing 6.

c. At least 1 die comes up showing 6
d. Exactly 3 dice come up showing 4
e. Exactly 3 dice come up showing 4 and exactly 2 dice comes up

showing 6. Hint: If you knew which 2 dice showed a 6, you’d also

know which 3 showed a 4. How many choices are there for this

subset of 2 dice?

f . Exactly 3 dice come up showing 4 or exactly 2 dice come up

showing 6.

g. Exactly 3 dice come up showing 4 or exactly 3 dice come up

showing 6.

Finally, another basically very easy question where we’ve already

done all the counting but where the terminology makes things tricky:

I have provided hints to guide you.

Problem 4.3.11: Consider the experiment of drawing 5 cards from

a standard deck and recording the resulting poker hand and assume

that every poker hand is equally likely to be selected.

i) What is the order #S of the sample space S? Hint: Refer to Prob-

lem 3.6.17.ii).
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ii) Poker Rankings 3.8.58 gives counts of many subsets of S—that

is, events E. Use these counts to find the probability of each of the

following events. Leave each probability in fraction form.

a. A straight flush.

b. A flush.

c. A hand containing only cards from a single suit. Hint: This in-

cludes flushes and straight flushes. Remember, in poker, calling

a hand a flush implies that it’s not a straight flush.

d. A straight.

e. A straight or a flush. Hint: This is a dirty question because poker

is an exception to the rule that “or includes both”. In poker if I

say I have a straight (or flush), I am implying that I do not have a

straight flush and hence that I do not have a flush (or straight). In

other words, ‘straight’ and ‘flush’ are mutually exclusive events.

f . A straight or a flush or a straight flush.

g. A full house

h. Three-of-a-kind

i . A pair

j . A pair or three-of-a-kind Hint: The idea in the previous hint ap-

plies. Why?

k. A pair or three-of-a-kind or a full house.

Setting up Equally Likely Outcomes Sample Spaces

We’ve seen that any sample space S carries a unique Equally Likely

Outcomes Probability Measure 4.3.1. Moreover, this measure re-

duces calculating probabilities of events to counting outcomes and

so greatly speeds up and simplifies such calculations.

But, we should also remember that a probability measure is more

than just a set of numbers. Each Pr(x) is prediction for how often we

should expect to see the outcome x if we run a large number of trials

of our experiment and the motivation for calculating a probability
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Pr(E) is to understand how often to expect to see the event E in

such trials. So garbage in, garbage out applies: if the outcomes x are

not all equally likely, then the predictions Pr(x) = 1
#S—and, along

with them, the predictions Pr(E)—will generally be wrong.

So we need to understand when the equally likely outcomes assump-

tion really holds. The most honest answer is never. Even in the toy

example of tossing a single coin, the outcomes heads and tails will

never be equally likely. Remember that we called a coin that had this

property fair. The simple fact is that there is no such thing as an

exactly fair coin because marking the two sides differently perturbs

the coin’s symmetry. For example, if you stand a bunch of pennies

on edge on a table, then bang the table, most of the pennies will land

heads up because the “head” is incised more deeply.

Even if we could make a fair coin (and we could get pretty close

if we were willing to work hard enough), people are incapable of

flipping a coin “fairly”. High-speed photography shows that often

the coin only wobbles and the same side remains up through an

entire toss. Even when people toss more carefully, the coin lands

noticeably more often than not with the same side up as was up

before it was tossed. Persi Diaconis, a very distinguished Stanford

statistician Diaconis, Persi actually had a machine built that could

toss a coin so that it would come up heads (or, if you like tails) every

time and his website contains a (very advanced) paper on the subject.

Let me emphasize that the issue here is not that in a large but finite

series of trials we can only hope that each comes up close to half the

time. Rather it’s that, as we do more and more trials, it will become

clearer and clearer that one side comes up more often than the other.

We can make this bias small—say, less than 1% or even 0.01%—if we

are careful enough about our coin and our tosses, but we can’t make

it go away completely.

How about a dishonest answer instead? So what if there’s no exactly

fair coin. The equally likely outcomes assumption captures what
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we’d like to think a coin does, it’s a reasonably accurate estimate of

what coins actually do, and it makes analyzing the resulting events

mathematically easy. So we’re just going to ignore the slight devia-

tions and pretend that real coins satisfy the ideal of fairness. This

mild self-deception is harmless (especially if we acknowledge that

we’re engaging in it) and is the only practical way to come to grips

with the probabilities that arise in tossing coins.

For similar reasons, there’s no perfectly fair die on which each num-

ber comes up exactly 1
6

th
of the time and no perfectly shuffled deck

from which we are equally likely to deal any poker hand but we’ll

pretend that such ideal dice and decks exist. We’ll take our lie even

further.

At Random 4.3.12: By choosing an element at random from a set

S, we mean performing an “thought” experiment with sample space

S and equally likely outcomes probability measure. In other words,

each element of S is equally likely to be chosen in our experiment.

I called the experiment above a thought experiment because we will

usually not even attempt to specify how to make the choice so that

all outcomes are equally likely. Not that this omission really matters,

because, as with the coins and dice and decks, such choices are at

best only approximately possible in practice.

At this point, we’ve made life pretty easy for ourselves. All we have to

do is take our favorite sample space, utter the magic words “equally

likely” or “at random” and we’re off to the races. Well, not quite.

First, an observation that’s useful in counting such choices.

Repetition and At Random Choices 4.3.13: When we make

several choices at random from the same set A of possibilities, the

answer to the question “Are Repetitions allowed?” is assumed to be

“Yes” by default—that is, unless it is explicitly indicated that repeti-

tions are not allowed.
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Thus if we make ` choices “at random” from a set A of m possibil-

ities, then, by default, outcomes will be sequences of length ` from

A, so we’ll find S = A` and #S =m`.

So, experiments where we make several choices at random from a

set A are easy to set up. There’s just one pitfall to avoid, alluded

to in the discussion following our first Example 4.1.2. To answer

the questions we’re interested in about such an experiment, we of-

ten need only some summary totals derived from the sequence of

choices and not the full sequence itself. It’s tempting to observe only

these totals and use them as our outcomes, rather than the full se-

quence, because we get a much smaller sample space. We must avoid

this, however, because the equally likely outcomes probability mea-

sure on these smaller spaces predict incorrectly the frequencies of

these summary totals. I’ll first state the rule to follow, then give some

examples to explain how to apply it and why it’s needed.

Observe Sequences not Summaries 4.3.14: Suppose an experi-

ment involves picking a random sequence s of length ` from a set A.

Recall that, by the words sequence and random, we mean that:

i) We make a sequence of ` choices from a fixed set A with repeated

choices allowed (and order mattering).

ii) In making every successive choice, each element of A is equally

likely to be selected, regardless of any preceding choices.

Then the only sample space on which the equally likely outcomes

probability measure correctly predicts how often we’ll see each out-

come is the space S = A` in which the outcomes are just the sequences

s. In other words, in such experiments, our observation must be the

full sequence, and not any summary of it that yields a smaller sample

space S′, even if we only want to study events in S′

To explain what sort of alternate S′s we need to avoid, and why they

don’t work, let’s look at the examples in i) and ii) of Example 4.1.2.

In i), we roll a red die and a blue die and observe the numbers on

each getting a the sample space S = D2 of sequences of length 2
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4.3 Equally Likely Outcomes

in the numbers from 1 to 6 which has #S = 62 = 36. The equally

likely outcomes probability on this space thus says that each roll

has probability 1
36 . Let’s see why this is the right expectation, say for

the roll (3,2). By Observe Sequences not Summaries 4.3.14.ii), the

chance of seeing a 3 on the red die is 1
6 (all 6 numbers are equally

likely) and then the chance of seeing a 2 on the blue die is also 1
6

so we expect Pr
(
(3,2)

)
= 1

6 ·
1
6 =

1
36 . Of course, the same argument

applies to any roll.

This is exactly the sample space we used in Problem 4.3.4. Notice

that all the questions we answered there involved only the total on

the two dice which is a number from 2 to 12. Why not just observe

this total—call it t—and use the sample space T = {2,3, . . . ,11,12}?
Well, first notice that these totals are not equally likely: in fact, none

of the 11 totals has probability 1
11 . Table 4.3.5 shows their actual

probabilities. Fine, but so what if they’re not equally likely? Once we

have Table 4.3.5 we know how likely each is, and that’s all we needed

to answer the questions in Problem 4.3.4.

True enough, but there’s one fatal flaw. The only way to find the

probabilities in the table is to view each total t , not as a single out-

come in T , but as an event or subset of outcomes in S, count the

rolls s that total to t and apply the Equally Likely Outcomes For-

mula 4.3.2. To sum up, the right probability measure on T is not the

equally likely outcomes one, and the only way to find the right one is

to use the equally likely outcomes probability on the “right” sample

space S.

Problem 4.3.6 and Problem 4.3.8 are very similar. Especially in the

latter, it’s very tempting to hope that we could get by with a sam-

ple space containing the 11 total numbers of heads in Table 4.3.9

as outcomes, instead of the sample space S of 1024 sequences of

length 10 in H and T. But once again, the only way to find the prob-

ability in Table 4.3.9 is by counting how many sequences contain

each number of Hs. There’s no way to get started except by using
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4.3 Equally Likely Outcomes

the sample space S of full sequences.

And, once again, the equally likely outcomes probability is the right

one on S. We expect, for example, to see an H on the first roll 1
2 the

time, a T on the second roll 1
2 the time, and a T on the third roll

1
2 the time. So we expect to see the sequence HTT with probability
1
2 ·

1
2 ·

1
2 =

1
8 (and likewise for any other sequence of tosses).

You may be wondering why the rule—Observe Sequences not Sum-

maries 4.3.14—against observing only partial, or summary informa-

tion applies only to experiments that consist of choosing sequences.

Well, it’s true that whatever flavor the outcomes to an experiment

have, you shouldn’t try to condense or summarize your observation

of them. However, summarizing is just not very tempting in the other

cases: you’ll naturally tend to record all the relevant data when an

experiment involves choosing a list or subset, so there’s no need for

any injunction in these cases.

Let me close this section by admitting that I have glossed over one

very important issue. It’s hidden in Observe Sequences not Sum-

maries 4.3.14.ii), in the assumption that each choice is an equally

likely one, uninfluenced by any choices that may have preceded it. In

the examples above, this assumption seems natural (and does hold).

But, how should we check this less familiar cases? To answer this

question, we need to introduce the notions of conditional probabil-

ity and independence. This is the subject of the next section.

There’s one more observation that’s helpful in setting up and count-

ing sample spaces and events in them.

And in Probability 4.3.15: When “and” is used in describing

an experiment and its sample space, it’s usually andthen@andthen.

When “and” is used in describing events, it’s usually andalso@andalso.

The reason has to do with the active spirit in which we think of prob-

ability. When we’re describing an experiment and setting its sample

space, we talking about what we did. Then “and” is usually used ex-

tensively to connect a sequence of actions: we do this first andthen
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4.3 Equally Likely Outcomes

we do that second. By the Multiplication principle 3.7.1, this kind

of “and” results in a sample space S that is product of the sample

spaces for the first action and for the second.

When we’re describing an event, we talking about what happened.

Then “and” is usually used to restrict what happened or was ob-

served: we observed this andalso we observed that. That is, when

we use “and” to describe an event, we are usually expressing it’s set

of outcomes as the intersection of two larger events. You can take

advantage of this using Equally Likely Outcomes Formulae for

Probabilities 4.3.3.i), if you already know the order of the union of

the two larger events. But more commonly, you need to find the right

way of “dividing” the experiment into pieces with so that each of the

two events describes a subset of a single piece. You’ll see examples

of this in Problem 4.3.16 and Problem 4.3.17 (each time “both” is

used there it means “the first andalso the second”)

Now for a little more practice in setting up sample spaces. Remember

to leave your answers in fraction form.

Problem 4.3.16: Consider the experiment of drawing a card at ran-

dom from a standard deck, replacing the card and shuffling the deck,

and then drawing a second card at random from the deck.

i) What should the sample space S be for this event and what is

#S? Hint: Remember Repetition and At Random Choices 4.3.13.

ii) Find the probability that:

a. The 7 of ♥ is picked both times.

b. The two cards picked are the same.

c. Both cards have the same value (i.e. are a pair).

d. Both cards have the same suit.

e. Both cards have the same color.

f . Both cards are face cards.

g. The first card is a face card or the second card is a face card.

h. Exactly one card is a face card
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Problem 4.3.17: Consider the experiment of drawing a card at ran-

dom from a standard deck and then drawing a second card at ran-

dom from the deck without replacing the first card.

i) What should the sample space S be for this event and what is

#S? Hint: In this variant the answer to R? is “No”; the usual rule that

R? is “Yes” given by Repetition and At Random Choices 4.3.13 is

overruled by that “without replacing”.

ii) Find the probability that:

a. The 7 of ♥ is picked both times.

b. The two cards picked are the same.

c. Both cards have the same value (i.e. are a pair).

d. Both cards have the same suit.

e. Both cards have the same color.

f . Both cards are face cards.

g. The first card is a face card or the second card is a face card.

h. Exactly one card is a face card

Now that we’re getting quite familiar with understanding how to set

up the sample spaces for an experiment, we can start using more in-

formal language to ask questions. Indeed, it’s very common to sim-

ply indicate what happens in the experiment and then start right in

asking about the probability of seeing various events. It’s then up to

you to determine what observation is right, describe the correspond-

ing sample space is, and find #S. You’re doomed if you jump right

and try to start computing probabilities, because until you know S
you don’t know what outcomes to count to get your numerators and

until you know #S you don’t have the right denominator.

Find S and #S First 4.3.18: In any probability problem, before you

start to calculate probabilities, make sure to:

i) Describe the sample space S: that is, determine the appropriate

observations and outcomes for the experiment and describe the set of

all outcomes.

ii) Find #S: that is, use your description of S to count the outcomes.
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First, here’s a problem that doesn’t ask you to write down the sample

space, but does start by asking you to count it.

Example 4.3.19: Each week during a 10 week season a coach

chooses a player at random from a basketball team of 12 players to

record the results of the weekly team free throw shooting practice.

i) How many ways can he choose the 10 recorders?

Solution
We are making 10 choices (one per week) from a set of 12
possibilities (the players). There’s nothing to make us overrule

the default of Repetition and At Random Choices 4.3.13 so

the sample space S consists of sequences of 10 players and

#S = 1210 = 61,917,364,224. Now we are ready to compute prob-

abilities.

ii) Find the probability that:

a. None of the 3 centers is ever picked.

b. A center is picked the first week of the season.

c. A center is picked the first week of the season but not the last

week of the season.

d. A center is picked the first 3 weeks of the season.

e. No player gets picked as a recorder twice.

f . At least one player gets picked twice.

Solution

a. Here the outcomes are sequences of 10 choices from the 9 non-

centers. There are 910 = 3,486,784,401 of these so the probabil-

ity is 3,486,784,401
61,917,364,224 .

b. Here there 3 are choices the first week, then 12 for the other

9 weeks. amoans 3.8.3 tells us to multiply these so there are

3 · 129 = 15,479,341,056 and a probability of 15,479,341,056
61,917,364,224 .

c. Here there 3 are choices the first week, 9 for the last (the 9 non-

centers) and 12 for the other 8 weeks. amoans 3.8.3 tells us to

multiply these so there are 3 · 9 · 128 = 11,609,505,792 and a

probability of 11,609,505,792
61,917,364,224 .
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d. Now there 3 choices the first 3 weeks and 12 for the other

7 weeks, giving 33 · 127 = 967,458,816 and a probability of
967,458,816
61,917,364,224 .

e. Now the answer to R? is “No” and we need to count lists of length

10 from a set of 12 elements getting the permutation P(12,10) =
239,500,800 and a probability of 239,500,800

61,917,364,224 .

f . This event is the complement of the previous one so we

can just apply Complement Formula for Probabilities 4.2.3

or Equally Likely Outcomes Formulae for Probabilities

4.3.3.iii) to get the probability is 1− 61,677,863,424
61,917,364,224 .

Problem 4.3.20: An English professor assigns each of the 10 stu-

dents in her seminar to write on one of 5 authors at random.

i) How many ways can the authors be assigned?

ii) Find the probability that:

a. None of the students is assigned to write on Virginia Woolf.

b. Jane and Tom both get assigned to write on Virginia Woolf.

c. Exactly 2 students get assigned to write on Virginia Woolf. Hint:

How many choices are there for the pair of students? You may

find it useful to refer to Problem 4.3.6 or Problem 4.3.8.

d. At most 2 students get assigned to write on Virginia Woolf.

Here are typical problems that will trip you up if you don’t pay at-

tention to Find S and #S First 4.3.18 because they start right out by

asking you for some probabilities. Remember, always start by deter-

mining what outcomes you’ll observe and counting the sample space

they form. Only then are you ready to start finding any probabilities

you are asked for.

Problem 4.3.21: A computer science quiz contains 15 True/False

questions. If you select your answer to each question at random,

what is the chance that:

i) You’ll get no questions right.

ii) You’ll get the first question right and the last question right.

iii) You’ll get exactly 8 questions right.
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iv) You’ll get at least 13 questions right.

Problem 4.3.22: In Manhattan Avenues run north-south and num-

ber up from east to west and streets run east-west and number up

from south to north. You walk from 2nd Avenue and 4th Street to 9th

Avenue and 8th Street, going only west (up the avenues) and north

(up the streets). If you select your route at random, what is the prob-

ability that you’ll,

i) pass through the intersection of 9th Avenue and 4th Street?

ii) pass through the intersection of 6th Avenue and 6th Street?

iii) pass through the intersection of 9th Avenue and 4th Street and

through the intersection of 6th Avenue and 6th Street? Hint: Don’t

count, draw a picture.

iv) reach 9th Avenue before you reach 8th Street?

v) walk at least one block along 5th Street?

Hint: All routes are 11 blocks long and go west 7 blocks and north

4 blocks. Knowing which 4 of the 11 blocks you were walking north

tells you which 7 you were walking east, and hence what your route

was.

First steps in the minefield

To show how far we have already come in understanding probabili-

ties, I’ll close this section by setting up carefully the sample spaces

that arise in two of the examples from Section 2.1, and then veri-

fying the informal probabilities that were calculated there. In fact,

you’ll be able to do all the necessary calculations: I’ll just ask the

questions.

Problem 4.3.23: First, we’ll deal with Lightning strikes twice.

We’ll start with a warmup, then move to the real thing.

i) Suppose we roll a red die and a blue die and observe the number

that comes up on each.
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a. What is the chance that both numbers that come up will equal

4?

b. What is the chance that the 2 numbers that come up will be equal

to each other?

ii) Suppose we observe the winning number in the New Hampshire

pick4 (remember this is just any 4-digit number between 0000 and

9999) and, on the same day, observe the winning number in the Mas-

sachusetts pick4.

a. What is the chance that both winning numbers will equal 8092?

b. What is the chance that the 2 winning numbers will be equal to

each other?

iii) What is the chance of that the number 8056 will come up tomor-

row in both drawing of the New York win4?

iv) What is the chance of the “phenomenal 100 million to one” event

that the same number (from 0000 to 9999) will come up tomorrow

in both drawing of the New York win4?

v) What is the chance of the “one in a million” event that the same

number (from 000 to 999) comes up two days in a row in the Ne-

braska pick3?

Next, we’ll turn to the fictitious example AIG gives back: a fairy

tale with a moral. We did all the calculating in Example 3.8.42.

You can refer to that problem for the numbers you’ll need here.

Problem 4.3.24: Consider the basic trial of picking at random one

of 227,719,424 Americans citizens and recording his or her unique

social security number. For this trial we can think of the sample

space as the set A of all 227,719,424 social security numbers. Now

consider the experiment of repeating this basic trial 18,000 times,

each time picking one of the 227,719,424 Americans at random, and

observing all 18,000 social security numbers.

i) What is the sample space S for this experiment and what is #S?

ii) What is the probability that all all 18,000 social security numbers

observed are different?
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iii) What is the probability that least one American is selected more

than once?

Here’s a final problem that ties up these two examples. About a year

and a half after the Massachusetts pick4 (originally called the State

Lottery) began operating in April, 1976, the Lottery’s public relations

director was asked by a reporter whether any winning number had

come up more than once. His response, off the top of his head, was,

“Of course, not” because there were 10,000 possible number and

only 500 numbers had been picked.

Problem 4.3.25: What is the probability that the public relations

director was right, if each day’s number were truly drawn at ran-

dom? If he was right, what conclusion would you come to about the

drawings?

Some graduate students at M.I.T. reached the same conclusion: either

there were repeated numbers, or the Lottery was being fixed. There

was enough of an outcry that the State Lottery Commissioner was

forced to write a letter of correction to the Boston Globe, pointing

out that had been several repeated winning numbers.

To sum up these examples. if we make a sequence of random choices

from a large set of possibilities, the chance of seeing a previously

specified number (say, 8092) on any choice is small. Seeing a given

previously specified twice in a row is extremely unlikely. But the

chance of seeing the same (but unspecified) number twice in a row

is not tiny: it’s exactly the same as the chance of seeing a specified

number once. And, after a fairly small number of choices have been

made, it’s almost certain that you’ll have seen some number come

up more than once.

Or, more graphically. If there are a lot of “places”, it’s unlikely for

lightning to strike in any previously chosen place at all. For lightning

to strike twice in a row in any previously chosen spot is extremely

unlikely. But for lightning to strike twice in a row in some unspecified
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place is again only unlikely. And if we watch a lot of lightning strikes,

we’re almost sure to see lightning strike twice somewhere.

4.4 Conditional Probability

We now come the spot where many of the bodies are buried, the topic

of conditional probability. Why does this notion cause so much diffi-

culty for so many students? Not because it involves any complicated

formulas or tricky counting. Like ordinary probabilities, conditional

probabilities turn out to be fractions whose numerator and denomi-

nator each count some set of outcomes.

No, the difficulties are in understanding what question is being asked.

Mastering conditional probabilities comes down to learning to read

questions carefully and detect the clues that tell you what kind of

probability is being discussed in each sentence. I’ll give you a very

cut-and-dried method for finding these clues. Once you’ve located

them, finding the answer is usually a piece of cake.

Basic Conditional Probabilities

What we are trying to understand about an experiment with con-

ditional probabilities is very simple. The ordinary probability of an

event E tells us how often to expect to observe an outcome in E if

we know only the measure Pr and no other information. Conditional

probabilities for E tell us how these expectations should be adjusted

in the light of partial information about the outcome. We provide

this partial information by specifying a second event F in which we

assume that the observed outcome does lie.

In other words, a conditional probability predicts the fraction of out-

comes that will lie in E, assuming that it’s known that the outcome
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already lies in F . As we’ll soon see this probability may or may not

equal, or be close to the probability of E itself. What we’re gener-

ally interested in understanding, is just how the assumption that F
happened affects (or doesn’t) the chance that E will happen.

A typical question where we’d like such information is in under-

standing prevalence and risk factors for diseases. I’ll stick to some

examples dealing with cancer rates and based on a recent SEER re-

port of the National Cancer Institute. In 2006, there were a total of

11,384,892 cases on cancer in the U.S. of which 6,216,003 were in

men and 5,168,889 in women. So the probability that a randomly

chosen cancer victim is male is about 55% and female about 45%. Is

this true of specific types of cancers? To answer this question, we

can assume that the cancer is of a particular tissue, and then ask for

the conditional probability that the victim is male or female.

At one extreme, we have cancers in gender specific tissues like the

prostate and ovaries, where all cases are, by definition, in one sex.

All the 2,177,975 cases of prostate cancer are in men and all the

176,007 cases of ovarian cancer are in women. So if we assume the

cancer is of the prostate, then the chance that the victim if female

is 0 (or 0%) and, if we assume that the cancer is of the ovary, then

the chance that the victim is female is 1 (or 100%). Other cancers

like breast cancer occur almost, but not quite, always in one sex: of

2,546,325 cases of beast cancer only 13,132 (or about 0.5%) were

in men. Here again, we attribute the difference to gender specific

biology, especially hormonal differences.

Other cancers appear to strike men and women with roughly equal

frequency. For example, there were 536,944 cases of colorectal can-

cer, 367,925 of melanoma and 171,522 of lung cancer in men ver-

sus 567,158, 390,763 and 193,474 in women. So, for example, the

chance that a victim of melanoma is male is 367,925
858,688 , or just over 48%.

Finally, there are cancers that are substantially more frequent in one

sex than the other, but where it’s not clear whether this is due to
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biological or behavioral differences. Lung cancer used to be in this

category 50 years ago, attacking men far more often than women, be-

cause smoking was much more prevalent amongst men than women

in the first half of the 20th century. What we see today is the result

of the increase in smoking amongst women from 1935-1965. In fact,

because male smoking rates peaked (at 67% !) at the end of World

War II, lung cancer rates in men have been declining for 15 years,

while those for women are only peaking now.

In these examples, the SEER report handed me the counts that

formed the numerator and denominator of my conditional proba-

bility. How do we find them for ourselves? Figure 4.4.1 provides a

geometric picture of what’s involved that leads to a simple formula.

Here Pr(E) measures the fraction of trials when the outcome lies

S -→

E -→

←- F ←- F

E ∩ F

Figure 4.4.1: Picturing the Conditional Probability Pr(E|F)

in the upper E rectangle over the total fraction of 1 in the large S
square. On the right, we assume that the observed outcome was in

the F rectangle, so we can ignore outcomes outside this rectangle.

Now to say that the outcome lies in E means that it’s in the upper

square, where the E and F rectangles overlap or intersect, which is

just E∩F . So, on the right, the conditional probability we are after is

the fraction of trials when the outcome lies in the upper E∩F square

over fraction when it lies in the F -rectangle.

In both cases, we are taking the ratio of the upper half over the

whole. But in the conditional probability we forget everything out-

side the right F rectangle because we assume the outcome lies there.
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All we need is to introduce the notation for conditional probability

and we can translate this picture into a formula. Fix a sample space

S with a probability measure Pr and two events E and F of S.

Conditional Probability Formula 4.4.2: We write Pr(E|F)—
read, the conditional probability of E given F—for the probability of

observing an outcome in E assuming or given that the observed out-

come does lie in F . Then,

i) For any probability measure Pr, Pr(E|F) = Pr(E ∩ F)
Pr(F)

.

ii) If Pr is the equally likely outcomes probability measure on S, then

Pr(E|F) = #(E ∩ F)
#F

.

The first formula is just the translation of the picture “blue square”

over “red rectangle”. It’s the really only really key formula. The for-

mula in ii) is an easy consequence. Using the Equally Likely Out-

comes Formula 4.3.2, Pr(E∩F) = #(E∩F)
#S and Pr(F) = #F

#S . Multiplying

both sides by #S, these tell us that
#(E ∩ F)

#F
= #S · Pr(E ∩ F)

#S · Pr(F)
= Pr(E ∩ F)

Pr(F)
after cancelling.

This version is most convenient for calculating in the usual equally

likely outcomes case, but we’ll use the first quite a bit because it’s the

one that reminds us of Figure 4.4.1 and the idea behind conditional

probability.

If we clear the denominator in the Conditional Probability For-

mula 4.4.2 we get a restatement so useful it deserves its own name.

Intersection Probability Formula 4.4.3: For any probability

measure Pr, Pr(E ∩ F) = Pr(F) · Pr(E|F).

This formula is intuitively clear when re-expressed in the active spirit

of probability. What has to happen for the an outcome in the event

E ∩ F to be observed? By definition, both E and F have to happen.

The factor Pr(F) is the chance of the second of these two events

occurring. Of outcomes where F happens, what fraction also lie in E?

This is exactly what we mean by the conditional probability Pr(E|F),
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depicted on the right of Figure 4.4.1. That is the chance that E and

F both happen is the product of the chance that first F happens and

that then that, given this, E happens too.

Of course, we could also think of first asking for E to happen and

then for F to happen, given that E is known to occur: this gives

Pr(E ∩ F) = Pr(E) · Pr(F|E). Warning: you need to keep your Es and

Fs straight here. Neither Pr(E)·Pr(E|F) nor Pr(F)·Pr(F|E) bears any

relation to Pr(E ∩ F). See, for example, Order Matters for Condi-

tional Probability 4.4.4.

This formula is called the Multiplication Formula in many books but

we won’t use this term. A special name is not needed and this one

gets confused with the Multiplication principle 3.7.1. Not surpris-

ingly, this variant is used to compute probabilities of intersection

events. We’ll look at some examples at the end of this subsection.

Up to this point. when we have considered probabilities that involve

more than one event like Pr(E ∪ F) or Pr(E ∩ F), the order in which

we took E and F did not affect the probability—for the simple reason

that union and intersection are symmetric operations to the events

do not depend on the order: E ∪ F = F ∪ E and E ∩ F = F ∩ E. Not so

for conditional probability.

Order Matters for Conditional Probability 4.4.4: Always

pay careful attention to the order of the events E and F in a condi-

tional probability because the two probabilities Pr(E|F) and Pr(F|E)
are almost never equal.

In finding Pr(E|F), we assume F is observed and ask what is the

chance of observing E. In finding Pr(F|E), it’s E that we assume ob-

served and F that we ask about. nd ask what is the chance of ob-

serving E. The fractions that give these probabilities always have the

same numerator—Pr(E ∩ F) which does not depend on the order

of E and F—but the denominators—the probability of the assumed

event—are different because F is assumed in the first case and E in

the second.
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4.4 Conditional Probability

Let’s try a few examples to see that using the Conditional Proba-

bility Formula 4.4.2 is easy and confirm that Order Matters for

Conditional Probability 4.4.4. I have solve a few parts to get you

started but the plan is very simple. Note that I always start by de-

scribing the sample space S and counting it, in keeping with our rule

Find S and #S First 4.3.18. Strictly speaking, we’ll never need to

know #S, as it does not appear in the the Conditional Probabil-

ity Formula 4.4.2, but we do need to understand what outcomes

to count the events that do appear in this formula and the best way

to make sure of this is to start with S itself. Next, we count each of

the events E, F and E ∩ F . Then, we simply plug into Conditional

Probability Formula 4.4.2.ii) to find either Pr(E|F) or Pr(F|E).

Problem 4.4.5: We roll blue and red dice and record the number

on each as usual. For each pair E and F of events, find the two con-

ditional probabilities Pr(E|F) and Pr(F|E).
i) E = “total of 9”, F =“blue die comes up 3”.

Solution
As usual, the sample space S consists of the 36 sequences of

length 2 in the numbers 1 to 6. Here #E = 4 (see Problem 4.3.4

for a table of these counts) and #F = 6 because we can have any

number on the red die. If E ∩ F occurs then we have a total of 9
with a 3 on the the blue die, so the red die must come up 6. Hence

#(E ∩ F) = 1. So Pr(E|F) = #(E∩F)
#F = 1

6 and Pr(F|E) = #(E∩F)
#E = 1

4 .

Note that the two are not equal.

ii) E = “total of 11”, F =“blue die comes up 4”. (Here the two con-

ditional probabilities do turn out to be equal)

iii) E = “total of 6”, F =“blue die comes up 5”.

Problem 4.4.6: We toss 4 coins and record the sequence of heads

and tails as usual. For each pair E and F of events, find the two

conditional probabilities Pr(E|F) and Pr(F|E).
i) E =“three heads”, F =“first toss is a head”.

Solution
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4.4 Conditional Probability

The sample space S consists of the 24 = 16 sequences of length

4 in the letters H and T. As in Problem 4.3.6 and Problem 4.3.8,

the number of outcomes with exactly ` heads is the combina-

tion C(4, `), so #E = C(4,3) = 4. Sequences in F consist of

an H followed by an sequence of length 3 so #F = 23 = 8.

Sequences in E ∩ F consist of an H followed by a sequence of

length 3 with exactly 2 more H’s so #(E ∩ F) = C(3,2) = 3. So

Pr(E|F) = #(E∩F)
#F = 3

8 and Pr(F|E) = #(E∩F)
#E = 3

4 . Note again that

the two are not equal.

ii) E =“last toss is a head”, F =“first toss is a head”.

iii) E =“at least 3 heads”, F =“first toss is a head”.

Problem 4.4.7: We select a poker hand at random. For each pair E
and F of events, find the two conditional probabilities Pr(E|F) and

Pr(F|E).
i) E =“straight”, F =“hand contains 5♥, 6♦, 7♥ and 8♣”.

Solution
The sample space S consists of the 5 card subsets of a 52 card

deck with order C(52,5) = 2,598,960, as in Problem 3.6.17. Like-

wise, we can read off #E = 10,200 from the count of straights in

Poker Rankings 3.8.58. The hands in F consist of the 4 given

cards, plus one of the other 48 so #F = 48. When will this

card give a straight? When it’s a 4 or a 9 so #(E ∩ F) = 8. So

Pr(E|F) = #(E∩F)
#F = 8

10,200 =
1

1275 and Pr(F|E) = #(E∩F)
#E = 8

48 =
1
6 .

Here the two conditional probabilities are not just different, they

are very different. We can see that this is to be expected if we go

back and think about what the conditional probability means.

The value Pr(E|F) = 1
1275 is the answer to the question, “How

often will a straight contain the cards 5♥, 6♦, 7♥ and 8♣?”: not

often, because of the more than ten thousand of straights, only

8 have these cards. The value Pr(F|E) = 1
6 is the answer to the

question, “If I’m given the cards 5♥, 6♦, 7♥ and 8♣ and draw a

fifth, how often will I make a straight?”: quite often, because 8
those 48 fifth cards do the job.
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4.4 Conditional Probability

ii) E =“straight or straight flush”, F =“hand has a 5, a 6, a 7 and

an 8”.

Solution
Once again, we can read off #E = 10,200 + 40 = 10,240 from

Poker Rankings 3.8.58. To determine a hand in F . we now need

to choose 4 times (once for each card) to determine the 4 suits,

and then pick one of the other 48 cards. Since in picking the suits

R? is “Yes” we have 44 = 256 possibilities so #F = 256 · 48 =
12,288.

Some of the hands in F are now flushes, which wasn’t possible

in i), and to make it easy to count E ∩ F , I added the straight

flushes to E. This means that, once again, the hands in E ∩ F are

those in F that have values in sequence. This happens whatever

the suits of the first 4 cards as long as the fifth card is a 4 or a

9 so #(E ∩ F) = 256 · 8 = 2048. So Pr(E|F) = #(E∩F)
#F = 2048

12,288 =
1
6

and Pr(F|E) = #(E∩F)
#E = 2048

10240 =
1
5 .

The value Pr(E|F) is unchanged because given a hand in F what

we need to get one in E is the same: a 4 or 9 are our fifth card.

But the value Pr(F|E) is much larger because now F contains all

straights whose low card is a 4 or 5—since these are 2 of the 10
possible low values for a straight, we expect, and get, probability
2
10 =

1
5 .

iii) E =“straight or straight flush”, F =“hand has a 5, a 6, a 8 and an

9”.

iv) E =“full house”, F =“hand has at least three 5s”.

v) E =“full house”, F =“hand has at least two 7s”.

Let’s take stock. A few of the problems above called for some

thought, but the thought was needed to count events and had noth-

ing to do with the fact we were going to use these counts to find a

conditional probability. Using the Conditional Probability For-

mula 4.4.2 itself was always just plug and chug.
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Distinguishing Conditional Probabilities

OK. Now we are ready to tackle the hard part of working with con-

ditional probabilities: understanding what question is being asked.

Let’s start with some examples, more than a few, to get a feel for the

difficulty.

Example 4.4.8: Consider an experiment that involves picking a stu-

dent in your class at random and recording his or her age, sex and

major. We’ll think of the sample space S for this experiment as the

set of students in your class, but we know how to ask questions

about these three attributes, so we can consider the events E =“21

or older”, F =“male”, G =“psychology major” and H =“biology ma-

jor”.

What probability—expressed in terms of the events E, F , G and H—

should we calculate to answer each of the following questions about

students chosen at random in your class? The answers involve not

only these events, but their unions, intersections, complements and

conditional probabilities. See how many you can write down on your

own before taking a look as the answer key.

i) What’s the chance the student is 21 or older?

ii) What’s the chance the student is female?

iii) What’s the probability the student is 21 or older or is male?

iv) What fraction of the male students are 21 or older?

v) What’s the probability of picking a male aged 21 or older?

vi) How many students 21 or older are male?

vii) What’s the chance the student is majoring in biology or psychol-

ogy?

viii) Given that the student is a psychology major, what’s the chance

she’s a female?

ix) How many students are male psychology majors?

x) If a student is female, what’s the chance she’s a psychology ma-

jor?
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4.4 Conditional Probability

xi) Assuming he’s male, what’s the chance he’s a psychology major?

xii) What fraction are psychology majors?

xiii)What percentage of biology majors are 21 or older?

xiv) How many students are 21 or older and biology majors?

xv) How many biology majors are males 21 or older?

xvi) How many male biology majors are 21 or older?

Answer key

i) Pr(E)
ii) Fc

iii) Pr(E ∪ F)
iv) Pr(E|F)
v) Pr(F ∩ E)
vi) Pr(F|E)
vii) Pr(G ∪H)
viii) Pr(Fc|G)
ix) Pr(F ∩G)
x) Pr(G|Fc)
xi) Pr(G|F)
xii) Pr(G)
xiii) Pr(E|H)
xiv) Pr(E ∩H)
xv) Pr

(
(E ∩ F)|H

)
xvi) Pr

(
E|(F ∩H)

)
If you didn’t get a lot of these right, don’t worry. Most students feel

that they’re swimming in event stew when first faced with such a

range of questions. But, in a moment, I’ll outline an easy method for

telling which chunk in the bowl each such question is pointing at.

First, a few comments about the nature of the task. Most of these

questions involve more than one event. The few that don’t, like i) and

xii), are easy. Sometimes the individual events are complemented as

in ii): again, as long as we stay alert and remember that Antonyms
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Describe Complements 3.7.29 and that “female” is a way to say “not

male”, or than “under 21” means “not 21 or over” these are straight-

forward.

But most of these questions involve two of the events. When they

do the difficulty is not in identifying what the two events are. For

example, all of iii), iv), v) and vi) involve the age and sex of the stu-

dent so we know we’re dealing with E and F . What a bit tricky about

these is deciding how the two events are used to build the question.

Ignoring for the moment complements, we now have 3 basic ways to

construct a question from E and F . By taking a union, by taking an

intersection, or by taking a conditional probability. This last really

amounts to 2 possibilities itself. Because Order Matters for Con-

ditional Probability 4.4.4, swapping the event that is assumed to

have happened and the one whose probability is being asked about

changes the question. The upshot is that we not only need to find

ways to distinguish union, intersection and conditional probability,

but we need to find a way to tell which is the given or assumed event,

in a conditional probability question.

Union questions are almost always easy to detect. The word “or” is a

giveaway, and there’s no way to ask a union question without using

it. We just have to distinguish the connecting “or” that we see in iii)

or vii) from the “or” in “21 or older” that is internal to the description

of E. I chose this way of describing E to make this point: I could have

described E as “over 20” to avoid such confusion.

Likewise, when we see the word “and” linking two events, we’re

pretty sure we’re dealing with an andalso intersection. Remember

though that this applies only inside a fixed sample space or univer-

sal set: when we’re describing or count a sample space S, it’s more

likely to be an andthen “and” telling us to take the product of two

component sets of choices of get S. Still, in questions like those in

Example 4.4.8, an “and” pretty much tells us we have an intersec-

tion.
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The first difficulty we need to confront is that we can also ask about

intersections without using “and”. We just have to concatenate the

events we want to intersect as in v). We’re clearly asking for students

who are both “male” and “21 or older”—we could rephrase the ques-

tion as, “What’s the probability of picking a student who is male and

21 or older?”—but, as it stands, there’s no “and” to tip us off.

There are giveaway words for conditional probabilities too. Remem-

ber the idea is to assume that one event—it’s usual to call this the

given event—happened. So if we see something like “assuming that”

or “given that”, as in xi) or viii), we know we’re dealing with a condi-

tional probability in which the event that is assumed or given is the

given.

Another giveaway word is the conjunction “if” that introduces a con-

ditional subordinate clause, and this is where conditional probability

got its name. The if precedes a property that we are to mentally as-

sume in the question. So when we see an if clause in a question, as

in viii), we know that it describes the given event in a conditional

probability.

The second difficulty that faces us is that we can also ask for con-

ditional probabilities without using any of the giveaway words “if”

“given” or “assume” (or any of their synonyms like “suppose that”).

Let’s look again at xiii): “What percentage of biology majors are 21

or older?”. This is not an intersection question. We could ask about

E ∩ H without using an “and” but we’d say, “What percentage are

biology majors 21 or older?” What’s more, we know something about

these students—they’re biology majors. So this is a conditional prob-

ability question in which the given event is H (“biology majors”) and

we want to know how many of this given are in E (“21 or over”).

Let’s look now at the trickiest parts of Example 4.4.8 to identify.

Questions iv), v) and vi) all involve both ‘male” and “21 or older”—

that is both E and F . None of these questions uses any of the inter-

section or conditional probability giveaway words, and all three are
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asking for different probabilities. You can see from the Answer Key

that v) asks about the intersection Pr(E ∩ F), while iv) asks about

the conditional probability Pr(E|F) in which F is given, and vi) asks

about Pr(F|E) in which E is given. Remember that because Order

Matters for Conditional Probability 4.4.4, these are two dif-

ferent conditional probabilities. How do we tell what each of these

questions is asking?

Here then are the problems that confront us. How do we distinguish

the intersection from the two conditional probabilities? And how do

we tell which conditional is which? In other words, how do we tell

which is the given event and which the event whose probability we

are asking about? There two good tests. One is based on meaning

and the other on structure. Remember that a conditional probability

question is one in which we assume one event occurred and restrict

our attention to it, then ask about the probability that a second event

occurred. The next rule simply tells you to use this characteristic

“division of labor” between the two events to recognize conditional

probabilities.

Givens are known 4.4.9: If a probability question involves two

events and does not contain any giveaway words, ask: “Does the ques-

tion restrict our attention to outcomes in one event and ask about the

other, or does it ask about both events?”

i) If the question is asking about both, then it’s seeking an intersec-

tion probability.

ii) If is assumes one and asks about the other, then the question is

asking about a conditional probability and the assumed event is the

given one.

Let’s see how to apply this rule to iv), v) and vi). The question in

iv)—“What fraction of the male students are 21 or older?”—considers

male students and asks about their age: our attention is restricted

to the event F and we’re asked about E. So it’s seeking the condi-

tional probability Pr(E|F). The question in v)—“What’s the probabil-
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ity of picking a male aged 21 or older?”—asks about both gender and

age but assumes neither. So it’s seeking the intersection probabil-

ity Pr(E ∩ F). The question in vi)—“How many students 21 or older

are male?”—restricts our attention to students in E (who are 21 or

older) and asks about F (what fraction are male). So it’s seeking a

conditional probability in which E is the given, Pr(F|E).
Problem 4.4.10: Givens are known 4.4.9 applies even if there are

giveaway words, though it’s not needed in such cases. Apply this rule

to verify the answer to parts of vii)–xi) of Example 4.4.8.

On occasion, you may find yourself confused about the intended

meaning of a question and unable to decide for sure how to apply

Givens are known 4.4.9. In such situations, there’s a fallback rule—

Givens are in the Subject 4.4.11—that let’s you use the grammati-

cal structure of the question to look for the same conditional proba-

bility “division of labor”.

Givens are in the Subject 4.4.11: If a probability question in-

volves two events and does not contain any giveaway words, ask: “Is

the reference to one of the events contained in the subject of the ques-

tion?” You can usually recognize these without a lot of parsing be-

cause you can delete the reference from the question and still have a

grammatically complete sentence.

i) If neither event is in the subject, the question is asking about an

intersection probability.

ii) If one event is in the subject, then the question is asking about a

conditional probability and the event in the subject is the given one.

This is a lot more complicated to say than it is to do. To warm up,

let’s try it first on xiii), “What percentage of biology majors are 21

or older?”, which refers to E =“21 or older” and H =“biology ma-

jors”.The reference to E is the object of the main clause so we learn

nothing. But the reference “of biology majors” to H is in the subject.

So Givens are in the Subject 4.4.11 tells us that we are dealing with

the conditional probability Pr(E|H) in which H is the given event.
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Next, let’s try it on iv), v) and vi) which refer to E =“21 or older” and

F =“male”. In iv), the phrase “of the male students” referring to F is

in the subject so the rule tells us that we are dealing with the con-

ditional probability Pr(E|F) in which F is the given event. In v), both

events occur as parts of the object, so here we are being asked about

the intersection probability Pr(E ∩ F). Finally, in vi), the reference

to E occurs as a modifier to students, the subject, (“students 21 or

older”) so here we have the conditional probability Pr(F|E) in which

E is the given event. Note also that in deleting “of the male student”

iniv) or “21 or older” in vi) leaves a complete sentence, while deleting

“male” or “21 or older” in v) does not.

Problem 4.4.12: Like Givens are known 4.4.9, the rule Givens

are in the Subject 4.4.11 applies even if there are giveaway words,

though it’s not often needed in such cases. Apply this rule to verify

the answer to parts of vi)–xi) of Example 4.4.8.

Do these rules make every possible question completely cut and

dried? No, because we’re often interested in questions that involve

more than 2 events, like xv)–xvi) above. But we can use giveaway

words, and the ideas that Givens are known 4.4.9 and Givens are

in the Subject 4.4.11 to break down these more complicated events.

Problem 4.4.13: Here we’ll take apart xv)–xvi) in steps. To begin

with, we’ll focus on finding a given, if there is one, and not worry

about connecting to the events E–H.

i) First use Givens are known 4.4.9 to determine what part of the

question describes what is known or assumed about the outcomes

(if anything) and what part describes what we are asking about them.

ii) Now use Givens are in the Subject 4.4.11 to check your an-

swers by finding which events (if any) occur in the subject and which

in the object of the question.

iii) Use your answer to say whether the question involves a condi-

tional probability or not. Then state the probability being sought in

the words used in the question.
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Solution to xvi)

i) Here the questions tells to restrict our attention to “male biology

majors” and then asks us about those who are “21 or older”.

ii) The events that occur in the subject are “male and biology ma-

jor” and those that occur in the the object are “21 or older”.

iii) This asks for a conditional probability with “male and biology

major” as the given event and “21 or older” as the queried event. So

we want Pr(“‘21 or older”|“male and biology major”).

The next phase is to express the given subject event and queried

object event in terms of E–H using the basic operations of union,

intersection and complement. For each of xv)–xvi):

i) Express the given/subject event event in terms of E–H using the

basic operations of union, intersection and complement.

ii) Do the same for queried/object event.

iii) Combine these expressions with your answers above to deter-

mine what probability is being asked about in each part in terms of

E–H.
Solution to xvi)

i) The given event is “male and biology major” and this is F ∩H.

ii) The object event is “21 or older”’ which is just E.

iii) We were looking for Pr(“‘21 or older”|“male and biology major”)
or Pr

(
E|(F ∩H)

)

Probability Measures for Compound Experiments

We next want to look at some problems that use the variant in

part Intersection Probability Formula 4.4.3: Pr(E ∩ F) = Pr(F) ·
Pr(E|F). This formula provides far the easiest way to find intersec-

tion probabilities, when, as is often the case, we know, the necessary

conditional probabilities. Using the formula in this way is straight-

forward, as you’ll see.
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4.4 Conditional Probability

What’s a bit surprising, and calls for a bit more thought, are some

of the applications of this formula. It tells us how to find the appro-

priate probability measure for experiments in which outcomes are

not equally likely. These arise—quite commonly—when we consider

compound experiments that:

i) The compound experiment involves a succession of 2 (or more)

component experiments.

ii) Each component experiment has an equally likely outcomes

probability measure.

iii) The outcome of the first experiment affects what second experi-

ment we perform.

In such compound experiments, the equally likely outcomes proba-

bility is seldom the right one, and Intersection Probability For-

mula 4.4.3 tells us what probability measure is appropriate.

I’ll start with the most classic sources of examples, urns and balls.

The setup was inspired by Athenian legal system of the 5th century.

Each juror had a “guilty” and an “innocent” bronze disc: his vote

went into a bronze urn and the other was discarded into the wooden

one (to maintain voting secrecy). Versions of the system have been

widely used since. In the 18th century and 19th centuries, member-

ship in gentlemen’s clubs was often decided by dropping small balls

colored either white or black into a box. A white ball was a vote to

elect, a black one to reject. Such election were usually by veto rather

than plurality: a single black ball caused the rejection of the appli-

cant, and, to this day, when a veto is exercised we speak of black-

balling.

The balls were named ballota (Italian for small ball) and the box was

known as a ballot box. In the example above, used by the Associa-

tion of the Oldest Inhabitants of the District of Columbia, members

picked up either a black or white ball from the tray at the rear and

deposited it into the small chute from which it fell into the draw-
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Figure 4.4.14: A 19th century ballot box

ers below to be counted. The names have survived to the present

although the original procedure is now only used by Freemasons.

For our purposes, an urn is any container holding a number of ob-

jects that we’ll call balls with a narrow opening that lets us choose

balls without seeing them. We imagine that—for example, by shak-

ing the urn—it is possible to randomize the contents so that ev-

ery ball is equally likely to be chosen. We allow the ball to be vi-

sually different—we will usually suppose that they are labeled and

colored—so that we partially or totally identify what ball has been

selected. This “urn and ball” model has been studied by many of the

great creators of probability or 300 years. Jakob Bernoulli (whom we

met in Bernoulli’s Limit for ln 1.4.42) considered such problems

in 1713, and in 1795 the great Pierre-Simon Laplace uses them dozens

of times in his expository Essai philosophique sur les probabilites.

Example 4.4.15: Suppose we are given a red urn containing 8 white

balls labelled RW1 through RW8 and 8 black balls labelled RB1
through RB8, and a green urn containing 2 white balls labeled GW1
and GW2 and 2 black balls labelled GB1 and GB2. Our experiment

consists of picking an urn at random and then picking a ball from

the chosen urn at random and recording the label of the ball we se-

lected. Remembering Find S and #S First 4.3.18, we ask:

i) What’s the sample space S for this experiment?

ii) What’s the appropriate probability measure on S?
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The first question is easy: S consists of the 20 labels on the balls in

the two urns.

But there’s a twist. Although we picked an urn at random and a ball

at random from that urn, the balls are not equally likely to be picked.

We could arrange this, but we’d need to perform a different experi-

ment: pour all the balls from both urns into a yellow urn and choose

a ball at random from that urn. What difference does introducing

the extra step of picking one of the urns make? Well, it introduces

a conditional probability. Once we understand how, we can use the

Equally Likely Outcomes Formula 4.3.2 to unwind the unequally

likely outcomes in our experiment. The outcome will be that the balls

in the red urn each have probability 1
32 of being picked while those

in the green each have probability 1
8 of being picked!

Let’s focus on ball RW4 and let’s use R and G for the events of

picking the red urn and green urn. Since we picked an urn at random,

each of R and G has probability 1
2 of being chosen. Suppose that we

chose the red urn. When we pick a ball at random from this urn, each

of the 16 balls is equally likely to be picked. So we know that, if we

picked the red urn, the chance of seeing ball RW4 is 1
16 . This tells

us exactly that the conditional probability Pr(RW4|R) = 1
16 . But now

Intersection Probability Formula 4.4.3 tells us that

Pr(RW4∩ R) = Pr(R) · Pr(RW4|R) = 1
2
· 1
16
= 1
32
.

But the outcome RW4 is contained in the event R (the ball RW4 is in

the red urn), so Pr(RW4) = Pr(RW4 ∩ R) = 1
32 . The same argument

applies to any ball in the red urn by simply changing the label.

Problem 4.4.16: Argue exactly as above that:

i) Pr(G) = 1
2

ii) Pr(GB2|G) = 1
4

iii) Pr(GB2 ∩ G) = 1
8 Hint: Apply Intersection Probability For-

mula 4.4.3.

Conclude that the probability of observing any ball in the green urn

is 1
8 .
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We can check these probabilities by noting that the probabilities of

all the balls do indeed total 16 · 1
32 + 4 ·

1
8 = 1. In hindsight, it’s also

easy to see why we should expect the balls in the green urn to have

4 times as great a chance of being selected. In total, the balls in each

of the red and green urns have probability 1
2 of being selected. But

there are 4 times as many balls in the red urn so each is only 1
4

th
as

likely to be chosen.

A depressingly good parallel to this undemocratic example is pro-

vided by the United States Senate: if we think of Senate seats as urns

and voters as balls, then the probabilities in the example represent

the relative importance or weight of votes in different states. If you

live in a urn that contains a lot of balls like California or Texas, your

vote means a lot less than if you live in an urn with very few balls

like Vermont or Wyoming. Voters in Wyoming count more than 69
times as much as those in California!

Example 4.4.17: In the experiment of Example 4.4.15, let W denote

the event of choosing a white ball and B that of choosing a black ball.

Find each of the probabilities below:

i) Pr(R ∩W)
ii) Pr(R ∩ B)
iii) Pr(G ∩W)
iv) Pr(G ∩ B)

Solution
Now that we understand the probability measure on S, we can

do this by summing probabilities of outcomes. For example, R∩
W consists of the 8 outcomes RW1 to RW8, each of which has

probability 1
32 so Pr(R ∩ W) = 8 · 1

32 =
1
4 . Each of the other

probabilities also turns out to equal 1
4 by the same argument.

This approach, however, forces us to work with outcomes in the

compound experiment where outcomes are not equally likely.

However, there’s a second approach, again using Intersection

Probability Formula 4.4.3, that let’s us think in terms of

1—
1—
2—

a ·· ·· z ? 356 Comments welcome at �̂�

mailto:morrison@fordham.edu
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events in component experiments which remember each do have

equally likely outcomes. For example, the formula says that

Pr(R ∩ W) = Pr(R) · Pr(W |R). We know the chance of picking

the red urn at random is 1
2 . Likewise the change of picking a

white ball from the red urn at random is 8
16—8 of the 16 balls

are white, and we just apply the Equally Likely Outcomes

Formula 4.3.2. So Pr(R ∩ W) = 1
2 ·

8
16 =

1
4 . Similarly, we get

Pr(G ∩ B) = Pr(G) · Pr(B|G) = 1
2 ·

2
4 =

1
4 . I’ll leave the other two

to you.

We’d now like to go one stage further and repeat the procedure we’ve

just carried out without referring to labels on the balls. We’ll simply

pretend that we can distinguish the balls in some way without worry-

ing about how. We’ll work out the right probability measure, just for

practice, but then we’ll see that we can compute the probabilities of

the most salient events without referring to this measure explicitly.

Example 4.4.18: Suppose now the red urn contains 10 white and 2
black balls and the green urn contains 2 white and 10 black balls.

i) What’s the sample space S for this new experiment?

ii) What’s the appropriate probability measure on S?

iii) What’s the probability of choosing the green urn and a black

ball?

iv) What’s the probability of choosing the red urn and a black ball?

v) What’s the probability of choosing a black ball?

vi) If we chose a black ball, what’s the chance we chose the green

urn?
Solution

i) Once again, our sample space is just the set of 24 balls in the

two urns.

ii) Suppose x is any of the 12 balls in the red urn. Then (replacing

RW4 above by x,

Pr(x) = Pr(x∩ R) = Pr(R) · Pr(x|R) = 1
2
· 1
12
= 1
24
.
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Likewise, each ball in the green urn has a chance of 1
24 of being

picked. This checks with the total of 24 balls in the two urns.

iii) Pr(G ∩ B) = Pr(G) · Pr(B|G) = 1
2 ·

10
12 =

10
24 .

iv) Pr(R ∩ B) = Pr(R) · Pr(B|R) = 1
2 ·

2
12 =

2
24 .

v) Here we need to recognize that a black ball either comes from

the green urn or the red but never both so B = (B ∩ G)∪̇(B ∩ R).
Applying Equally Likely Outcomes Formulae for Probabilities

4.3.3.ii), Pr(B) = Pr(B ∩G)+ Pr(B ∩ R) = 10
24 +

2
24 =

10
24 .

vi) This question is easy as long as you don’t let it make you queasy.

Yes, we are assuming something about the second stage of our ex-

periment (choosing a ball) and asking something about the first

(choosing an urn), and the question seems to travel back in time.

But it makes perfect sense, and better still, we only have to plug in

values we already have to find this conditional probability. We want

to know Pr(G|B)—we know the ball is black, and wonder what color

was the urn—so we just plug in

Pr(G|B) = Pr(G ∩ B)
Pr(B)

=
10
24
12
24

= 10
12
.

A few comments about this example. I set this one up intentionally

so that all the outcomes were equally likely—each of the 24 balls has

a chance of 1
24 of being picked. So we can check all the answers we

got above by counting. For example to check iii)–v), just note that 10
of the 24 balls were black balls in the green urn, 2 were black balls

in the red urn, and 12 were black. We can even check vi) by noting

that 10 of the 12 black balls were in the green urn. Warning: in the

next problem, and in most problems of this type, only the method of

of the solution will work, because the outcomes will not be equally

likely. For example, although there are 2 black balls in each urn, the

answer to the question, “If we chose a black ball, what’s the chance

we chose the green urn?” will not be 2
4 !

Problem 4.4.19: Suppose now the red urn contains 10 white and 2
black balls and the green urn contains 4 white and 2 black balls.
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4.5 Organizing Related Probabilities

i) What’s the sample space S for this new experiment?

ii) What’s the appropriate probability measure on S?

iii) What’s the probability of choosing the green urn and a black

ball?

iv) What’s the probability of choosing the red urn and a black ball?

v) What’s the probability of choosing a black ball?

vi) If we chose a black ball, what’s the chance we chose the green

urn?

4.5 Organizing Related Probabilities

As the examples above demonstrate, we’ll often interested in relating

a lot of different probabilities determined by a few basic events, by

taking intersections, complements and conditionals. In this section,

I want to discuss the two most convenient ways to organize such

collections of related probabilities and display them together effi-

ciently. These are tables and tree diagrams. In each case, we mainly

need to understand how to read and write down such displays—

which mainly involves keeping straight where to look for or set down

probabilities of different types. At the end, we’ll see that tables and

trees are just different ways to display the same kinds collections of

information, but I’ll indicate what kinds of problems fit better with

each and we’ll work some examples.

Working with Probabilities in Tables

Let’s start with the basic case, in which we have just two events, E
and F . Our display, in this case, will contain the following kinds of

probabilities:

Probabilities from Two Events 4.5.1:

1—
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4.5 Organizing Related Probabilities

i) Simple probabilities that involve just a single event. These are

the probabilities of E and F and of their complements Ec and Fc . As

a shorthand, I’ll speak of an E-event to mean either E or Ec and an

F -event, either F or Fc below.

When we combine a pair of events, we’ll always choose one E-event

and one F -event. The reason is simple: E and Ec are mutually exclu-

sive, so intersection and conditional probabilities involving this pair

all automatically 0.

ii) Intersection probabilities that involve the intersection of an E-

event and an F -event. These are the probabilities Pr(E∩F), Pr(E∩Fc),
Pr(Ec ∩ F), and Pr(Ec ∩ Fc).
iii) Conditional probabilities that involve the probability of an E-

event given an F -event, or vice-versa. These are now eight of these,

because Order Matters for Conditional Probability 4.4.4:

first Pr(E|F), Pr(E|Fc), Pr(Ec|F), and Pr(Ec|Fc), and then, Pr(F|E),
Pr(F|Ec), Pr(Fc|E), and Pr(Fc|Ec).

That’s a mess’o’probabilities—16 in all. The key observation is that

all these numbers are determined by the 4 intersection probabilities,

or counts. Let’s see how.

i) First, the 4 simple probabilities. This comes down to the picture

Ec→

E→

F
↓

Fc

↓
E ∩ Fc E ∩ F

Ec ∩ FEc ∩ Fc

Figure 4.5.2: A probability Q-diagram

in Figure 4.5.2. If we know the probabilities in the four quadrants, we

know the probabilities in top and bottom, or left and right rectangles.

Algebraically, if we intersect the events in E, Ec and S with F , we get
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E∩F , Ec∩F and F . The relation E∪̇Ec = S of Complement Relations

3.7.23 yields (E ∩ F)∪̇(Ec ∩ F) = F . Applying the OrElse Formula

for Probabilities 4.2.6, we find that Pr(E∩ F)+ Pr(Ec ∩ F) = Pr(F).
Likewise, if we intersect with, Fc we find that (E∩Fc)∪̇(Ec∩Fc) = Fc
and Pr(E ∩ Fc)+ Pr(Ec ∩ Fc) = Pr(Fc).

Problem 4.5.3: Counts work just the same way. Show how to find

#E, #F , #Ec and #Fc from #(E∩F), #(E∩Fc), #(Ec∩F), and #(Ec∩Fc).
ii) Once we have the all the simple and intersection probabilities,

we have every conditional probability since the Conditional Prob-

ability Formula 4.4.2 Pr(E|F) = Pr(E∩F)
Pr(F) expresses each conditional

at the ration of an intersection and a simple probability.

Problem 4.5.4: Show that any 3 of the 4 intersection probabilities

determine the fourth (and hence all 16 Probabilities from Two

Events 4.5.1). Hint: What is the union of the 4 quadrants in Figure

4.5.2?

Table displays take advantage of this observation by laying out the

4 intersection probabilities in a way that makes it easy to read off all

the others. It’s easiest to see how from an example.

Example 4.5.5: Suppose we are just given the intersection counts

for a pair of events as in

Male Female Totals

Honors Core 142 162

Regular Core 563 645

Totals

Here our sample space S is the set of entering freshmen at a uni-

versity, and the events are E =“student is Female” (with comple-

ment the set of Male students) and F =“student is taking the Honors

core” (with complement the students taking the Regular core). As

we’ll see, there often little to be gained by introducing letters to de-

note the events: we just need to keep the meaning of each straight.

The columns of the table already tell us about the gender (E) and the

rows tell us about the core (F ).
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The interior or upper left portion of the table we have been provided

with contains intersection counts which are located where the corre-

sponding column and row meet. For example, the number #(Ec ∩ F)
of Male Honors students is the 142 located where the Male column

intersects the Honors row. The number 645 counts Female students

taking the Regular core, or #(E ∩ Fc).

Next, by simply totaling along the rows and columns, we complete

the table.

Male Female Totals

Honors Core 142 162 304

Regular Core 563 645 1208

Totals 705 807 1512

Thus, the right and bottom borders of the table giving totals tell us

about simple events. For example, the total number 807 of Female

students gives us #E and the bottom right entry with its grand total

1512 tells us the order of S.

Now, to get simple and intersection probabilities, we just divide each

entry in the table by #S = 1512. For example, the chance that a

student is a Male in the Regular core , Pr(Ec∩Fc), is 563
1512 . The chance

that a student is in the Honors core, Pr(F), is 304
1512 .

Conditional probabilities are always an intersection probability di-

vided by the given (simple) probability. So to find these we take the

intersection entry for the pair of events and divide by total entry for

the given event. For example, the chance that a Female student is in

the Honors core, Pr(F|E), is 162
807—the number of Female Honors stu-

dents divided by the number of Female students. The chance that a

Regular student is male, or Pr(Ec|Fc), is 563
1208 .

Problem 4.5.6: Use the table in Example 4.5.5, to find the proba-

bility that:

i) A student is Male.

ii) A student is Male and in the Honors core.
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iii) An Honors student is Male.

iv) An Male student is in Honors core.

Locating Probabilities in Tables 4.5.7: In tables, interior cells

give intersection counts or probabilities, and border cells give simple

counts or probabilities. To find each kind of probability below, use the

ratio indicated:

i) (Simple) Border total for the event row or column over the bottom

right, grand total.

ii) (Intersection) Interior value where the row and column of the two

events meet over the bottom right, grand total.

iii) (Conditional) Interior value where the row and column of the two

events meet over the border total for the given event row or column.

Problem 4.5.8: Complete the following table of percentages of peo-

ple with Anomalous and Normal trichromacy (red-green-blue vision)

by Gender. Hint: As a check, what is the grand total, if we are dealing

with percentages?

Men Women Totals

Anomalous 3.2 0.2

Normal 47.2 49.4

Totals

Use your table to find the probabilities that:

i) A randomly chosen person is a Woman.

ii) A randomly chosen Woman has Normal trichromacy.

iii) A randomly chosen person is a Woman with Normal trichro-

macy.

iv) A person with Normal trichromacy is a Woman

v) A person with Anomalous trichromacy is a Woman

We often want to split up a sample space not into just 2 disjoint

pieces but into several. In other words, we want to consider a Par-

tition of S 3.4.10 of S into pairwise disjoint sets whose union is all
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of S. Tables work just as well to handle probabilities with such par-

titions. The only difference is that there will be as many columns (or

rows) as there are subsets in the partition. Let’s try an example, again

involving trichromacy, but where we distinguish various subtypes.

Problem 4.5.9: Complete the following table of percentages of peo-

ple with Normal and three Anomalous types of trichromacy by Gen-

der.

Men Women Totals

Protanomaly 0.66 0.01

Deuteranomaly 2.50 0.18

Tritanomaly 0.01 0.01

Normal 47.21 49.42

Totals

Use your table to find the probabilities that:

i) A randomly chosen person is a Man.

ii) A randomly chosen Man has Deuteranomaly.

iii) A randomly chosen person is a Man with Deuteranomaly.

iv) A person with Protanomaly is a Man

v) A person with Deuteranomaly is a Man

vi) A person with Tritanomaly is a man

A table can also be specified by data other than the intersection prob-

abilities. The most common way to do this is to give the simple prob-

ability for one event and conditional probabilities in which this event

is the given. In this case, we can use each conditional probability to

find a corresponding intersection probability by multiplying using

the Intersection Probability Formula 4.4.3. A classic example is

the analysis of the British National Security Strategy that we looked

at in Trolling for terrorists. In the next problem, we’ll verify the

counts given there.

Problem 4.5.10: Suppose that Britain contains 50,000,000 Inno-

cent Citizens and 4,500 Terrorists. A computer system attempts

1—
1—
2—

a ·· ·· z ? 364 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.5 Organizing Related Probabilities

to identify Britons as either innocent or terrorist by monitor-

ing private information about them. Assume that the system clas-

sifies 99% of Innocent Citizens as innocent and 99% of Terrorists

as terrorist. Use this information to complete the table of counts

below. You should find that the total number of innocent Britons is

49,500,055.

Innocent Citizens Terrorists Totals

innocent

terrorist

Totals

Use your table to find the probabilities that:

i) A randomly chosen Briton is an Innocent Citizen.

ii) A randomly chosen Briton is an Innocent Citizen who is classi-

fied as innocent.

iii) A randomly chosen Briton is a Terrorist.

iv) A randomly chosen Briton is an Terrorist who is classified as

terrorist.

v) A randomly chosen Briton who is classified as innocent is a

Terrorist.

vi) A randomly chosen Briton who is classified as terrorist is a

Terrorist.

The same difficulties that arise in trying to identify terrorists also

come up in many other identification problems. The most famous

class occur in medicine when trying to diagnose illnesses. Let’s

record some useful terms before discussing the issues.

Diagnostic Testing 4.5.11: A character of a population is just a

subset of it. In other words, if we view the members of the population

as outcomes in a sample space S then members with the character

are a subset or event of S. It’s convenient to write C+ for this event

(thinking of it as with the members who have the character) and C−

for its complement (members who do not have the character).

1—
1—
2—

a ·· ·· z ? 365 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.5 Organizing Related Probabilities

We prevalence of the character is the equally likely outcomes prob-

ability Pr(C+) = #C+
#S that a randomly selected member has the char-

acter.

A test for a character C+ is just another event T+ of S, with comple-

ment T−. We say that outcomes (i.e. members of S) in T+ test positive

for the characteristic C+ and that outcomes in T− test negative.

Members in the four quadrants determined by C± and T± are named

as shown in Figure 4.5.12.

C−→

C+→

T+

↓
T−

↓
C+ ∩ T− C+ ∩ T+

C− ∩ T+C− ∩ T−

false
negative

true
positive

true
negative

false
positive

Figure 4.5.12: True and false positives and negatives

The specificity of a test T for C+ is the probability that a person

who actually has the character tests positive for it: this is just the

conditional probability Pr(T+|C+).
The sensitivity of a test T for C+ is the probability that a person

who does not have the character tests negative for it: this is just the

conditional probability Pr(T−|C−)
The positive predictive value of a test T for C+ is the probability that

a person who tests positive for the character does has it: this is just

the conditional probability Pr(C+|T+).
The negative predictive value of a test T for C+ is the probability

that a person who tests negative for the character does not have it:

this is just the conditional probability Pr(C−|T−).
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The terms “false positive” and “false negative” come from medicine

where they stand for the two different ways that a diagnostic test

can fail. First, the test may classify ill patients—that is, those who

have the condition or character being tested for—as healthy. Such an

error is called a false negative: negative because the test reports no

illness and false because the patient really is ill. But the test may also

classify healthy patients—that is, those who don’t have the condition

or character being tested for—as ill. Such an error is called a false

positive: positive because the test reports an ill patient and false

because the patient is actually healthy. In the cases “true positive”

and “true negative”, the test is correct, correctly classifying the ill

and the healthy, respectively.

In Problem 4.5.10, we are trying to diagnose terrorism. So the Ter-

rorists who are classified as innocent are the false negatives, and

the Innocent Citizens who are classified as terrorist are the false

positives. In our terrorist example, the test correctly classifies 99%

of Innocent Citizens as innocent so it has a specificity of 99%. It

also has a sensitivity of 99% because it classifies 99% of Terrorists as

terorist, but, for most tests, the specificity and sensitivity are not

equal.

In Problem 4.5.10, you should have found that 4,455 Terrorists

and 500,000 Innocent Citizens were classified terrorist, so the

positive predictive value of the test—the chance a terrorist is not

really an Innocent Citizen—is Pr(Terrorist|terrorist) = 4,455
504,455 '

0.0088. Likewise, 45 Terrorists and 49,500,000 Innocent Citizens

were classified as innocent, so the negative predictive value of

the test—the chance an innocent really is an Innocent Citizen—is

Pr(Innocent|innocent) = 49,500,000
49,500,045 ' 0.99999.

You might be impressed by that negative predictive value of 0.99999.

Problem 4.5.13: Show that a test (easily administered) that declares

everybody innocent has a negative predictive value of 50,000,000
50,004,500 '

0.99991.
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In other words, getting a high negative predictive value is easy: just

declare few people terrorist. Getting a high positive predictive

value is hard. Can we see why?

As we noted in Trolling for terrorists, it’s natural to expect that

the errors we should worry about are the false negatives. After all,

these are Terrorists on whom we are not going to keep an eye be-

cause they have been declared innocent. Similarly, in a medical sit-

uation, the important problem seems to be ill patients who have been

declared healthy because these patients won’t be looking for treat-

ment for the condition.

But in both cases, it’s really the false positives that concern those

administering the test. The reason is that we’re trying to diagnose

a rare condition that applies only to a tiny group (the terrorists or

the patients with the illness). This means that the false negatives are

a small percentage of a tiny group, so there just aren’t very many

of them. In our terrorist example, there is just 1 false negative in a

million or 50 in all of Britain.

The true positives are most of this tiny group (the 4950 Terrorists

classified as terrorist) but they’re still a tiny group. The group of

false positives is a small percentage of the main population (Innocent

Citizens or healthy patients) and this group can be much larger than

the tiny group were testing for. Of the 504,950 Britons classified

terrorist, fully 500,000 are false positives and only 4,950 are true

positives. That’s less than 1%— it’s the positive predictive value—so

a terrorist classification provides essentially no evidence of being

a Terrorist.

Graphically put, we’re looking for a few needles in a big haystack

with a test that reports straw or needle. The problem is that even

if our test seems quite accurate, the pile of needles turns out to be

a smaller haystack containing a few needles.

The problem doctors have to face is that its neither practical nor

ethical to treat all the positives when most of them are really healthy.
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Impractical because you’re spending most of your resources treating

the healthy and unethical because most treatments have unpleasant

or even dangerous side effects. The next problems illustrate some of

these issues.

The Center for Disease Control (CDC) estimated that in 2006 the

prevalence of HIV in the United States was about 0.0037 (roughly 1
270

Americans are infected with the virus). The Food and Drug Admin-

istration (FDA) requires that a rapid HIV test must have a sensitivity

of 98% and a specificity of 98%1

Example 4.5.14: Let’s analyze what to expect from employing such

a test on a randomly selected sample of 1,000,000 Americans. First

we set up a table.

HIV− HIV+ Totals

T− 0.98 · 996300 = 976374 0.02 · 3700 = 74 976374+ 74 = 976448
T+ 0.02 · 996300 = 19926 0.98 · 3700 = 3626 19926+ 3626 = 23552

Totals 0.9963 · 1000000 = 996300 0.0037 · 1000000 = 3700 1000000

The steps, indicated by the calculations, are:

i) Fill in the bottom row (HIV− and HIV+) using the prevalence

0.0037.

ii) Fill in the left column using the specificity, Pr(T+|HIV+), plus

the Intersection Probability Formula 4.4.3 and the Complement

Relations 3.7.23.

iii) Fill in the middle column similarly but using the sensitivity,

Pr(T−|HIV−).

iv) Fill in the right column by totaling the rows.

Now, we can read off the positive predictive value,

Pr(HIV+|T+) = #(HIV+ ∩ T+)
#T+

= 3626
23552

1Actually, the requirement both stricter and looser. Since we have no equally likely
outcomes model for these probabilities, they must be estimated empirically. The ac-
tual requirement is that the likelihood that the sensitivity and specificity are at least
98% is predicted by experimental trials to be at least 95%. This means both that it is
consistent with the trials, though unlikely, that true levels are lower and also that it
is likely that they are greater.
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or about 15%, and the negative predictive value,

Pr(HIV−|T−) = #(HIV− ∩ T−)
#T−

= 976374
976448

or better than 99.99%.

In other words, essentially everyone who tests negative really is HIV

free but 85% of those who test positive are too. This is not hope-

less, like Problem 4.5.10 where almost all the terrorists were In-

nocent Citizens. But it does pose a problem. We’ve now reduced our

haystack from 1,000,000 to 23,552 and there are a lot of needles—

3,626—in that haystack. How do we tell them from the remaining

19,926 pieces of straw? Perhaps you’ve noticed a related gap in my

presentation. How did we ever find out that the specificity of the

test was 98% when most of those who test positive are incorrectly

diagnosed?

The answer to both questions is that we use a more specific test—

that is one with fewer false positives—often called a gold standard.

Warning: gold standard tests are seldom perfect; to qualify as a gold

standard, a test just has to be better than any competitors. The gold

standard in HIV testing is to first perform an HIV enzyme immunoas-

say (EIA) looking for HIV-1 and HIV-2 antibodies and, if this is posi-

tive, to confirm it with an HIV-1 Western blot or immunofluorescence

assay (IFA). This combination has very high specificity.

Thus, the standard protocol in clinical situations is that a positive

rapid HIV test result is an indication that further testing should be

performed: the patient is given the EIA/IFA combination test. Like-

wise, when performing trials to assess the specificity and sensitivity

of a rapid test, every patient is also given the gold standard tests

and these are used to decide if trial test was right or wrong.

Why not just give everyone the gold standard test in a clinical situ-

ation too? Why even bother with the rapid tests? The first answer is

that it’s almost always much more expensive to a gold standard test

and it takes much longer to get the result back. Although prices have
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been falling on all tests, rapid tests cost as little as a tenth what gold

standard tests do. In the U.S., the rapid test lets doctors save the dif-

ference on the 98% of the population that it reports as negative. In

the developing world, rapid tests are the often the only ones cheap

enough. A second answer is that rapidity itself has advantages: up

to a quarter of those who take a slower test never return to learn the

result. The situation is similar for a range of diseases.

The next few problems deal with empirical data, so this is one time

that is is easiest to convert all fractions to decimal form.

Problem 4.5.15: OraQuick™ is one rapid HIV test that was used in

testing programs in New York City in which the observed prevalence

of HIV was 0.8%. In this problem, we’ll compare claims about the

test to observations. Since we are dealing with empirical data, this is

one problem where it’ll be easiest to convert all fractions to decimal

form.

i) OraQuick’s manufacturer claimed that its trials showed that the

test has a likely sensitivity of 99.8% (and was 95% certain to have a

sensitivity higher than 99.6%) and that it had a specificity of 100%.

Find the positive and negative predictive value of this test by creating

a table like that in Example 4.5.14, but assuming the prevalence of

0.008 and a sample space of 31,122 patients.

ii) From November 2007–April 2008, the New York clinics gave

31,122 patients the OraQuick test. They found 213 false positives

and 231 true positives, both determined by follow-on gold standard

tests. Use this data to create another table (again assuming preva-

lence of 0.008 and sensitivity of 100%).

iii) What specificity and positive predictive value does this table

give?

Now let’s turn another important disease, breast cancer for which

the rapid test is mammography (a radiological exam and reading)

and the gold standard is biopsy (minor surgery to extract a sample

of suspect tissue followed by microscopic examination to determine
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malignancy). Because biopsies are very expensive and invasive, they

are a last resort, even though mammography is a rather weak test.

Problem 4.5.16: Here is some data from a summary of a study

reported in the British Journal of Medicine.

i) In a sample of 122,355 women aged 50 − 64 who underwent

screening mammograms, the mammography was positive in 3,885,

breast cancer was detected in 726 of whom 629 also had positive

mammograms. Use this data to build a table and then use your table

to find the specificity, sensitivity, positive and negative predictive

value of screening mammograms.

ii) Other studies report lower positive predictive values for screen-

ing mammograms than this one, and indicate that the value de-

creases quite rapidly for younger women. Apply the sensitivity and

specificity you have found in i) to a sample of 10,000 women under

50 having a prevalence of 0.002 for breast cancer, and show that the

positive predictive value for women in this age group is less than

0.05.

I close this subsection with a slightly more complicated example

from genetics that we’ll come back to use at the end of the section.

We’ll consider a single gene, and before we start we need to define a

few basic genetic terms.

To simplify, we assume that our gene has just two alleles or variants,

that we denote G and g. Each child gets a copy of one of its mother’s

two copies of this gene and a copy of one of its father’s. We’ll write,

for example, Gg to indicate that the one copy was a G and the other

a g without worrying about which came from which parent. Individ-

uals have one of 3 possible zygosities or genetic types: those whose

genes are GG are called G-homozygous, those whose genes are Gg
are called heterozygous, and those whose genes are gg are called

g-homozygous2.

2The meanings here, “homo” for same, “hetero” for different, should be familiar
in other contexts.
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We also assume that these alleles are expressed in each individual in

two observable or phenotypic traits G and g (like black hair and blond

hair, or normal vision and color-blind vision). It is standard to use

upper-case letters to denote dominant alleles and traits and lower-

case letters to denote recessive alleles and traits. Here, dominant and

recessive mean that individuals with at least one G allele (those who

are GG, Gg or gG) exhibit the G character and that only those whose

genes are gg show the g character.

Problem 4.5.17: In this problem, we want to consider the genetic

types of married couples. We assume that any two individuals of

opposite sexes are equally likely to marry, and that the proportions

of each of the three zygosities—the zygotic frequencies— is the same

for men and women.

i) First, suppose that we know that in a certain population 49% of

people are GG, 42% are Gg and 9% are gg. These three numbers are

the zygotic frequencies. Make a table with rows for the 3 zygosities

of the wife and a total row, columns for the 3 zygosities of the hus-

band and a total column. Use the percentages given to fill the border

of the table, and then fill the 9 interior cells with the the probabil-

ities of seeing a marriage of each type. (For example, of the 49% of

women who are GG, 42% will marry men who are Gg so the chance

of such a (GG,Gg) marriage will be 0.48 · 0.42 = .2058 or 20.58%.

Likewise, 20.58% of marriages will be between a Gg woman and a GG
man. Check that the 9 interior cells in your table sum to 1 (or 100%).

ii) Now, suppose that we know that the zygotic frequencies in a

certain population are that 20% of people are GG, 70% are Gg and

10% are gg. Make a table exactly like the one in part i) but using

these percentages to fill the border of the table. Check that the 9
interior cells in your table sum to 1 (or 100%).

iii) Now, we want to replace the percentages in part i) by variables,

so we assume that the fraction of the population that is GG is x, the

fraction that is Gg is y and the fraction that is gg is z. Of course,

these fractions give the whole population so x + y + z = 1. Create a
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table like that in i) but using these fractions to fill the border. Check

that the total of all 9 interior cells in your table is (x+ y + z)2 (Hint:

expand the square). Of course, this total is 1, as it should be, because

x+ y + z = 1.

Working with Probabilities in Tree Diagrams

Recall that the motivation for using tables was to have a way of dis-

playing a few key probabilities involving E and F that makes it easy

to find all the rest of the 16 probabilities in Probabilities from Two

Events 4.5.1. For tables, the key probabilities were the intersection

probabilities, from which we got the simple probabilities by totaling

and the conditionals by taking quotients.

There’s a second common set of key probabilities that arise in the

compound experiments of Probability Measures for Compound

Experiments. To prepare for what’s coming, I’ll call the two events

here G and W . Think of Example 4.4.17, Example 4.4.18 and Prob-

lem 4.4.19 where G was “green urn” and W was “white ball” (and,

of course Gc = R or “red urn” and W c = B or “black ball”). The key

probabilities are Pr(G) of the simple event G and the two conditional

probabilities Pr(W |G) and Pr(W |Gc) = Pr(W |R). Showing that these

suffice is a good review of all the basic probability rules. The follow-

ing problem takes you through this step by step. Work it carefully

because we’ll repeat these steps in most of the problems later in this

section.

Problem 4.5.18: State the formula that tells you how to do each of

the following. As you do, find each new probability, assuming that

Pr(G) = 1
2 , Pr(W |G) = 10

12 and Pr(W |R) = 4
6 .

i) Find Pr(R) from Pr(G).
ii) Find Pr(B|G) and Pr(B|R) from Pr(W |G) and Pr(W |R).
iii) Find Pr(G ∩W) from Pr(G) and Pr(W |R).
iv) Find Pr(G ∩ B) from Pr(G) and Pr(B|R).
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v) Find Pr(R ∩W) from Pr(R) and Pr(W |R).
vi) Find Pr(R ∩ B) from Pr(R) and Pr(B|R).
vii) Find Pr(W) from Pr(G ∩W) and Pr(R ∩W).
viii) Find Pr(B) from Pr(G ∩ B) and Pr(R ∩ B).
ix) Find Pr(G|W), Pr(G|B), Pr(R|W), and Pr(R|B) from the values in

iii)–viii).

Tree diagrams are a way of displaying this second set of key prob-

abilities that guides us graphically in finding the rest. First some

dendrological terms. Most of these are borrowed from the trees of

the forest, but the meanings are a bit more precise and things are

rotated clockwise 90◦ so that, instead of growing up, our trees grow

from left to right3. A tree starts with a single root vertex at the far

left. We’ll draw this and other vertices to come as rectangles. Out of

this root come line segments, heading right (but also up or down if

they like), that we call first branches. At the end of each branch is an-

other vertex (rectangle). It’s standard to draw the first level branches

so that all these vertices are vertically aligned. Next, second level

branches come out of each of these vertices, again heading right and

again ending in new vertices. At some point, usually after two sets of

branches, we reach vertices that only have branches in (from the left)

and none out (to the right). These vertices are called leaf vertices or

usually, just leaves.

On the left of Figure 4.5.19 is the most common tree, with two levels

of branches and two branches coming out of each vertex (except the

4 leaves) and with its parts labeled. In the middle, is a more compli-

cated tree with three levels of branches and more than two branches

out in the second level. On the right is a less symmetric tree—we

won’t see many of these—where the branching is not uniform at each

level, and not all leaves are on the last level.

Tree diagrams turn out to be perfect for recording the outcome of a

compound experiment, like those we discussed in Probability Mea-

3It could be worse. In computer science, trees grow down
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root -→

first level branch -→
first level vertex -→

second level branch -→ ←- leaf vertex

Figure 4.5.19: Sample tree diagrams

sures for Compound Experiments. The basic idea is that vertices

correspond to events (shown in red) and branches to probabilities

(shown in blue). Let’s see how to display Problem 4.4.19 as a tree,

then we’ll write down a general method for filling in tree diagrams.

Along the way we’ll see all the probabilities in Problem 4.5.18 ap-

pear: these were also based on Problem 4.4.19 with G the event

“green urn” (so Pr(G) = 1
2 and R = R) and W the event “white ball”

(so B = B). (so Pr(W |G) = 10
12 because 10 of the 12 balls in the green

urn are white and Pr(W |R) = 4
6 because 4 of the 6 balls in the red

urn are white).

The first step is to draw the tree and label its vertices. Each branch is

used to record what we observed—that is, what happened—in one of

the component experiments and we describe this observation in the

box for the vertex at the right end of the branch. To keep the num-

ber of branches to a minimum, we usually describe what happened
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in terms of events rather than outcomes. Specifically, we’ll usually

focus on a partition of the sample space of outcomes of each com-

ponent. Remember a partition is just a collection of events such that

every outcome is in one and only one of the events.

In our example, we want to record the outcome—the urn picked, R or

G—in the first component experiment. But when we pick a ball, all we

care about is the color of the ball so we partition the sample space—

set of all the balls—into the events B =“black” and W =“white”. The

second level vertices get compound "two-letter" labels that tell us

what pair of events leads is to them—for example, the top one is

reached by picking the red urn and a white ball so we label it RW . It

would be more accurate to use the label R∩W but dropping the “∩”

makes the diagram more legible. Thus we get the simple tree below.

R

G

RW

RB

GW

GB

The second step is to attach a probability to each branch of the tree,

that records the chance of taking that branch from the starting ver-

tex. Thus, on the first level branches, we want the chances of picking

the 2 urns which are both 1
2 . On the second level branches we want

the chance of picking a white or black ball from the chosen urn. These

are conditional probabilities that depend on the number of balls of

each color in that urn (10 white and 2 black for the red urn and 4
white and 2 black for the green urn). Thus the chance of going from

vertex R to vertex W is Pr(W |R) and this is 10
12 because 10 of the 12

balls in the red urn are white. The probabilities we need at this step
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are the 3 key ones and those in parts i) and ii) of Problem 4.5.18.

Now we’ve got the following picture.

1
2

1
2

R

RW

RB

10
12
2
12

G

GW

GB

4
6

2
6

The third step is to attach a probability to each of the leaves. These

are the chances of reaching that leaf from the root at the far left. To

do this we have to follow the right first branch andalso follow the

right second branch, so we need to use the Intersection Probabil-

ity Formula 4.4.3. For example, next to the RW vertex to the right of

the R vertex, we want the probability Pr(R∩W) = Pr(R) · Pr(W |R) =
1
2
10
12 =

10
24 . Here we’ve written down the probabilities in iii)–vi) of

Problem 4.5.18. Once we’ve found all these probabilities, we also

rewrite them, as in the picture below, over a common denominator.

This makes these probabilities easy to add. We’ll use this in the last

step, but already we can take advantage of it to check all the calcula-

tions to this point. Just total the intersection probabilities as shown.

If you do not get 1 something is wrong. Why?

1
2

1
2

R

RW

RB

10
12
2
12

G

GW

GB

4
6

2
6

10
24 = 10

24

2
24 = 2

24

4
12 = 8

24

2
12 = 4

24

Total 24
24
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The fourth and last step is to group the leaves corresponding to

“like” outcomes in the second component experiment: here this just

means the same colored ball. In the picture below, I indicate these

groupings by red arcs (red because we’re tying together events)

and next to each I’ve put its (blue) probability. Because the first

level vertices represent mutually exclusive events (different urns),

the leaves do too, so we just need to add the probabilities of the

leaves being joined. For example, the chance of seeing a white ball

is Pr(W) = 10
24 +

8
24 =

18
24 . Here we’ve found the probabilities in parts

vi) and viii) of Problem 4.5.18. Note how the common denominator

from the previous step means that we just have to add numerators

to find these probabilities. The common denominator also makes an-

swering further questions about the diagram easier. Here’s the final

tree diagram.

1
2

1
2

R

RW

RB

10
12
2
12

G

GW

GB

4
6

2
6

10
24 = 10

24

2
12 = 2

24

4
12 = 8

24

2
12 = 4

24

Total 24
24

W

B

18
24

6
24

Figure 4.5.20: Tree diagram for Problem 4.4.19

What about the probabilities in the last part, ix), of Problem 4.5.18?

These are usually what we want use the tree diagram to figure out!

And they are now easily obtained by simply plugging in to the Con-

ditional Probability Formula 4.4.2. For example, we can read off

both the numerator Pr(R ∩W) and denominator Pr(W) of Pr(R|W)
to see confirm the value 10

18 from Problem 4.4.19.

Problem 4.5.21: Read off the other probabilities in ix) of Problem

4.5.18 from Figure 4.5.20.
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Tree Diagram Method 4.5.22: To draw a tree diagram that sum-

marizes a compound experiment, follow the steps below:

Step 1: Fill in the vertices: Draw the tree—vertices and branches—

and fill in each vertex with the event you must observe to

reach it. First level vertices correspond to events in the first

stage of the compound experiment. Second level vertices cor-

respond to events in the second stage, and so on.

Step 2: Fill in the edges: Label each edge with its probability. The

first level edges are labeled with the simple probability of the

event in the first stage to which they lead. Second and higher

level edges are labeled with the conditional probability of fol-

lowing that edge given that you are already at its starting

vertex.

Step 3: Fill in the leaves: Label each leaf with the intersection

probability obtained by multiplying the probabilities on each

edge from the root to the leaf.

Step 4: Total like leaves: Group leaves that correspond to the same

event in a second (or later) stage of the experiment, and find

the simple probabilities of these events my totalling the prob-

abilities of the grouped leaves.

You are now ready to find any probabilities involving the events in

your diagram.

To get a feel for this method, we’ll first apply it to some examples

we worked earlier.

Problem 4.5.23: To get a feel for this method, we’ll first apply it

to some examples we worked earlier. Pay careful attention to what

probability is being ask for in each part.

i) Draw a tree diagram for Example 4.4.17. Then use it to find the

probabilities below.

a. You drew a white ball out of the green urn.

b. You drew a white ball given that you chose the green urn.
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c. You chose the green urn given that you drew a white ball.

ii) Draw a tree diagram for Example 4.4.18. Then use it to find the

probabilities below.

a. If your urn was red, what’s the chance your ball was black?

b. What’s the chance you drew a black ball out of the red urn?

c. If your ball was black, what’s the chance your urn was red?

Now let’s do a couple of problems with a more complicated trees.

What this means is that we partition the sample space at the first or

second stage (or both) into more than 2 mutually exclusive events.

Instead of dividing into just one event and its complement, we divide

into several pieces. The footwork in filling out such a tree diagram

is essentially the same in the example above. The only differences

are that there is now one each for each event in the partition, so in

ix) (Fill in the edges), we need to know the probabilities of each of

these events. In example, these probabilities are almost always easy

to read off. Here’s an example.

Problem 4.5.24: You are given 3 urns, a red urn that contains 8
white and 4 black balls, a green urn that contains 3 white and 15
black balls, and a yellow urn that contains 9 white and 3 black balls.

An experiment consists of picking an urn at random and then pick-

ing a ball at random from that urn.

i) Draw a tree diagram of this experiment. It will have three first

level branches leading to vertices R, G and Y for the three urns, and

two second level branches out of each of these leading to vertices

RW and RB, GW and GB, and YW and YB.

ii) Use your tree diagram to read off the probabilities below.

a. If your urn was yellow, what’s the chance your ball was black?

b. What’s the chance you drew a black ball out of the yellow urn?

c. If your ball was black, what’s the chance your urn was yellow?

d. If your ball was black, what’s the chance the urn had more white

balls than black ones? Hint: What color urns have more white

balls than black?
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Problem 4.5.25: You are given 2 urns, a red urn that contains 6
white, 6 black and 5 pink balls, and a green urn that contains 3 white,

9 black and 3 pink balls. An experiment consists of picking an urn

at random and then picking a ball at random from that urn.

i) Draw a tree diagram of this experiment. It will have two first

level branches leading to vertices R and G for the two urns, and

three second level branches out of each of these leading to vertices

for the color of the ball, RW , RB and RP , or, GW , GB and GP .

ii) Use your tree diagram to read off the probabilities below.

a. If your urn was green, what’s the chance your ball was pink?

b. What’s the chance you drew a pink ball out of the green urn?

c. If your ball was not pink, what’s the chance your urn was green?

Problem 4.5.26: In this problem, we consider families with exactly

3 children and we assume that each child is equally likely to be a

boy or a girl. Our experiment consists of first choosing a child at

random and recording whether this child is the eldest (E), middle

(M) or youngest (Y ) child in its family. We then record whether the

chosen child has an older sister (OS) or not (NOS).

i) Draw a tree diagram of this experiment.

ii) Use your tree diagram to read off the probabilities below.

a. The chance that the chosen child has an older sister.

b. The chance that the chosen child is the youngest if he or she has

an older sister.

c. The chance that the chosen child is the eldest if he or she has an

older sister.

Challenge 4.5.27: Redo Problem 4.5.26, but considering families

with exactly 4 children.

OK. Tree diagrams are not so bad to complete or work with. But they

do seem to involve a lot of work to reach answers could also find

without using them. Yes, once you have the tree diagram, it’s easier

to read off the answers, but are they really needed? I’ll conclude with

a deceptively simple problem that explains why we use them.
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Problem 4.5.28: A bag contains two fair coins that we’ll call A and

B. The coins are identical except that coin A has heads on both sides,

coin B has a head and a tail. You first pick a coin at random from the

bag, then you toss it and it comes up heads.

i) Without worrying about formulas, what’s the chance that the

other side of the coin you picked has a tail on it?

ii) Now check you answer by drawing a tree diagram of this com-

pound experiment (with events A and B at the first level and H and

T at the second) and finding P(B|H).

Why is the obvious answer 1
2 wrong? The chance that we picked coin

B was 1
2 since we picked at random, and if we did pick B, then there’s

definitely a tail on the other side. Both those statements are true.

The problem is that these statements describe an experiment differ-

ent from the compound one we performed in which we didn’t just

pick a coin, we first picked a coin and then a side of that coin. What

the tree diagram does for us is to give us a way of laying out such

an experiment that forces us to respect its compound structure. It

forces us to realize that there’s a 1
4

th
chance of seeing either side of

either coin and hence a 3
4

ths
chance of seeing a side with a head on

it. Since only 1 of those 3 sides is on coin B, the chance we picked B
given that we saw a head is the ratio 1

3 of these.

Finally, a question that many students ask at this point. Suppose

you’re given a bunch of data about some events and asked to lay

it out and then answer some questions. When so you need to use a

table and when do you need to use a tree-diagram? Never! at least

in the sense that any problem you can answer using a table you can

also answer using a tree-diagram, and vice versa. As we have seen,

all the flavors of probability can be recorded in either. So if you have

a strong personal preference for one format or the other, feel free to

indulge it.
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Analysing the game of Craps

In this section, we’ll look at a final application of conditional proba-

bilities that’s quite a bit more complicated than any of the examples

we have dealt with so far because it involves an infinite sample space.

We ask what are the chances of winning at the classic dice game

of craps. Craps evolved from an older European dice game called

hazard or, in French, hasard. A version was introduced to the United

States in New Orleans in the early 19th century where it was known

as crapaud or “toad” and the name craps is an English abbreviation

of this name.

Let’s start by explaining how the game is played. We begin by rolling

2 dice. This first roll is known as the come-out. You win if your come-

out total is either 7 or 11 (a natural) and lose if your come-out total

is 2, 3 or 12 (known as craps). If you roll another total, the game

gets trickier. The total you rolled becomes your point and you begin

to shoot the dice. Shooting involves rolling the dice until your roll

totals either your point from the come-out roll, in which case you

win, or a 7, in which case you “7 out” and lose.

How many times do you shoot? As many as it takes for you to roll

either your point or a 7. That could be any number of rolls what-

soever. As the number of rolls increases, the chance that you won’t

have rolled either your point or a 7 gets smaller and smaller. But that

chance is never 0 and we therefore need to consider shooting every

positive number of rolls. That’s what makes analyzing craps tricker

than any of the examples we have dealt with so far. We’ll need to put

everything we have learned to this point together and we’ll also learn

a lesson that mathematics teaches again and again. It’s a version of

the old carpenter’s rule about measuring and cutting: think twice,

calculate once.

Let’s start. The first point to observe is that craps is an multi-stage

“experiment” with one stage for each roll. That means a tree diagram
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4.5 Organizing Related Probabilities

is a perfect way to record the outcomes of every possible sequence

of rolls. We won’t be able to ever display the entire tree for a game of

craps because it has an infinite number of nodes and branches but

by studying portions of this tree, we will be able to determine the

chance of wining the game.

8
36

7 or 11

3
36 4
4
36 5
5
36 6

5
36 8
4
36 9
3
36

10

4
36 2,3 or 12

Figure 4.5.29: First level branches for Craps

Let’s start with the first stage, the come-out roll, for which the tree is

shown in Figure 4.5.29. Although the picture looks complicated (it

has 8 branches), the probabilities on all these branches can be read

off from Table 4.3.5. Moreover, the first level nodes for a natural and

craps are already leaves (and go no further).

What about the 6 branches that lead to the points 4, 5, 6, 8, 9 and 10?

They all continue indefinitely. That’s exactly our difficulty. To come
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4.5 Organizing Related Probabilities

to terms with this, let’s focus on the branch that leads through the

point 9.

The next key remark is that at the second stage, we only need to

distinguish 3 possibilities. We might roll another 9 (shown going up)

and win or we might roll a 7 (shown going down) and lose. These

two branches again lead us to leaves. Any other total corresponds

to following the middle, horizontal branch. But at the end of this

branch, we are in exactly the same position that we were in at its

start—shooting for a 9!.

4
36

9

4
36 9

26
36 other totals

6
36

7

Figure 4.5.30: Second level branches for a point of 9

The bad news is that we make no progress when we go down this

branch. The good news is that it’s the only branch that leads to third

level branches. Better still, the third level branches look exactly like

the second level ones: we can go up with a winning 9, down with
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4.5 Organizing Related Probabilities

a losing 7 or, with any other total, go across and roll again. This

pattern simply repeats indefinitely. It means that we can easily draw

as many stages of the tree as we have the patience for. In Figure

4.5.31 I have shown 4 stages with their branch probabilities (again,

just transcribed from Table 4.3.5).

4
36 9

4
36

9

26
36

other

6
36

7

4
36

9

26
36

other

6
36

7

4
36

9

26
36

other

6
36

7

4
36

9

26
36

other

6
36

7

Figure 4.5.31: Multiple levels of the tree for a point of 9

At this point, we have—ignoring the infinite number of stages not

shown—completed the second step in the Tree Diagram Method

4.5.22. The third stage in the method is to Fill in the leaves by

multiplying along the branches. That’s just arithmetic which I have

carried out below. I’ve written the product giving each leaf probabil-

ity in two ways, first, in the order in which we encounter the factors

as we move down the branches to the leaf in Figure 4.5.32, and then

with factors grouped into powers in Figure 4.5.33.

What I did not do was to evaluate the products! Why not? Because

there’s a pattern in the factors that get’s lost when we multiply them

out. That pattern is the key to the seemingly impossible task com-

pleting the tree diagram. What’s left to do? According to Tree Dia-

gram Method 4.5.22, we need to total like leaves. In other words,

we need to add up the entire infinite set of “up” probabilities that

lead to a 9) to find the simple probability of a win (and likewise total
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4
36 9

4
36

9
( 4
36

4
36
)

26
36

other

6
36

7
( 4
36

6
36
)

4
36

9
( 4
36

26
36

4
36
)

26
36

other

6
36

7
( 4
36

26
36

6
36
)

4
36

9
( 4
36

26
36

26
36

4
36
)

26
36

other

6
36

7
( 4
36

26
36

26
36

6
36
)

4
36

9
( 4
36

26
36

26
36

26
36

4
36
)

26
36

other

6
36

7
( 4
36

26
36

26
36

26
36

6
36
)

Figure 4.5.32: “Raw” leaf probabilities for a point of 9

4
36 9

4
36

9
( 4
36
)2

26
36

other

6
36

7
( 4
36

6
36
)

4
36

9
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36
)2( 26

36
)1

26
36

other

6
36

7
( 4
36

6
36
)( 26

36
)1

4
36

9
( 4
36
)2( 26

36
)2

26
36

other

6
36

7
( 4
36

6
36
)( 26

36
)2

4
36

9
( 4
36
)2( 26

36
)3

26
36

other

6
36

7
( 4
36

6
36
)( 26

36
)3

Figure 4.5.33: “Grouped” leaf probabilities for a point of 9

the set of “down” probabilities that lead to a 7 and a loss). The total

we’re after is:( 4
36

)2
+
( 4
36

)2(26
36

)
+
( 4
36

)2(26
36

)2
+
( 4
36

)2(26
36

)3
+ · · ·

or, after taking out the common factor,( 4
36

)2(
1+

(26
36

)
+
(26
36

)2
+
(26
36

)3
+ · · ·

)
Notice that we get each term in this new sum from the previous one

by multiplying by 26
36 . What that means is that our total is the sum
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of a geometric series with ratio r = 26
36 . It’s to be able to recognize

this geometric series that we needed to avoid multiplying out the

leaf probabilities. Applying the Geometric Series Formula 1.3.6,

we find that the total is

1
1− r =

1
1− 26

36

= 1
10
36

= 36
10
.

That means that the total we’re after is( 4
36

)2
·
(36
10

)
= 4
36
· 4
10
= 2
45
.

To get the middle product, I just cancelled a 36 above and below.

You should have reached this answer in the last part of Problem

1.3.8.

Problem 4.5.34: Imitate the argument above to show that the total

of the “down” probabilities that lead to a 7 and a loss in Figure

4.5.33 is the infinite sum( 4
36
· 6
36

)(
1+

(26
36

)
+
(26
36

)2
+
(26
36

)3
+ · · ·

)
.

Then use the Geometric Series Formula 1.3.6 to evaluate this sum

as ( 4
36
· 6
36

)
·
(36
10

)
=
( 4
36

)
·
( 6
10

)
= 3
45
.

We can check all these calculations quickly by adding the chance

of winning after making a point of 9 to the chance of losing after

making a point of 9. These should just total the chance that the

come-out roll was a 9, which is 4
36 . And indeed, what we get is( 4

36

)
·
( 4
10

)
+
( 4
36

)
·
( 6
10

)
=
( 4
36

)
·
(4+ 6
10

)
= 4
36
.

What about the points other than 9? They can be handled in just the

same way with only minor changes in arithmetic.

Problem 4.5.35: In this problem, you’ll calculate the chance of win-

ning when you make a point of 8.
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i) Show that the tree that describes the shooting stages of the game

of craps when the point is 8 has exactly the same branches and nodes

as Figure 4.5.31.

ii) Use the fact that chance of rolling an 8 (either in the first stage to

make the point or later on to win the game) is 5
36 to fill in the branch

probabilities on the 8 version of the tree. (You’ll need to consider

how the “across” probability changes too.)

iii) Next, find the leaf probabilities on the 8 version of the tree in

Figure 4.5.32.

iv) Finally use the Geometric Series Formula 1.3.6 to show that

the chances of winning and of losing at craps with a point of 8 are
5
36 ·

5
11 and 5

36 ·
6
11 .

v) Check your answers by showing that they total to the probability

of rolling an 8 on the come-out roll.

At this point, it’s pretty clear that with enough elbow grease we can

compute the chance of winning after making any point. But before

calculating once, let’s stare at the values we have calculated for 9
and 8 and think twice. What probabilities have we been calculating

anyway? For a point of 9, we were after the probability of coming

out with a 9 andalso winning (or losing). Symbolically, we wanted

Pr(9∩“win”). The Intersection Probability Formula 4.4.3 tells us

we can write this as the product Pr(9∩ “win”) = Pr(9) · Pr(“win”|9).
Our answer is also a product: Pr(9∩ “win”) = 4

36 ·
4
10 .

Can we match these up? For the first factor, the answer is certainly

yes, as Pr(9) = 4
36 . But that means that the two second factors must

also match up. We must have Pr(“win”|9) = 4
10 .

Could we have predicted this? Indeed we could. Once we’ve made a

point of 9 we know the game will end when we shoot a 9 or a 7. In

the former case, we win and in the latter we lose. In other words, the

chance of winning by shooting a point of 9 is the chance of rolling

a 9 given that we rolled either a 9 or a 7. In symbols, Pr(“win”|9) =
Pr(9|9∪ 7).
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Problem 4.5.36: Use the Conditional Probability Formula

4.4.2 to show that Pr(9|9∪7) = 4
10 and deduce that Pr(“win”|9) = 4

10 .

Then show that Pr(“lose”|9) = Pr(7|9∪ 7) = 6
10

Looking back at Figure 4.5.31, we can give another interpretation.

To get to a leaf of this tree, we have to go “up” or “down” at some

stage, and of the 10 rolls that do one or the other 4 go up to a 9 and

the other 6 down to a 7.

Problem 4.5.37: Use the same argument to show that Pr(“win”|8) =
Pr(8|8∪ 7) 511 and use this to check your answer to Problem 4.5.35.

Problem 4.5.38: Show that Pr(“win”|10) = 3
9 .

In hindsight, neither the tree diagram nor the geometric series for-

mula is essential, though it’s hard to imagine how we’d have under-

stood what was going on without them. In any case, by imitating

what we did for points of 8 and 9 we can now fill in Table 4.5.39.

Total T 2 3 4 5 6 7 8 9 10 11 12

Pr(T) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Pr(“win”|T) 0 0 3
9

4
10

5
11 1 5

11
4
10

3
9 1 0

Pr(T ∩ “win”) 0 0 1
36

2
45

25
296

1
6

25
396

2
45

1
36

1
18 0

Table 4.5.39: Probabilities for winning at craps

Then we just need to total the bottom row of the table to find the

probability of winning, getting

0+0+ 1
36
+ 2
45
+ 25
396

+ 1
6
+ 25
396

+ 2
45
+ 1
36
+ 1
18
+0 = 244

495
' 0.492929 .

A few closing comments. On the one hand, notice how carefully

tuned the game is. The chance of winning is just less than 50% and

the house edge is only 1.41% (0.507071− 0.492929 = 0.141414). On

the other hand, the player winds on the come out roll exactly twice

often as he or she loses (there are 8 rolls that give a 7 or 11 but only
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4.6 Applications of Bayesian probability

4 that give a 2, 3 or 12). This leads many players to feel that the game

is actually tilted in their favor.

At craps, you can also bet with the house and against the shooter

but with some proviso. Most typically, if the shooter rolls a 12 and

loses then you do not get paid: this has the effect of giving the house

an edge of 1.36%. This unusual two-sided betting was an invention

of an American named John Winn, whose goal was to discourage the

house from using loaded dice by letting you bet “with or against” the

dice.

Both the “with or against” edges are much smaller than in any other

casino game—and other casino rules, that I won’t go into, often allow

the player to reduce this edge to under 1%. If you’re a sucker, don’t

worry; the casino also has lots of so-called proposition bets on a

craps table where it’s edge is as high as 16%.

4.6 Applications of Bayesian probability

The same ideas are applied, not just in toy problems like the last one,

but also in many practical situations. In fact, these applications are

so common they form a whole specialty, known as Bayesian proba-

bility. In most treatments of conditional probability, there’s a whole

section of the text entitled Bayes’ Theorem. The theorem is named

after a Scottish Presbyterian minister Thomas Bayes who stated a

version of it in a paper that his friend, Richard Price had published

after his death (if you like, you can read the original article as it

appeared in the Philosophical Transactions of the Royal Society of

London).

The “Theorem”, in its modern form, is really just a special case of

the Conditional Probability Formula 4.4.2, but stated in a com-

plicated way that makes it look both impressive and scary. As we’ll
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see, it’s neither—in fact, all it does is wrap up in a messy formula

the tail end of the procedure we’ve been using in the Tree Diagram

Method 4.5.22.

To keep things definite, let’s see how Bayes’ Theorem would handle a

conditional probability like the chance of having picked the red urn,

given that we chose a white ball. We start from Pr(R|W) = Pr(R∩W)
Pr(W)

and proceed in two step. One step re-expresses the denominator in

this conditional probability and the other the numerator.

For the denominator, the idea is stupidly simple. Suppose that R, G
and Y are three events that partition the sample space S (think of the

three urns in Problem 4.5.25) meaning that S is the disjoint union

of these three subsets as shown in Figure 4.6.1. Any event B (shown

outlined in black) W (outlined in grey for visibility) is the disjoint

union of its intersections with R, G and Y , again, as you can see.

Figure 4.6.1: Bayes’ “Theorem”

In terms of disjoint unions, this means that W = (W ∩ R)∪̇(W ∩
G)∪̇(W ∩ Y), and in turn, applying the OrElse Formula for Prob-

abilities 4.2.6, that Pr(W) = Pr(W ∩ R) + Pr(W ∩ G) + Pr(W ∩ Y).
In the tree diagram method, we effectively do this, but without the

formula, when we Group like leaves. That is, we add up the inter-

section probabilities for the RW , GW and YW leaves to find Pr(W).

Bayes’ “Theorem” involves nothing more than replacing the denom-

inator Pr(W) in a Conditional Probability Formula 4.4.2 like

Pr(R|W) = Pr(W∩R)
Pr(W) with this sum to get

Pr(R|W) = Pr(W ∩ R)
Pr(W ∩ R)+ Pr(W ∩G)+ Pr(W ∩ Y) .
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I’ve stated everything in terms of a partition into 3 pieces but the

same idea clearly applies with any number of pieces E1, E2, . . . , En
and leads to the really scary formula

Pr(R|W) = Pr(W ∩ R)∑n
i=1 Pr(W ∩ Ei)

= Pr(W ∩ R)
Pr(W ∩ E1)+ Pr(W ∩ E2)+ · · ·Pr(W ∩ En)

.

that still just means Group like leaves.

Relax. You don’t need to learn this formula; you won’t even have to

use it.

OK. What about the numerator? Remember that our urn and ball

problems have a temporal order: first we choose the urn, then we

choose the ball. That’s why, conditional probabilities in which the

given is the color of the ball and we ask about the color of the urn

seem like nonsense at first. How can use information that came after

to we ask a question about what happened before? “Tree diagrams

tell us how”, is the answer.

Recall that we compute the numerator Pr(W ∩ R) in a tree diagram

using the Intersection Probability Formula 4.4.3, Pr(W ∩ R) =
Pr(R) · Pr(W |R). Then we plug this into the Conditional Probabil-

ity Formula 4.4.2 to get the

Time Reversal Formula 4.6.2: If W has non-zero probability,

then

Pr(R|W) = Pr(R) · Pr(W |R)
Pr(W)

.

Note the way the forward conditional probability Pr(W |R) (ball given

urn) is used to find the reversed one Pr(R|W) (urn given ball). Once

again, there’s no real need to memorize this formula, because, when

you set up a tree diagram, you are automatically led to compute

Pr(W ∩ R) in this way. The Tree Diagram Method 4.5.22 is all you

need to know.

This reversal of time is the essential element in most applications of

Bayes’ theorem. For reasons that I do not understand, however, it’s

usually not even mentioned when the theorem is stated. What you

1—
1—
2—

a ·· ·· z ? 394 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.6 Applications of Bayesian probability

see is formula above, with its messy denominator and unchanged

numerator.

Indeed, the term Bayesian probability is almost exclusively used to

refer to probability questions that reverse the stages of our experi-

ment in this way. There’s no reason we couldn’t use the same formu-

las that occur in Bayes’ “Theorem” to rewrite Pr(R) as Pr(R ∩W) +
Pr(R ∩ B) in the conditional probability formula for Pr(W |R). But no

one ever does, because in this probability the given (red urn) hap-

pens before what we are asking about (white ball).

Put differently, Bayesian probability asks how we can use what we

just saw to adjust our existing expectations about what we already

observed. In fancy terms, “Posterior knowledge influences prior ex-

pectation”. This is a useful notion that we will use and it’s what we’ll

mean in the future by Bayesian probability. In this section, we’ll look

at a couple of the many applications of this sort of reversal of time.

Filtering spam

The easiest place to start, because it most clearly reflects the reversal

of time is what’s called Bayesian spam filtering. The problem here is

to distinguish spam (emails trying to see you a con or a “product”

that you don’t want in your inbox) from ham (emails you want to

receive), and filter our or remove the spam.

What’s needed is a diagnostic test, like those discussed following

Diagnostic Testing 4.5.11. But there we were trying to spot rare

conditions, like being a terrorist or having HIV, and were looking for

a few needles in a haystack. Estimates are that about 70% or more

of all emails are spam, so here most of the haystack consists of nee-

dles. Nonetheless, our main concern is still false positives. You’d far

rather have to delete a Nigerian 419 come-on4 from your inbox every

4Even one from a Harvard faculty member.
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day than miss the notification of your Harvard admission interview.

So a good spam filter must be extremely sensitive, even if this means

being a bit less specific.

Many very effective spam filters use Bayesian probability to identify

spam emails by the words they contain. We’ll look at a very sim-

plified version of how this works that shows the main strategy but

leaves out a lot of refinements needed to produce a highly sensitive,

adequately specific filter. Let’s use S and H to denote the events of

seeing emails that are spam and that are ham—of course, H = Sc—

and W and N for seeing the words we’re interested in, or not seeing

them. The idea is to look for a collection W of words for which the

conditional probabilities Pr(S|W) is very close to 1—hence Pr(H|W) is

very close to 1. This ensures high sensitivity (an email containing W

is almost never ham and can be safely discarded) and it’s what we’ll

look at.

Real filters are considerably more complex. A lot of spam does not

contain any words that are “smoking gun” markers for spam, It’s

often necessary to combine look for related markers: for example,

in one well-known database only about 65% of emails that contain

the word ‘free’ are spam, but 99.99% of emails that contain ‘free!!’

are. Often filters try to identify other words that identify an email

containing a suspicious word as ham: for example, emails that con-

tain ‘free’ but also contain ‘election’ or ‘trade’ are probably not spam.

Further, to be specific, and succeed in throwing away most spam, W

must contain words that are found in most spam emails. Finding the

right combination of techniques to achieve very high sensitivity with

good specificity is what makes designing a good filter hard. We won’t

say any more here.

Here are the questions I do want to look at: “How do we decide what

W characterize spam?”, and “How can we calculate Pr(S|W)?” The an-

swer to both questions is to start with a database of consisting of

a large number—say 10,000— of emails. We want to know which
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emails in the database are in H and which are in S, and we want the

makeup of the database to be similar to that of the flow of emails

we’re going to filter. For example, if we expect 70% of emails to be

spam then we’d want about 7,000 pieces of spam and 3,000 pieces

of ham in our database.

Next, we make a sort of dictionary of possible W’s. A dictionary en-

try could be a single word like ‘Free!!’, or a short phrase like ‘low

interest rate’. Then, for each W in the dictionary we count how many

spam and how many ham emails contain W. At this point we have the

information needed to fill in the following tree diagram for each W.

S

SW

SN

H

HW

HN

W

N

Then from the diagram, we compute Pr(S|W) as Pr(S∩ W) divided by

Pr(W). But how did we find the last numerator? We used Pr(S∩ W) =
Pr(S) · Pr(W|S). So what the tree diagram is doing is guiding us to

Pr(S|W) = Pr(S) · Pr(W|S)
Pr(W)

,

which is exactly the Time Reversal Formula 4.6.2. In other words,

our tabulation of how often spam emails contains W can be turned

around to predict how often emails containing W are spam.

This method has a few other nice features. First, you don’t need to

know in advance what words to look for. As long as you provide

enough examples of spam and ham, the analysis identifies good can-

didates. This also makes it possible to train a filter for an individual

user by having him or her add emails to the spam or ham portions

of the database.
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Here’s a problem to illustrate how combining terms can improve ac-

curacy.

Problem 4.6.3: The following table shows the frequency with

which S and H emails contained the individual words “diploma” and

“apply”, and both of these words.

diploma apply diploma and apply Total

S 960 845 840 7694

H 22 66 1 1870

Total 982 911 841 9564

i) How likely is an email that contains the word “apply” but not

“diploma” to be H?

ii) How likely is an email that contains the words “apply” and

“diploma” to be S?

“$7’ll get you $12” Revisited

We’re now in a position to explain the counterintuitive results we

got when we played the game of “$7’ll get you $12”. Let’s recall how

it’s played. To begin, the grifter shuffles the three cards face down

and the mark puts her finger on one of the three cards. The grifter

then looks at the two other cards and turns up, or exposes a King,

reducing the number of face down cards to 2. Note that whether or

not the mark has her finger on a King, the grifter can always find a

King to expose. The mark bets $7 on a face-down card, and if the

card she bets on is the Queen, she receives $12 ($5 plus her bet of

$7), if not she loses her $7.

It seems clear that this is a losing proposition. The mark has a 50–50
chance of picking the Queen, and, if so, she’ll win $5 half the time

and lose $7 the other half averaging a loss of $1 every time she plays.

And since it’s a toss-up, it doesn’t seem to matter what strategy the

mark uses to pick her card.
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4.6 Applications of Bayesian probability

Our first set of experiments, in which mark made her final choice at

random, by flipping a coin, confirmed this. However, we found that

when the mark always picked the card she had not fingered initially,

she won an average of $1 per play, and when she always left her

finger where it started, she lost an average of $3 a play. It seems

impossible to reconcile these results with each other, let alone with

our intuition. But a little Bayesian probability will make everything

clear.

Let’s make a tree diagram of what happens, assuming the queen is

the left card. The first stage of experiment is for the mark to choose a

card (Left, Middle or Right) at random giving 3 first level branches. At

the second stage, the grifter exposes a King, but not the card chosen

in the first step. So there are 2 second level branches when the mark

picked the Queen on the Left, but only 1 when she picked one of the

Kings (Middle or Right) At the third stage, the mark either leaves her

finger in place or moves it to the other unexposed card. So there are

always 2 third level branches. We need to Group Like Leaves in two

ways in this problem: First, according to whether the mark picked

the queen or a King (Q or K)—she’d did if the leaf ends in an L, and

didn’t if it ends in an M or R; Second, by whether she Stayed with

her finger on her original card or Changed to the other card (S or C).

In the diagram, we’ll do this in two stages, first grouping by the 4
intersections such, then grouping these again by whether she stayed

or changed. Here then is the tree:

I have marked the probabilities on the branches of this tree, but at

the third level (Stay or Change), I have used the letter p to denote the

mark’s probability of Staying and q her probability of changing. Of

course, we must have p + q = 1.

To give a full description of “$7’ll get you $12”, we should really

have 2 more copies of this tree, corresponding to starting with the

Queen in the middle and on the right. But we don’t need to show

these, precisely because they are just copies with the main branches
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Figure 4.6.4: Playing “$7’ll get you $12”

repositioned by the same probabilities everywhere. For example, the

tree we’d see if the Queen was the Right card is just the one in Figure

4.6.4 turned upside down.

Problem 4.6.5: Fill out the remainder of the tree 3 times with the

values of p and q suggested below. As check of your calculations,

you should find, in each case, that Pr(S) and Pr(C) are the values of

p and q, respectively, that you are using.

i) The first time use the value p = q = 1
2 : this models the experi-

ment where the mark just flips a coin to decide whether to stay or

change.

a. The mark’s chance of winning.

b. The mark’s chance of winning if she stayed with her original

card.

c. The mark’s chance of winning if she changed to the other unex-

posed card.

ii) The second time once use the value p = 0 and q = 1: this models

the experiment where the mark always changes her card.

a. The mark’s chance of winning.

b. The mark’s chance of winning if she originally chose the Left
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card.

c. The mark’s chance of winning if she originally chose the Middle

card.

d. The mark’s chance of winning if she originally chose the Right

card.

iii) The third time once use the value p = 1 and q = 0: this models

the experiment where the mark never changes her card.

a. The mark’s chance of winning.

b. The mark’s chance of winning if she originally chose the Left

card.

c. The mark’s chance of winning if she originally chose the Middle

card.

d. The mark’s chance of winning if she originally chose the Right

card.

Let’s summarize what we have learned. When the mark always Stays

she wins only when she originally selected the Queen (the left card)

and so wins 1
3

rd
of the time. This explains the loss of $3 a play we

saw in Experiment 2.1.2. If she plays 3 times, she can expect to win

$5 once and lose $7 twice for a net loss of $9 or $3 a play.

When the mark always Changes she wins when she originally se-

lected a King (the middle or right card) and so wins 2
3

rds
of the time.

Again, this explains the gain of $1 a play we saw in Experiment 2.1.2.

If she plays 3 times, she can expect to win $5 twice and lose $7 once

for a net gain of $3 or $1 a play.

When she Stays and Changes 1
2 the time each, she wins 1

2 the time.

But this 1
2 decomposes as a 1

3 chance of winning on plays where she

Changes plus a 1
6 chance of winning on plays where she Stays. So

once again, she wins on 2
3

rds
of plays where she Changes and 1

3
rd

of

plays where she stays. From what we’ve seen just above, if the mark

plays 6 times, Staying 3 times and Changing 3, then she’ll expect to

lose $9 on the plays where she stays and win $3 on those where she
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changes for a net loss of $6 or $1 per play. Once again this is very

much what we saw in Experiment 2.1.2.

Problem 4.6.6: Fill out the remainder of the tree one more time but

this time leave p and q as variables. As check of your calculations,

you should find that Pr(S) = p and Pr(C) = q. Now calculate:

i) The mark’s chance of winning.

ii) The mark’s chance of winning if she stayed with her original

card.

iii) The mark’s chance of winning if she changed to the other unex-

posed card.

How should the mark play if she wants to break even on the average?

Hint: If the mark wins 7
12

ths
of the time, then if she plays 12 times,

she will expect to win $5 on 7 trys and lose $7 on the other 5, so

breaking even.

I hope that many of you have realized by now that the game of “$7’ll

get you $12” is really just the famous Monty Hall problem (based on

the game show “Let’s Make a Deal”). At the end of each episode a

lucky contestant would be faced with three doors. Behind one was

a valuable prize (the Queen) and behind the other two were zonks

(the Kings), much less valuable products placed there to get a plug

from show announcer Jay Stewart. The contest (the mark) chose a

door, then host Monty Hall had his assistant, the lovely Carol Merrill

(the grifter), open one of the doors not chosen to reveal a zonk. The

contestant then had the choice of Staying with the door originally

chosen, or Changing5 to the other unopened door, after which she

won whatever was behind her chosen door.

As with finding the lady in “$7’ll get you $12”, Changing wins the

valuable prize 2
3

rds
of the time, Staying only 1

3
rd

. One quick way to see

this, is to change the rules slightly. Suppose the contestant is offered

5Called “switching” on the show. I used Changing here to have a different first
letter from Staying.
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Figure 4.6.7: The set and cast of “Let’s Make a Deal”

the choice between Staying with her original pick, or Changing to

both of the other doors but losing the right to any zonks behind

them. It’s clear this time that Staying wins the valuable prize 1
3

rd
and

Changing 2
3

rds
of the time. Does it matter if one of the other doors

is opened to reveal a zonk? No! Nothing has changed: the originally

chosen door still hides the prize 1
3

rd
of the time. The other two doors

still hide it 2
3

rds
of the time.

Here’s a very easy way to think about such problems. Suppose that a

door is selected and another door is opened to reveal a zonk. Then

the chance the selected door hides the prize remains fixed, and the

chance the opened door was hiding the prize gets shared out equally

between any the doors that are neither selected nor opened. In the

case of 3 doors, the 1
3

rd
chance that the prize was behind the opened

door is inherited by the other unselected door, giving it a 2
3

rds
chance

of hiding the prize.

Challenge 4.6.8: Suppose that “Let’s Make a Deal” were played

with 4 doors, one hiding a valuable prize and 3 hiding zonks. You

pick a door, then Carol Merrill opens one of the 3 doors not selected

to reveal a zonk and Monty gives the choice of Staying or Changing to

one of the two other doors. After you decide, Carol Merrill opens one
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of the other 2 doors you didn’t pick to reveal a zonk. Finally, Monty

gives you the choice of Staying or Changing to other unopened door.

Find the probability of winning the valuable prize if you adopt each

of the four strategies below:

i) Stay both times.

ii) Stay the first time and switch the second

iii) Switch the first time and stay the second.

iv) Switch both times.

Hint: The four probabilities, in increasing order of size, are 0.250,

0.375, 0.625 and 0.750.

The Hardy-Weinberg Principle

Bayesian ideas are also widely applied in genetics. Here’s an example

that continues Problem 4.5.17. The 9 interior cells in the table you

built there correspond to pairs of zygosities (for the husband and

wife in a marriage), so they can be viewed as a couple-zygosity or

type. We want to use the frequencies in these cells to understand

what fraction of children born to each type of couple will be of each

zygosity.

A few preparations will make this much easier. First, we expect that

a child will get each of the mother’s two genes half the time—i.e.

equally often—and both of these will pair half the tie with each of the

father’s two genes. So we expect to see each of the 4 possible pairs

of maternal and paternal genes in 1
4 of children. This let’s save a lot

of labor, since it implies that switching the zygosities of husband

and wife does not affect the fraction of children of each type. For

example, a GG×Gg couple will contribute genes GG, Gg, GG, and Gg
equally often so half the children will be GG and half Gg. Likewise

the children of a Gg ×GG couple will be half GG and half “gG”. But

“gG” is the same as Gg, heterozygous.
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Problem 4.6.9: Check that the following types of couples have off-

spring in the proportions listed.

i) GG ×GG: all GG.

ii) GG ×Gg or Gg ×GG: 12 GG, 12 GG.

iii) GG × gg or gg ×GG: all Gg.

iv) Gg ×Gg: 14 GG, 12 Gg, 14 gg/

v) Gg × gg or gg ×Gg: 12 Gg, 12 gg.

vi) gg × gg: all gg.

Problem 4.6.10: Consider the experiment of first picking a couple

at random and recording which of the six sets of couples in Problem

4.6.9 they belong to, then picking a random child of such a couple

and recording its zygosity.

GG×GG GG×GG→GG

GG×Gg
GG×Gg→GG

GG×Gg→Gg

GG×gg GG×gg→Gg

Gg×Gg

Gg×Gg→GG

Gg×Gg→Gg

Gg×gg→gg

Gg×gg
Gg×gg→Gg

Gg×gg→gg

gg×gg gg×gg→gg

GG

Gg

gg

Figure 4.6.11: Zygosities of marriages and offspring

i) Draw a tree diagram of this compound experiment assuming

that the 3 zygosities have frequencies as given in Problem 4.5.17.i).
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I have provided you with the first step, the tree itself. The six first

level branches correspond to the cases in Problem 4.6.9, and I have

listed them in “upper-case before lower-case” order. The number of

second level branches depends on which case you have reached. For

example, out of GG × GG there is only one branch because all chil-

dren are GG, but out of case GG × Gg there are 2 branches and out

of case Gg ×Gg there are 3.

The probabilities on the first level branches can be read off (or

summed) from the table in Problem 4.5.17.i). For example, case ii)

occurs .2058+ .2058 = .4116 of the time.

After you Group Like Leaves, you should recognize the probabilities

of the eventsGG,Gg and gg. What are they? Could we have predicted

these values?

ii) Next use your tree diagram to answer a few questions.

a. Suppose that a randomly chosen blue-eyed girl has a younger

brother. Show that the probability that her younger brother also

has blue eyes is exactly 64%.

b. What is the chance that a sibling of brown-eyed child is brown

eyed?

iii) Draw a tree diagram of this compound experiment assuming

that the 3 zygosities have frequencies as given in Problem 4.5.17.ii).

Before you start, predict what values you’ll obtain for GG, Gg and

gg after you Group Like Leaves. Then fill out the tree diagram and

compare the values you obtain to your prediction.

What went wrong in the iii)? In i), our tree diagram predicted that

the proportion of children with each zygosity GG, Gg and gg would

be exactly the same as those of their parents, on which we based out

table in Problem 4.5.17.i). Surely we should expect this in iii) as well.

But now the tree diagram gives very different proportions—30.25%,

49.50% and 20.25% for the children versus 20%, 70% and 10% for the

parents.

What’s going on here? Evolution predicts that distribution of genes in
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a population will change under selective pressure. Genes that confer

on those who carry them a greater ability to reproduce will become

more common at the expense of less “fit” genes. But that’s not what

we’re seeing here. The numbers here come purely from the condi-

tional probability of sexual reproduction. If this process causes gene

distributions to fluctuate by large amounts from one generation to

the next, won’t this wipe out any effects of natural selection, which

produces gradual changes over periods of many generations? The

answer is, “Yes, it would”.

Fortunately, it doesn’t. What the two examples above show that

that some zygotic frequencies (like the one in Problem 4.5.17.i)) are

stable, meaning that the zygotic distribution of parents is the same

as that of their children, and some (like the one in Problem 4.5.17.iii))

are not. How can we tell which are which and how can we tell what

types we should expect to see in the real world? The answer is to do

one more example using the tree in Figure 4.6.11 but using variable

rather than numerical frequencies. The next problem guides you to

do this.

Problem 4.6.12: Recompute the tree diagram in Figure 4.6.11 but

this time assuming that the 3 zygosities have frequencies given by

variables x, y and z.

i) The probabilities you need for the first level branches can be

read off the table in Problem 4.5.17.iii) and those for the second

level branches are the same as in Problem 4.6.9.

ii) In steps ix) and ix) of Tree Diagram Method 4.5.22 (Fill in the

Leaves and Group like Leaves), your probabilities will be quadratic

polynomials in x, y and z. However, if we plug in x = .49, y = .42
and z = .09, the values we obtain should match the probabilities of

the tree in Problem 4.6.10.i). Use this to check your polynomials.

iii) What should the sum of the GG, Gg and gg probabilities equal?

Use this to give another check for your answers.
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OK. Now, how do we tell from the tree diagram whether zygotic fre-

quencies x, y and z are stable? Remember this just means that the

each of the probabilities x, y and z that give the zygotic frequencies

of the parents equals the corresponding probability (at the GG, Gg
and gg vertices) that gives the frequency for the children. Since these

probabilities are quadratic polynomials, what we get when we equate

them are quadratic equations! For example, when we equate the GG
frequencies, we get x = x2+x ·y + 1

4y
2. For the Gg frequency, we get

y = 1
2xy+2xz+

1
2y

2+ 1
2yz and for the gg we get z = 1

4y
2+y ·z+z2.

These equations are not hard to unwind, even if they look a bit scary,

but there’s an easier way to clear the clutter. We can get rid of all the

fractions if we just set Y = 1
2y (so 2Y = y and Y 2 = 1

4y
2). In terms

of Y , the probability we found for GG children is x2 + x · y + 1
4y

2 =
x2+x·(2Y)+Y 2 = x2+2x·Y+Y = (x+Y)2, Likewise, the probability

for gg is 1
4y

2 + y · z + z2 = Y 2 + (2Y) · z + z2 = (Y + z)2. Two such

perfect squares must be telling us something, so let’s give names to

the square roots, say p = x+Y and q = Y +z. We can now re-express

the conditions that the GG and gg probabilities are the same in the

parent and child populations as x = p2 and z = q2.

The key observation is that p+q = 1. This follow directly by plugging

in the definitions p+q = (x+Y)+(Y+z) = x+2Y+z = x+y+z = 1.

Squaring this (p + q)2 = 1 too, so p2 + 2pq + q2 = 1. But x = p2 and

z = q2 so x + 2pq + z = 1. Since x + y + z = 1 too, we must have

y = 2pq.

Problem 4.6.13: If our zygotic frequencies are stable then we know,

as above, that y equals 1
2xy + 2xz +

1
2y

2 + 1
2yz by equality of the

proportions of Gg parents and children.

i) Replace y with 2Y in this expression.

ii) Plug the definitions of p and q into 2pq and expand.

iii) Show that these two expressions are indeed equal, as predicted.

Let’s sum up what the algebra has told us.
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Hardy–Weinberg Principle 4.6.14: We say that a triple x, y and

z of non-negative zygotic frequencies is stable if, when a population

of parents have these zygotic frequencies, we expect their children to

have these frequencies too.

The Hardy–Weinberg principle says that, when mating and fertility

are random, a triple is stable if and only if there is a number p with

0 ≤ p ≤ 1 such that, if we set q = 1 − p, then x = p2, y = 2pq and

= q2. We call the curve traced by the points (p2, pq, q2 as p runs from

0 to 1 the Hardy-Weinberg curve.

(1,0,0)•

(0,0,1)•

( 14 ,
1
4 ,

1
4 )•

(.49, .42, .09)•
(.2, .7, .1)•

Figure 4.6.15: The Hardy-Weinberg curve

In Figure 4.6.15, the origin (0,0,0) is bottom rear corner. The set

of zygotic frequencies in (x, y, z)-space is the gray triangle and the

set of stable frequencies is the orange curve. The endpoints of the

curve are (1,0,0) corresponding to p = 1 and (0,0,1) corresponding

to p = 0. The point where the curve has largest y-value and turns

back on itself is ( 14 ,
1
2 ,

1
4) corresponding to p = 1

2 . The frequencies

(.49, .42, .09) from Problem 4.5.17.i) lie on the curve, and those from

Problem 4.5.17.ii)—(.2, .7, .1)—are well off it. Biologists often call a

flattened version of this picture a de Finetti diagram.

This principle we have rediscovered gets its name from the fact that

it was originally discovered independently in 1908 by G. H. Hardy,
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one of the great mathematicians of the early 20th century (as an an-

swer to a question asked by a biologist colleague) and by Wilhelm

Weinberg, a German doctor.

There are two more questions worth asking about zygotic frequen-

cies. First, how are they inherited? We know what it means for a triple

of frequencies to be stable: children inherit the frequencies of their

parents. But what about the child frequencies when the parent fre-

quencies are unstable? Surprisingly, the first generation of children

always have stable frequencies and therefore these are inherited by

the grandchildren and all later generations. In fact, the calculation

above also show this, because we only used the formulae for the

child frequencies in terms of the parent ones to find p and q. That

is, the child frequencies are always on the Hardy-Weinberg curve and

hence are stable, no matter what the parent frequencies were.

This means that, if the randomness assumptions of the Hardy–

Weinberg Principle 4.6.14 hold, we won’t have to wait long to observe

stable zygotic frequencies. Conversely, if they observe frequencies

not on the Hardy-Weinberg curve, biologists suspect that something

is not random. Perhaps mating is assortative (people prefer partners

with similar genes), as is the case with genes for height (spouses

tend to be of similar height). Perhaps some zygotypes are more or

less fertile due to natural selection. But, it’s hard to be sure that the

deviation from stability is not due to random variation, especially if

the population is small.

The second question is, “Does the magic probability p have an in-

terpretation in terms of genetic frequencies?” The answer is yes, it’s

simply the proportion of chromosomes that carry the G allele of our

gene—and q is just the complementary proportion of g alleles. With

this interpretation, it’s easy to see why the Hardy–Weinberg Prin-

ciple 4.6.14 holds. To produce a GG offspring each parent must con-

tribute a G gene, with probability p on each side. Since the events are

independent, they both happen pṗ of the time giving x = p2. Like-
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wise, considering gg zygotes we get y = q2. For Gg zygotes, we can

either we can get the G from either parent (and the g from the other)

giving y = 2 · p · q.

4.7 The dice don’t talk to each other

In this section, we explore the concept of independence. Indepen-

dence is deceptively simple. On the one hand, when it holds, it is

a very powerful tool—so powerful that many, indeed most, stan-

dard tools in statistics can only be applied when independence is

assumed to hold. On the other, our intuition about independence is

extremely unreliable. Many of the most widely and firmly held error

in thinking about probabilities are due to incorrect intuition about

independence.

Our plan here is to start with the easy part: defining independence

and explaining how to test for whether or not it holds. Then we’ll

tackle a range of examples that illustrate common pitfalls in working

with it.

Independence

Informally, two events are independent if knowing whether or not

one occurred does not affect the probability that the other did. To

take the simplest example, suppose you flip a quarter and a dime.

You expect the quarter to come up heads half the time. Suppose I

show you that the dime came up tails. Does this change your expec-

tation for the quarter? No, you still expect the quarter to come up

head half the time. Equally, if I’d told you the dime came up heads

you’d still expect the quarter to come up head half the time. We ex-

press this expectation mathematically by saying that the side that

come up on the quarter and the dime are independent of each other.
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We can recast this example in a slightly different way, Suppose that

instead of tossing a quarter and a dime, I toss a quarter twice. You

expect the quarter to come up heads on the second toss half the

time. If I tell you that the first toss was a tail, does this change your

expectation for the second toss? No, you still expect the second toss

to be a head half the time. Equally, if I’d told you the first toss was a

head, you’d continue to expect the quarter to come up heads half the

time on the second toss. And vice-versa, you’d expect the first toss

to come up heads and tails equally often whether you knew nothing

about the second toss, or whether you knew it was a head. This time

we say that the sides that come up on the first and second tosses

of the quarter are independent. A more graphic way to express this

idea is to say that “The coin has no memory”.

For a slightly more complex example, consider rolling our usual blue

die and red die. We expect the blue die to show a 2 one-sixth of

the time. Does that expectation change if I tell you that the red die

showed a 5? Once again, no. In fact, nothing I tell you about what

the red die showed seems to give any information about what blue

die showed. It wouldn’t make any difference if I changed the number

5 on the red die to a 3 or a 6 or any other number. Nor if, instead

of specifying the exact number on the red die, I told you that some

other event had happened—such as say a number less than 4, or

an even number showing. Again we express this mathematically by

saying that the numbers showing on the two dice are independent

events. The title of this section—“The dice don’t talk to each other”—

is the graphic way of expressing this intuition.

Independent Events 4.7.1: Fix a sample space S and a probability

distribution Pr. The following 3 equations relating the probabilities of

2 events E and F are equivalent (that is, all hold or all fail). If they

hold, we say that E and F are independent events. If they do not hold,

we say that E and F are dependent events.

i) Pr(E) · Pr(F) = Pr(E ∩ F).
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4.7 The dice don’t talk to each other

ii) Pr(E|F) = Pr(E).

iii) Pr(F|E) = Pr(F).

The second and third equalities capture the informal concept of in-

dependence in the examples above. The second say that the proba-

bility of observing E knowing that F occurred is no different from the

probability of observing E with no information about F . Likewise the

third says that knowing that E occurred has no effect on the chance

of observing F . Put this way, the last two equalities have a definite

“direction”—which event do we ask about and which is either given

or not—so it’s not obvious why they should be equivalent.

On the other hand, the first equality is symmetric: if we swap the

order of E and F we get Pr(F)·Pr(E) = Pr(F∩E) and the probabilities

on both sides are unchanged. For this, and other reasons, we almost

always want to check whether independence holds using the first

equation.

Method for Checking Independence 4.7.2: To check whether

events E and F in an equally likely outcomes probability space S are

independent or dependent:

i) Find Pr(E), Pr(F) and Pr(E ∩ F) using the Equally Likely Out-

comes Formula 4.3.2.

ii) Check, by substituting these 3 values, whether Pr(E) · Pr(F) =
Pr(E ∩ F) holds or not.

Why did I bother setting out a method when all that’s required is to

plug into Independent Events 4.7.1.i)? To emphasize one point and

help you steer clear of a very common pitfall. The point of emphasis

is that you must find Pr(E ∩ F) in i) by counting E ∩ F and then

plugging this count into Pr(E∩F) = #E∩F
#S . The pitfall is to try to avoid

making this count by applying some other formula. The common

mistake is to try to use the Intersection Probability Formula

4.4.3—Pr(E∩F) = Pr(F)·Pr(E|F)—but to use Pr(E) instead of Pr(E|F)
in this formula. Of course, if you do this you’ll find, when you plug
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4.7 The dice don’t talk to each other

in ii), that Pr(E∩F) = Pr(F) ·Pr(E) because you used the right side to

compute the left. And if you don’t, you’ll get stuck in a vicious circle

when you try to find Pr(E|F) since the numerator of this conditional

probability is Pr(E ∩ F). Let’s try this out in the examples above.

Example 4.7.3: When we toss the quarter and the dime, we

get a sample space S = {Hh,Ht,Th,Tt} in which I use upper

case for the quarter and lower case for the dime. If we let E =
“quarter heads” = {Hh,Ht} and F = “dime tails” = {Ht,Tt, } (so

E ∩ F = “quarter heads and dime tails” = {Ht}), then Pr(E) = 2
4 ,

Pr(F) = 2
4 , and Pr(E ∩ F) = 1

4 . Since Pr(E) · Pr(F) = 2
4 ·

2
4 =

1
4 =

Pr(E ∩ F), E and F are independent.

Problem 4.7.4: Show that E = “first toss H” and F = “second toss

H” are independent events .

Example 4.7.5: When we roll blue and red dice, we get the usual

sample space S of 36 ordered pairs of numbers from 1 to 6. The

events E = “blue die shows 2” and F = “red die shows 1” both have

probability 6
36 and E∩F = “blue 2 and red 5” has probability 1

36 . Since

Pr(E) · Pr(F) = 6
36 ·

6
36 =

1
36 = Pr(E ∩ F), E and F are independent.

If we let G be the event “red die is less than 4”, which has probability
18
36 , then E ∩ H = {(2,1),2,2), (2,3)} and has probability 3

36 . This

time Pr(E) · Pr(G) = 6
36 ·

18
36 =

3
36 = Pr(E ∩ G), so E and G are also

independent.

What about F and G? If I tell you that the red die showed a 1, then

you know for sure that it’s less than 4. If I tell you the red die is less

than 4, you don’t know it’s a 1 but you do know that there are only 3
possible rolls instead of 6. Either way knowing about event changes

our expectation for the other. That’s what it means for the events

to be dependent. Let’s check: F ∩ G is the event “red die is 1” and

“red die is less than 4”. Thus just means that the red die equals 1 so

Pr(F ∩ G) = 6
36 . This not the same as Pr(F) · Pr(G) = 6

36 ·
18
36 =

3
36 ,

confirming our guess that F and G are dependent.
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4.7 The dice don’t talk to each other

Let’s ask about one more pair: F and the event H = “red die is

even”; I’ll leave you to check that Pr(H) = 18
36 . Now if we know F

happens then the red die is odd and H cannot, and conversely if H
happens we cannot see F because 1 is odd. So we guess that this

pair is dependent. In fact, F and H are mutually exclusive: if one

happens, then the other can’t. So Pr(F ∩H) = 0. We don’t even need

to calculate Pr(F) · Pr(H) to see it can’t be 0 and confirm our guess

of dependence.

You may remember that when we were looking at OrElse Formula

for Probabilities 4.2.6. I had you chant “The checks for ‘mutu-

ally exclusive’ and for ‘independent’ are completely different” a few

times. Say it again, please. Now I can explain it. You check that E
and F are mutually exclusive by checking that Pr(E ∩ F) = 0. You

check that E and F are independent by checking that Pr(E ∩ F) =
Pr(E) · Pr(F). Many students want to confound the two. Don’t! With

that warning, I hope it is safe to back off a bit and note that the last

example generalizes.

Mutually Exclusive Events Are Dependent 4.7.6: If E and

F are mutually exclusive events with non-zero probabilities, then E
and F are dependent. The reason is simple: Pr(E) · Pr(F) is not 0
because neither factor is, but Pr(E ∩ F) is 0—that’s what mutually

exclusive means.

Here’s a couple of easy ones for you to try.

Problem 4.7.7: Consider the events E =“blue die shows 2”, F =“red

die shows 4” and G =“red die is at most 3”. Show that E and F are

independent and that E and G are independent but that F and G are

dependent.

So far there have been no surprises. Our intuition is nicely captured

by the saying that “The dice don’t talk”. So if one event involves

only information about the blue die and the other about the red die,

we expect the events to be independent. Likewise, what we know
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4.7 The dice don’t talk to each other

about the quarter tells us nothing about the dime. On the other hand,

if both events deal with the we expect that information about the

blue die tells us nothing involve only the red die, we expect to learn

something about both events from the outcome of either—that is we

expect dependence.

Now let’s turn to some more subtle examples in which we ask about

events which involve both dice or all the coins.

Example 4.7.8: We toss a coin m times and record which side

comes up on each roll, and we ask whether the events E =“first toss

is a head” and F =“exactly two tosses are tails” are independent. In-

tuitively, we’d guess they are not. Knowing that the first toss was a

head should make the number of heads we expect to see go up and

the number of tails go down. So it ought to affect the chance for a

specific number of tails. This guess is almost right!

In the table below, I have recorded, for m from 2 to 6, the probabili-

ties of Pr(E), Pr(E) and Pr(E∩F), as well as the product Pr(E) ·Pr(F)
and the conditional probability Pr(F|E). To find (the numerator of)

Pr(F) we need to count the ways of picking 2 ofm tosses to come up

tails, which is C(m,2) as in Problem 3.8.27. For Pr(E ∩ F), we must

pick the two tosses from amongst the last (m − 1) tosses (since the

first is a head) getting C(m − 1,2). I’ll leave you to check the other

entries.

m Pr(E) Pr(F) Pr(E ∩ F) Pr(E) · Pr(F) Pr(F|E) Independent?

2 2
4

1
4

0
4

1
8

0
2 No

3 4
8

3
8

1
8

3
16

1
4 No

4 8
16

6
16

3
16

3
8

3
8 Yes!

5 16
32

10
32

6
32

5
32

6
16 No

6 32
64

15
64

10
64

15
128

10
32 No

Table 4.7.9: Independence of “first H” and “exactly 2 T’s”
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4.7 The dice don’t talk to each other

As you can see from the Pr(F|E) column, knowing E makes F less

likely when the numberm of tosses is small, and more likely whenm
is big. This is the dependence we expected. Butm = 4 is an exception

and here the two events just happen to be independent. It’s this kind

of pitfall that makes trusting your intuition about independence so

dangerous.

Here are a couple of similar exercises involving dice. In both cases,

the events involve the total on the two dice and the number on one

die. We expect the two to be dependent since having a small or large

number showing on one die ought to raise or lower the expected

total. Once again, this is usually, but not always, correct. But in one

case there’s an exceptional total for all numbers, and in the other

there’s a different exceptional total for each number. So not only

are there exceptions, but there’s not even any clear pattern to the

exceptions.

Problem 4.7.10: We roll two dice.

i) Consider the events E =“blue die shows 5”, F =“total is 4”,

G =“total is 7” and H =“total is 10”. Which of the events F , G and H
are independent of E?

ii) Which of the events F , G and H above are independent of

E′ = “blue die shows 3”?

Problem 4.7.11: We roll two dice.

i) Consider the events E =“total is at most 9”, F =“red die is 2”,

G =“red die is 4” and H =“red die is 6”. Which if the events F , G and

H are independent of E?

ii) Which of the events F , G and H above are independent of

E′ = “total is at least 4 and at most 10”?

Knowing that events are independent can be very useful, because

then we can use Independent Events 4.7.1.i) to calculate intersec-

tion probabilities:
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4.7 The dice don’t talk to each other

Intersection Probability of Independent Events 4.7.12: If

E and F are known to be independent, then Pr(E∩ F) = Pr(E) · Pr(F).
More generally, the probability of the intersection of any number—3,

or 4, or n—of independent events, is the product of the probabilities

of the individual events.

Warning: You must somehow know in advance that E and F are in-

dependent to apply this formula. If not, you must use Independent

Events 4.7.1.i), Pr(E ∩ F) = Pr(F) · Pr(E|F). Ignoring this warning is

a very common cause of mistakes, especially in problems that ask to

decide whether or not two events are independent, as I noted after

the Method for Checking Independence 4.7.2.

Here are a couple easy exercises in using the Intersection Prob-

ability of Independent Events 4.7.12. The whole subsection that

follows can be viewed as a much more important application.

Problem 4.7.13: Suppose that we know that student’s performance

in math courses is independent of his or her gender. If 20% of stu-

dents in math classes get A grades and 60% of students in math

classes are women, what percent of students are women with A

grades? What percent are men with grades of B or lower?

The Intersection Probability of Independent Events 4.7.12 can

also be used, though less frequently to solve for an unknown simple

probability. Here’s an example.

Problem 4.7.14: Suppose that we know that student’s performance

in math courses is independent of his or her gender. If a class of 60
students contains 40 women and 10 of these women got A’s, how

many A’s were awarded in total? If 8men got B’s, how many B’s were

awarded in total?

Here’s a problem that uses independence of more than 2 events.

Problem 4.7.15: Suppose we perform the experiment of tossing a

fair coin 3 times and record which side comes up on each toss. Let

1—
1—
2—

a ·· ·· z ? 418 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.7 The dice don’t talk to each other

Hi denote the event “heads on the ith toss” and Ti denote the event

“tails on the ith toss”.

Showing, by counting outcomes in each case, that:

i) Pr(Hi) = Pr(Ti) = 1
2 .

ii) Pr(H1 ∩H2) = Pr(H1 ∩ T2) = 1
4 .

iii) if i and j are different, then Pr(Hi ∩Hj) = Pr(Hi ∩ Tj) = 1
4 .

We can sum up what’s been checked so far as saying that, when i
and j are different tosses, the events Hi and Hj , or Hi and Tj , are

independent.

Show that Pr(H1 ∩H2 ∩ T3) = Pr(T1 ∩H2 ∩ T3) = 1
8 ,

i) by showing there is 1 outcome in each event.

ii) by using independence to write the probability as a product of 3
simple probabilities.

Problem 4.7.16: Suppose we perform the experiment of tossing a

fair coin 5 times and record which side comes up on each toss. Let

Hi denote the event “heads on the ith toss” and Ti denote the event

“tails on the ith toss”.

Show that Pr(H1 ∩H2 ∩ T5) = Pr(T1 ∩H2 ∩ T5) = 1
8

i) by counting outcomes

ii) by using independence to write the probability as a product of 3
simple probabilities.

Show that Pr(H1 ∩H2 ∩ T3 ∩ T5) = 1
16

i) by counting outcomes

ii) by using independence to write the probability as a product.

Problem 4.7.17: Suppose that we know that student’s performance

in math courses is independent of his or her gender. If a class of 60
students contains 40 women and 10 of these women got A’s, how

many A’s were awarded in total? If 8men got B’s, how many B’s were

awarded in total?
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4.7 The dice don’t talk to each other

Applying independence: the binomial distribution

In this section, we draw together standard counting techniques and

the notion of independence to understand very completely, a special

but very important class of probability spaces, the binomial distri-

butions. In later sections, we’ll go on to use these to peek across the

boundary between probability and statistics. To take such a peek for

most distributions, we’d have to do a lot more work. You’ll find out

what’s involved if you ever take a statistics course. But for the bino-

mial distributions, our understanding of the probability side of the

picture will be so complete that we’ll be able to answer interesting

questions without these statistical foundations.

We start from something that couldn’t be simpler, called a Bernoulli

trial. You can think of this as a flip of an unfair coin—meaning that

the two sides do not come up equally often—and where, instead of

denoting the two outcomes by H and T, we call them “success” and

“failure”, abbreviated s and f. The notions of success and failure

do not imply any kind of value judgement, but are in a metaphorical

way, simply to have a standard way of distinguishing the 2 outcomes.

For example, when our trail consists of performing a BSE test on a

cow, we’ll call the test “successful” if the cow tests positive for BSE.

So,

Bernoulli Trial 4.7.18: A Bernoulli trial B is an experiment whose

sample space consists of just 2 outcomes, s and f.

Of course the trial B, like tossing a single coin, is too simple to be

interesting. But, as with coin tossing, we can use it to build an inter-

esting experiment simply by repeating the trial.

Binomial Experiment 4.7.19: For n > 0, a binomial experiment

is just a sequence of n equivalent Bernoulli trials B and the binomial

sample space Bn the set of possible outcomes of such an experiment.

In other words, the sample space of Bn consists sequences or words of

length n in the 2 outcomes, s and f, so #Bn = 2n.
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Note that this sample space only depends on the number n of trials.

We have yet to introduce any probabilities in these trials, although

we’ll do so in a moment. Why use n instead of our standard letter

l for the number of trials—or the length of the sequences? This let-

ter n is the one you’ll see used to describe binomial experiments in

pretty much all references, so it’s easier to get used to it right away.

Some of the events (and counts) we have looked at in tossing coins

transfer without change to any binomial experiment.

Binomial Events 4.7.20: For 0 ≤ k ≤ n, we denote by S i,n (and

F i,n) the binomial event of observing s (and f) on the ith of the n
trials, and by and Ek,n the of observing s in exactly k of the n trials.

What about the other trials? For S i,n (and F i,n), their outcomes can be

either s or f. Since there are only 2 outcomes, they must be f’s for

S i,n and s’s for F i,n. So we could equally well say that outcomes in Ek,n

are those where we observe exactly k s’s and (n− k) f’s.

It’s easy to count these events:

Problem 4.7.21:

i) Show that #Sk,n = #Fk,n = 2n−1. Hint: See Problem 4.3.6.

ii) Show that #Ek,n = C(n, k). Hint: The reasoning in the coin tossing

Example 3.6.15 applies unchanged (and gives the same answer). Hint:

The reasoning in the coin tossing Example 3.6.15 applies unchanged

(and gives the same answer).

We’re now ready to introduce probabilities on these sample spaces.

Unlike pretty much all the distributions we have worked with up

to this point, outcomes are not going to equally likely. How is this

possible given that the spaces Sn get big very quickly? Since #Bn =
2n, already B20 contains over a million outcomes—and we’re going

to want to think about spaces B40,000 whose order has over 10,000
digits!

This is where we use independence is an essential, and very power-

ful, way. We’ll be able to completely specify the probability distri-

butions that come up by a single number p, even though individual
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outcomes have lots of different probabilities. The upshot is that bi-

nomial distributions are not much harder to work with than equally

likely outcomes distributions—which, remember, are also specified

by a single number, the order of the sample space.

What is this magic number p and how can it tell us about all the

outcomes? For the single trial B, it’s easy. We ask that Pr(s) = p—so

our magic p is just the probability of success in a single trial—and

we’re done. The total probability 1 condition Probability Measure

4.2.1.ii) forces us to have Pr(s)+Pr(f) = 1, so we have to set Pr(f) =
(1 − p). It’s standard to set q := 1 − p to simplify the formulae that

are coming, but this is just a convenience: if we know p, we know q.

We’ll write Bp to denote the sample space B with this choice of

probability distribution. Notice that in Bp, we almost never have

Pr(s) = Pr(f)—that is, equally likely outcomes. In fact, this only

happens when p = q = 1
2 , the case of tossing a fair coin. So we can’t

hope to have equally likely outcomes for any related probability on

the bigger binomial sample spaces Bn.
This is where we need to appeal to independence. Suppose we know

that the events S i,n and Sj,n (s on the ith of our n trials and on the

j th) are all independent? Then it turns out that we can easily find

the probability of any of the 2n outcomes—sequences of n s’s and

f’s—in Bn. Further, this probability turns out to depend only on how

many of the n trails are successes. This makes it easy for find prob-

abilities of events like Ek,n where this number of successes if fixed

to be k. Let’s put off writing down these formulae for a moment and

focus on the assumption of independence.

Why—or better, when—should we think the events S i,n (or F i,n) and

Sj,n (or F j,n), s (or f) on the ith and j th of our n trials, are all inde-

pendent? In mathematical situations, independence is often clear.

If our trials consist of repeatedly tossing a coin, then the fact that

“the coin has no memory” makes the outcomes of any two tosses

independent. It doesn’t matter what happened on the first toss; on
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the second, we expect the coin to come up heads half the time and

tails the other half. This is the conditional probability way of say-

ing the tosses are independent in part ii) of the definition of In-

dependent Events 4.7.1: Pr(“heads on second”|“heads on first”) =
Pr(“heads on second”|“tails on first”) = Pr(“heads on second”) = 1

2 .

This applies equally to any two tosses: Pr(“heads on j th”|“heads on ith”) =
Pr(“heads on j th”|“tails on ith”) = Pr(“heads on j th”) = 1

2 . In terms

of S and F events, this is just Pr(Sj,n|S i,n) = Pr(Sj,n|F i,n) =
Pr(Sj,n) = 1

2 .

For a second example—and one that will show that there’s no need to

have p = 1
2 as with the coins—consider a trial consisting of rolling a

single die in which we define s to be rolling a 2, so p = 1
6 , and failure

to be observing any other roll and where our experiment consists of

rolling n dice of different colors. Once again, it doesn’t matter what

happened on the blue (or ith) roll. Because, “the dice don’t talk”, we

expect to see a 2 on 1
6

th
of the red (or j th) rolls and this is again the

conditional probability way of saying the outcomes of the rolls or

trials are independent.

This dice example highlights two other ideas that come up in using

binomial distributions. First, we asked for our trials to be equivalent

rather than identical: what this means is is most easily explained by

referring to these examples. Tosses of same fair quarter or rolls of

the same fair die or BSE tests of the same cow are identical. Tosses

of two different fair quarters or rolls of two different fair dice or BSE

tests of the two different cows are equivalent: we view what happens

as unchanged by the substitution of coin, die or cow.

Second, we often start with an experiment with a sample space S
with many outcomes (so not a Bernoulli trial), and concoct a Bernoulli

trial from it by picking an event E and equating s with observing E
and f with not observing E (i.e. observing EC ). If, as is common, S
comes equipped with a probability distribution, then we also get our

parameter p by setting p = PrS(E).
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For example, suppose we are interested in a game like craps which

involves rolling a pair of dice and want to focus on the event E of

rolling a total of 7 or 11. Then observing either of these totals consti-

tutes s in our trial (any other totals are f) and p = 6
36 +

2
36 =

2
9 . Once

again, we expect the outcomes of successive trails to be independent

but this time, not because “the dice don’t talk” (since our definition

of success in a single trial involves the total), but because “they have

no memory” (outcomes of prior rolls have no effect on outcomes of

future ones).

Let’s return to our assumptions of independence. This becomes

harder to justify when our trials have a more practical character.

Often we will not know the probability p of success in a single trial

and we’ll want to use the formulae below to estimate this from a

number of trials. For example, if we are testing cows for BSE (and

consider finding an infected cow to be an s), then p is the fraction

of cows with the disease. We want to estimate this by testing many

cows and looking at how many infected ones we find. But to do so

we must assume that the probability that the next cow I test will be

infected is not affected by the fact that the last cow I tested was.

Now there’s no mathematical "coin has no memory/dice don’t talk”

reason to expect this. We are making some choices and the question

is whether or not we are truly making them “at random”—with each

cow equally likely to be picked—or whether our method for select-

ing cows for testing has some bias which we may not understand or

even suspect.

Moreover, in such real world cases, it’s often hard to know that the

trials we perform really represent choices made “at random” from

the population we’d like to survey. To get a feel for the way biases

can creep in uninvited, consider trying to decide the fraction of elec-

tors (our p) who will vote in an upcoming election by conducting a

survey. We can view each survey participant is a trial with s defined

as “plans to vote”. Here’s one simple way in which your trials might
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be dependent.

Example 4.7.22: You conduct your survey by going door-to-door

and questioning anyone who responds to your knocks. Suppose that

the survey population lives in two towns E and F with equal popu-

lations but that 60% of voters in E plan to turn out while only 40%

of voters in F plan to turn out. Then the p we are looking for is 50%

or 1
2 . If our trials were dependent then the probability of find two

voters who plan to turn out in a row (s in 2 consecutive trials) would

be 25% or 1
4 , as for tossing two coins. But if we are canvassing “at

random” in town E, we are, in effect, making independent choices

with a p = .6 and we’ll see s twice in a row .6× .6 or 36% of the time

while if we are canvassing “at random” in F , we’ll see it .4× .4 or 16%

of the time.

Even if successive trials are independent they can lead to incorrect

guesses for p. Suppose in our example that you’re aware of the dif-

ference between the populations of towns E and F so you decide to

conduct a phone survey instead, randomly choosing whether to dial

a number from the E or F directory each time. What if 60% of peo-

ple with 9 to 5 jobs plan to vote, while only 40% of those who are at

home during the day do? If you simply tabulate the results of calls

made from 9 to 5, what you’ll think is that 40% of voters plan to turn

out. But when you check the chance that two successive respondents

plan to vote, you’ll get .4× .4 or 16%. So your trials this time are in-

dependent, but your guess for p is wrong because of your method

produced a sample that was not truly random in a way that you were

not able to predict.

The last problem is a real one for those conducting phone surveys.

Typically, such surveys attempt 15 calls (at varying times and days)

to a number before it is discarded. And even then, there are biases

from people with no phones, or who have only a cell phone and do

not appear in phone directories.

The bad news is that there’s no magic bullet for ensuring that a se-
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4.7 The dice don’t talk to each other

quence of trials is truly being made “at random” or that the results

of different trials are independent. One of the aims of statistics is

to provide methods for designing trials to try to avoid such biases

and tools for checking assumptions of independence. But, even us-

ing these, it’s often hard to really be sure that such assumptions

about your data are justified.

There are 2 pieces of good news. First, here, we only want to under-

stand what we can learn when such assumptions do hold, so you can

simply take them on trust in the examples we’ll work. Second, when

they do hold, the formulas they lead to are very simple.

Binomial Distribution Formula 4.7.23: The binomial distribu-

tion with probability p is the unique probability distribution on the

sample space Bn for which Pr(S i,n) = p (and Pr(F i,n) = q) and for

which the events S i,n (or F i,n) and Sj,n (or F j,n), s (or f) on the ith and

j th of our n trials, are all independent. For this probability distribu-

tion:

i) The probability of every individual outcome (sequence of n trials),

in which we observe exactly k ss and (n− k) fs equals pk · qn−k.
ii) The probability of the event Ek,n that we observe some outcome

with exactly k ss and (n−k) fs is given by Pr(Ek,n) = C(n, k)·pk·qn−k.

The formula for outcomes in i) is where we rely on independence.

For example, suppose that we’re rolling dice and s is a total of 7 or

11, so p = 2
9 and q = 7

9 , and we roll the dice n = 5 times.

What’s the chance we’ll observe the outcome ffsfs (that is, a total

of 7 or 11 on the third and fifth rolls and not on the first and second

and fourth)? What all those “ands” mean is that this outcome is just

the intersection of the events F1,5 ∩ F2,5 ∩ S3,5 ∩ F4,5 ∩ S5,5. Since

the events being intersected are independent, the probability of the

intersection is just the product of the individual probabilities p = 2
9

for each S and q = 7
9 for each F . So we get

Pr(ffsfs) = 7
9
· 7
9
· 2
9
· 7
9
· 2
9
=
(2
9

)2(7
9

)3
= p2 · q3 .
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4.7 The dice don’t talk to each other

But the same reasoning says that

Pr(fsfsf) = 7
9
· 2
9
· 7
9
· 2
9
· 7
9
=
(2
9

)2(7
9

)3
.

In fact, anytime we observe an outcome that involves 2 ss and 3fs,

we’ll get a product with 2 factors of p = 2
9 and 3 of q = 7

9 and these

will collect to give
(
2
9

)2( 7
9

)3
= p2 · q3.

If, instead of 2 ss and 3fs, we have k and (5 − k), then we’ll see k
factors of p = 2

9 and 5 − k of q = 7
9 and these will collect to give

pk · q5−k.

Problem 4.7.24: Show that, for our dice example, Pr(s s s f s
) =

(
2
9

)4( 7
9

)1
= p4 · q1.

Finally, if we see k ss in n rolls rather than 5, then we’ll see n−k fs.

So we’ll get k factors of p = 2
9 and n − k of q = 7

9 that will collect to

give pk · qn−k.

Problem 4.7.25: Show that, for our dice example:

i) Pr(ssff) =
(
2
9

)2( 7
9

)2
= p2 · q2.

ii) Pr(sffsff) =
(
2
9

)2( 7
9

)4
= p2 · q4.

The formula in ii) for Pr(Ek,n) now follows easily. Because Ek,n con-

sists of all outcomes with exactly k ss and these outcomes all have

the same probability pk · qn−k, we know that Pr(Ek,n) = #(Ek,n) · pk ·
qn−k. So we just have to check that the number of n letter sequences

in s and f with exactly k ss is C(n, k). We’ve seen this on many oc-

casions (for example, Example 3.6.15 or Problem 3.6.16 or Problem

3.8.27).

Before we start using the formula, I should point out that, although

the answers we’ll get could be written as fractions, both the numera-

tors and denominators get pretty big. Too big, for most calculators—

though we could work around this using symbolic calculation soft-

ware. Further, it’s easier to compute the powers in these formulas in

decimal form. Finally, and most importantly, we’re going to be more

interested in how big, or how small, these probabilities are than in
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4.7 The dice don’t talk to each other

the counts that give numerator and denominator. So we’ll make all

our calculations with this formula in decimal form. How should we

round these answers? I have chosen to keep 3 significant digits in

my final answers, and you can do the same: this is plenty of accu-

racy to answer “how big? how small?” questions and saves writing

down a sea of decimals. There’s one proviso: when you enter p and

q into your calculator, enter them as fractions—for example enter 1
3

as (1/3) and not as .333. Why? So we will not violate the First Rule

of Rounding 1.2.4 by rounding an intermediate value. If you don’t

take this precaution, your final answer can often be substantially off

(and, of course, you won’t know it)..

Let’s do a few easy problems just to get used to the formula. We

could have worked the following example with coins using just

the Equally Likely Outcomes Formulae for Probabilities 4.3.3:

since p = q = 1
2 all sequences of n tosses have probability 1

2n . But it’s

a lot easier to just plus into the Binomial Distribution Formula

4.7.23.

Example 4.7.26: If we toss a fair coin repeatedly, what is the chance

of seeing exactly:

i) 5 heads in 10 tosses.

ii) 50 tails in 100 tosses.
Solution
Our Bernoulli trial has p = q = 1

2 . Let’s say that a head is a s.

i) Here we want to know Pr(E5,10)—the chance of see exactly 5
heads or ss in 10 tosses or trials so we plug in to find

Pr(Ek,n) = C(n, k) · pk · qn−k = C(10,5) · 1
2

5 1
2

(10−5)
= 0.246 .

Just in case you had difficulty keying those powers in here are the

keystrokes I used to get 1
2
5 1
2
(10−5)

: ((1/2)ˆ5)*((1/2)ˆ(10-5)).

Did really need all those parentheses? No, but I needed most of

them. If you’re sure which ones are superfluous, feel free to leave

them out. But it’s much safer to remember and follow the Paren-
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4.7 The dice don’t talk to each other

theses Rule! 1.1.2. For the record, you need the blue ones in

((1/2)ˆ5)*((1/2)ˆ(10-5)).

ii) Here we want to know Pr(E50,100) and we get

Pr(Ek,n) = C(n, k) · pk · qn−k = C(100,50) · 1
2

50 1
2

(100−50)
= 0.0796 .

In other words, while expect to get about 5 heads in 10 tosses and

about 50 in 100 tosses, the chances of getting exactly that many

heads are not that high—25% and 8%—and get smaller the more

tosses we perform. For example, in 10,000 tosses we will only see

exactly 5000 heads about 2.5% of the time (this one really needs a

symbolic algebra system).

We can also use the Binomial Distribution Formula 4.7.23 to find

the chance of “at least” or “at most” a specified number of wins

by the familiar device of summing the probabilities for each exact

number of wins covered. Here’s an example.

Example 4.7.27: We are playing craps and repeatedly roll two dice

to start a game repeatedly. Find the probability of seeing the winning

total of 7 or 11:

i) exactly 2 times in 9 games.

ii) exactly 8 times in 9 games.

iii) at most 2 times in 9 games.

iv) at least 8 times in 9 games.

v) at most 8 times in 9 games.
Solution
In this example, we call a total of 7 or 11 a s so p = 2

9 and q = 7
9 .

i) Here we just plug in: Pr(E2,9) = C(9,2)· 29
2 7
9
(9−2) = 0.3061020142

or about 30%.

ii) Again, we want Pr(E8,9) = C(9,8) · 29
8 7
9
(9−8) = 0.0000416291872,

or barely 1 in 25,000.

iii) Here we need to sum the chances of seeing exactly 0 or 1 or

2 successes, getting C(9,0) · 29
0 7
9
(9−0) + C(9,1) · 29

1 7
9
(9−1) + C(9,2) ·

2
9
2 7
9
(9−2) = 0.6781009898.
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4.7 The dice don’t talk to each other

iv) Here we need to sum the chances of seeing exactly 8 or 9 suc-

cesses, getting

C(9,8) · 29
8 7
9
(9−8) + C(9,9) · 29

9 7
9
(9−9) = 0.00004295074853.

v) Here we could sum the chances of seeing exactly k successes

for k running from 0 to 8, but it’s a lot less work to subtract the

complementary chance of getting 9 successes from 1, getting 1 −
C(9,9) · 29

9 7
9
(9−9) = 0.9999986784.

Here are a few for you to try.

Problem 4.7.28: You are taking a test with 20multiple choice ques-

tions, each of which has 4 answers. If you guess answers at random,

what’s the chance that:

i) you’ll get all 20 of the questions right.

ii) you’ll get none of the questions right.

iii) you’ll get exactly 5 of the questions right. (This is the number of

right answers we’d “expect” to guess).

iv) you’ll get at most 5 of the questions right.

v) you’ll get at least 5 of the questions right. Hint: This is not quite

complement to “at most 5 right”, but if you use the answer to iii) as

well, you do not need any further work.

One way the Binomial Distribution Formula 4.7.23 is often used

is to decide how much testing is needed to uncover flaws in a pro-

cess. Here’s an example that illustrates how this works.

You are responsible for quality control at a flat-screen TV factory.

You know that fewer than 1 in a 5000 TVs have this problem, but you

also know that, on rare occasions, TVs with bad pixels occur in big

bunches–1 defect in 20 or 25—because one machine used to make

the LCDs has a calibration problem. You need to design a testing

protocol that catches these calibration problems.

Each day your factory produces 5,000 TVs. Of course, you could as-

sure 0 defects by simply testing all the TVs you make. But it takes

a worker 4 minutes to test each TV so each can only test about 120
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a day, and you can’t spare the 40+ workers it would take to to test

every TV, especially you would only catch one defect on an average

day. If you could be 99% certain that at most 2% of the TVs in each

day’s run have a dead pixel, you wouldn’t be worried about calibra-

tion problems. How many TVs do you need to test each day to be

this confident if no defects are found?

Example 4.7.29: We can think of each test as a Bernoulli trial where

p is the chance of finding a dead pixel. We want to pick the number

of trials n (how many TVs we test) so that the chance of seeing at

least 1 s in n trails is at least 99%. Equivalently, we want to chance

of seeing 0 TVs with defects to be less that 1% = .01. This is just

Pr(E0,n) = C(n,0) · p0 · qn = qn. As p gets bigger, q gets smaller and

so does qn. So if testing n TVs and seeing no defects gives us enough

confidence when p = .02, we’ll be even more certain of catching days

when p is bigger.

So we want to need to find an n for which .98n < .01. We can either do

this by repeated guessing, or use the ln function. Since ln is increas-

ing 1.4.44, we can ask ln(.98n) < ln(.01) and since ln(xn) = n · ln(x),
this means n > ln(.01)

ln(.98 = 227.9481712 so n = 228 works. As a check,

.98228 = 0.009989534656. In other words, we just need 2 testers.

Here are some claims about how such a protocol would function that

I’ll leave for you to check. Most days (roughly 19 in every 20) will pass

with no defects being found. If you do find a defective TV, you’ll need

to start worrying about calibrations. But if you find just 1 defective

TV, you can still be pretty sure that things are running normally. This

happens less than 6% of the time when the defect rate is at least 2%

and almost 99.9% of the time when the defect rate is 1
5000 . Therefore,

if you find 2 or more defective TVs, you can be pretty sure some

calibration is needed. You’ll observe this only 1 day in a 1000 when

the defect rate is 1
5000 . In other words, 0, 1 and “more than 1” defects

found correspond with high probability to “no problem”, “problem

possible but not too likely” and “problem almost certain”. Moreover,
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4.7 The dice don’t talk to each other

almost 95% of the time that a machine needs calibration, your testing

program will reveal at least 2 defects.

Problem 4.7.30: Use the Binomial Distribution Formula 4.7.23

to check each of the following:

i) If the probability of a defect is 1
5000 then the chance of seeing 0

defects when 228 TVs are tested is 0.9554196981.

ii) If the probability of a defect is 1
5000 then the chance of seeing at

most 1 defect when 228 TVs are tested is 0.9989955515.

iii) If the probability of a defect is 1
5000 then the chance of seeing 2

or more defects when 228 TVs are tested is 0.0010044485—barely 1
in a 1000.

iv) If the probability of a defect is 2% then the chance of seeing at

most 1 defect when 228 TVs are tested is 0.05647145102.

v) If the probability of a defect is 2% then the chance of seeing 2 or

more defects when 228 TVs are tested is 0.9435285489.

BSE Testing

We’re now ready to tackle a more substantial application of the Bi-

nomial Distribution Formula 4.7.23, using it to confirm the anal-

ysis of the U.S.D.A.’s BSE testing program that we gave in Section

2.2. Our goal here is to check all the numbers in Table 2.2.2 so you

might want to reread this section before starting. I have broken this

up into three problems, one for each of the three numbers of cows

tested per year. I’ll do the first as an example and leave the other two

as problems for you.

The basic idea is the same in all three parts. We view each BSE test as

a Bernoulli trial in which finding an infected cow is s. The probability

p of success is then prevalence of BSE in the American herd—that is,

the fraction of cattle infected with BSE. We don’t know what this

fraction is: the main point I tried to make in Section 2.2 is that,

while getting a handle on this number is supposed to be the purpose
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of the test, they are very unlikely to provide good estimate. But, we

can ask what results we’d expect if we assume that p takes various

values. The two that I chose to work with are p = 0.000001, the

1 in 1,000,000 prevalence that the testing program is supposed to

rule out, and p = 0.00001, the much higher 1 in 100,000 prevalence

at which we’d be consuming about 150,000 pounds of meat from

infected cattle every year.

To apply the Binomial Distribution Formula 4.7.23, we also need

to know the number of trials n—this is just the number of cows

tested each year and is the only ingredient that will vary in analyzing

the 3 subtables—and the number of successes k, which is given in the

first column of each table. We can then find the entries in the “exactly

k infected” columns by just plugging in to Pr(Ek,n) = C(n, k) · pk ·
qn−k.

And we can find the entries in the “more than k infected” columns,

by applying the Complement Formula for Probabilities 4.2.3. In

other words, starting at k = 0 we successively subtract the probabil-

ity of seeing “exactly k” infected cattle from the probability of seeing

“more than (k − 1)” to get the probability of seeing “more than k”.

This is so straightforward I won’t bother to give the calculations.

Example 4.7.31: Here’s the first set of probabilities with n =
20,000.

Prevalence 1 in 100,000 1 in 1,000,000

20,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.818730 0.181270 0.980199 0.019801

1 0.163748 0.017522 0.019603 0.000197

2 0.016374 0.001148 0.000196 0.000001

3 0.001092 0.000057 0.000001 0.000000006

Table 4.7.32: Testing 20,000 cattle yearly for BSE
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For p = 0.00001 and k = 0, we can just plug in to check that

Pr(Ek,n) = C(n, k)·pk·qn−k = C(20000,0)(0.00001)0(0.99999)20000 =
0.818730. The second and third numbers in this column are

C(20000,1)(0.00001)1(0.99999)19999 = 0.163748

and

C(20000,2)(0.00001)2(0.99999)19998 = 0.016374

respectively.

Likewise we can get the first 2 numbers in the column where p =
0.000001 (and q = 0.999999) as

C(20000,0)(0.000001)0(0.999999)20000 = 0.980199

and

C(20000,1)(0.000001)1(0.999999)19999 = 0.019603 .

Problem 4.7.33: Verify the remaining values 0.000196, 0.001092
and 0.000001 in Table 4.7.32.

Problem 4.7.34: Proceed as in Example 4.7.31, but with n =
360,000 to verify the values below:

Prevalence 1 in 100,000 1 in 1,000,000

360,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.027323 0.972677 0.697676 0.302324

1 0.098365 0.874312 0.251164 0.051160

2 0.177058 0.697255 0.045209 0.005950

3 0.212470 0.484784 0.005425 0.000526

Table 4.7.35: Testing 360,000 cattle yearly for BSE

Problem 4.7.36: Verify the final set of values:
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Prevalence 1 in 100,000 1 in 1,000,000

40,000 cattle tested Probability that number of infected cattle is

k exactly k more than k exactly k more than k

0 0.670319 0.329681 0.960789 0.039210

1 0.268130 0.061551 0.038431 0.000778

2 0.053625 0.007926 0.000769 0.000010

3 0.007150 0.000776 0.000010 0.0000001

Table 4.7.37: Testing 40,000 cattle yearly for BSE

What’s wrong with this and how can we fix it? To have a sensible

testing program, we first need to decide what prevalence we wish to

rule out and how certain we demand to be about the actual preva-

lence being lower. We could require complete certainty but then we’d

need to test almost every cow. Instead, our goal here is to test a few

as possible, while providing the necessary certainty.

Let’s say, to keep things simple, that we want a program in which not

detecting a case of BSE in a calendar year makes us 95% certain that

the prevalence of BSE is less than 1 in a 100000. The theme of the

preceding problems is that you can’t make such a claim by giving

just 40,000 tests. Quite the opposite. If tests are independent and

the prevalence equals 1 in a 100000, there’s still a 67% chance that

we’ll see no positive tests.

How do we decide how many tests are enough? The key is to restate

our demand for certainty: “If the prevalence equals 1 in a 100000,

how many cows do we need to test to ensure that the chance of

finding 0 infected cows is less than 5% ?” I’ll call this an “uncertainty

threshold” of 5%

We can answer this question the same way we made the tables above,

with the Binomial Distribution Formula 4.7.23 formula. Write

n for the number of cows. Then we’re asking about Pr(E) where
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the event E is “exactly 0 successes (infected cows) in n binomial

trials (BSE tests), when p = 1
100,000”. Assuming that the tests are

independent—a question about how the cows are selected that we

won’t consider—it’s given by C(n,0)p0qn. But C(m,0) = p0 = 1 and

q = 1− p. So we can rewrite this probability as (1− p)n.

Now comes a point at which a formula from an apparently unre-

lated area of mathematics can help. It’s a good example that math-

ematics involves knowledge as well as thought. The formula is the

Bernoulli’s Limit for exp 1.4.56:
(
1+ 1

n

)n -e.

Problem 4.7.38: Use Bernoulli’s Limit for exp 1.4.56 and Rules

of exponents 1.4.10 to show that
(
1− 1

n

)n -e−1 = 1
e .

We can match this last form up by equating p = 1
n getting

(
1− 1

n

)n
. If

n is big—we’re testing a lot of cows—then this probability is close to

e−1 ' 0.36787944. To see what this means, let’s take p = 1
100,000 and

hence n = 1
p = 100,000. Suppose we test 100,000 cows for BSE and

find 0 cases. Then we have seen an event that happens in only 36.7%

of all years if that the current prevalence is greater than 1
100,000 . That

meets our criterion for a testing program, except for the fact that

36.7% is still way above our 5% uncertainty threshold. We need to

test more cows.

But in fact for any small p we get a 36.7% level of uncertainty by test-

ing n = 1
p cows. To see how far to raise n, we introduce a parameter

a in the numerator: n = a
p . This time the Binomial Distribution

Formula 4.7.23 gives us an uncertainty threshold of (1 − p)(
a
p ) and

algebra like that in Problem 4.7.38 tells us that, if, as with BSE, p is

small then this is close to e(−a).

So we’ll meet our 5% uncertainty threshold if we have e(−a) < 0.05.

To solve for a we apply exp and ln are inverses 1.4.53 to get in turn

ln(e(−a)) < ln(0.05), −a < ln(0.05) and a > − ln(0.05) = 2.99573. So

if p = 1
100,000 , we need to test at least 300,000 cows because n = a

p =
2.99573 · 100000 = 299,573. But because the bound for a does not
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depend on p we can say much more. If I want 5% or lower uncertainly

and p = 1
1,000,000 , I need to test about 3,000,000 cows.

In fact, we can say even more by introducing another variable u
for our uncertainty threshold. Replacing the 0.05’s in the algebra

above with u’s leads to a > − ln(u). Since the natural logarithm is a

very slowly growing function, this means that it’s relatively cheap to

promise lower uncertainties.

Taking p = 1
100,000 as an example, at u = 10% uncertainty we get

a = − ln(0.1) = 2.30258 so we need to test 230,000 cows. By testing

another 70,000 (total 300,000), we lower the uncertainty to 5%. At

1% uncertainty, a = − ln(0.01) = 4.60517.

Problem 4.7.39: . Show that testing an additional 160,000 cows,

or 460,000 in all, suffices to reach the 1% uncertainty level when

p = 1
100,000 .

We need to test a few million cows before not seeing positive tests

makes us confident that the prevalence is below the p = 1
1,000,000

that seems to be the testing goal in most public health circles. This

is a lot more than the U.S.D.A tests but only about 10% of the cattle

slaughtered annually.

Binomial distributions are also a perfect place to get acquainted with

a few of the basic tools of statistics: as we’ll see in the next section,

the Binomial Distribution Formula 4.7.23 makes it possible to

give formulas for basic quantities that can usually call for numerical

calculations lengthier—much lengthier—than those done here.

Common misconceptions about independence

I just want to make a few comments here about the examples we

looked at in He’s on Fire!. If you skim over that discussion again,

you’ll remember that it dealt with runs in sequences in Bernoulli

trials. A run of length ` is just a set of ` consecutive trials with
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the same outcome. For example, if we’re tossing coins and we get

4 heads in a row, that’s a run of length 4; likewise, 5 tails in a row

is a run of length 5. Our first goal is to see how likely runs are to

continue.

Problem 4.7.40: First, let’s consider runs of successive ss.

i) Observing a run ` ss means we have a sequence of n = ` trials

in which we see k = ` ss. Use this to show that the chance of seeing

a run of length ` in the next ` trials is p`.
ii) Suppose we have just observed a run of ` ss. Show that the

probability that the run will continue on the next trial is p. Hint: The

chance that the run will continue is Pr(s|“run of length `”) and the

event (“s on the (l + 1)st trail” ∩ “run of length `”) just means “run

of length (` + 1)”) so you can use i) to find its probability.

iii) If we have just observed a run of ` ss, show that the probability

that the run will stop on the next trial is q. Hint: If it doesn’t stop, it

will continue.

Problem 4.7.41: First, let’s consider runs of successive fs. Observ-

ing a run ` fs means we have a sequence of n = ` trials in which we

see k = ` fs. Argue as in the preceding problem to show that:

i) The chance of seeing a run of ` fs is q`.
ii) If we have just observed a run of ` fs, the probability that the

run will continue on the next trial is q and the probability that the

run will stop on the next trial is p.

What does this problem tell us? Simply that the chances of suc-

cess and failure on the next trial are always p and q, regardless of

how long (or short) a run has preceded this trial and regardless of

whether this was a run of ss or fs. Another way to put this is that

the results of the next trials are unaffected by the run leading up to

it. And that’s just what it means to say that the outcome of the next

trial is independent of outcomes of the preceding ones.

When we’re tossing coins, for example, the next toss is equally likely

to be a head or a tail whatever the run or streak that preceded it. So

1—
1—
2—

a ·· ·· z ? 438 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.7 The dice don’t talk to each other

streaks are equally likely to continue and to stop. When the chance

of success is not 1
2—for example, in craps where p = 2

9—this last

statement is no longer true without modification. The chance that a

run of ss will continue is p = 2
9 which is less than the chance q = 7

9
that it will end. Conversely, the chance q that a run of fs will con-

tinue is more than the chance p that it will end. But it remains true

that following a run of either ss or fs—of any length—the chances

of observing s or f on next trial are always p and q respectively.

Very few people agree. Most people feel that the more consecutive

heads we have tossed, the more we should expect a tail on the next

throw. The belief that independence means “runs tend to stop” is

what causes us to avoid long streaks when trying to simulate random

sequences of Hs and Ts. But “runs tend to stop” is wrong because

“The coin has no memory”: regardless of what has happened on the

previous tosses, we should expect the next one to come up heads

(and tails) half the time.

What’s really odd about our intuition is that most people simultane-

ously believe even more strongly in a converse fallacy: when we ob-

serve runs, we conclude that successive trials must not be indepen-

dent. This is the mechanism behind belief in the “hot hand”. When

you watch a basketball game, you see players make (and miss) runs

of shots in streaks, just as, when you toss a coin, you see runs of

heads and tails. The parallel is not quite exact because the probabil-

ity p of making a shot varies from player to player6, but that just

means we’re observing an unbalanced trial like craps instead of a

coin toss.

Does observing these runs indicate that there’s a “hot hand”? Is a

player who’s made his last shot (or two, or three), more likely to

make his next. No. Many studies looking at whole seasons of shot

by shot records solidly confirm this. A shooter’s current run has no

6Most college and pro players make close to 45% of their shots—90% averaged
between 36% and 54% in 2008-2009.
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influence on his chance of making his next shot. A 40% shooter will

make his next shot 40% of the time; a 50% shooter will make hers

50% of the time.

The common argument is that shooters aren’t coins and that it’s the

role of confidence in shooting that affects their success. Wrong. The

math and the data both show this. I know many of you don’t believe

me. I won’t try to convince you further, but if you’d like to buy a

bridge...

4.8 Who would have expected . . .

An example that we’ve tossed around many times in this chapter is

that of an experiment in which a fair coin is tossed 100 times. We

then expect to observe about 50 heads, because heads have proba-

bility 1
2 and 50 = 1

2 ·100. In this section, we’re going to see how to cal-

culate such expected values systematically. This will allow us to deal

both with more complicated experiments with big sample spaces,

and to make predictions for more complicated quantities than just

the frequency of a single outcome. Such predictions are fundamental

in virtually all more advanced applications of probability. This is the

subject of the first subsection, Random variables and expected

values.

We’ve also noted many times that actually observing exactly 50
heads in 100 tosses is rather rare. Instead, we expect the observed

number of heads to be “close to” 50. But this answer only more ques-

tions. How close to 50 is “close”? In what sense is 56 “close” but 35
“far” from 50? In general, we do not expect observed values to ex-

actly match expected values, and we’d like to know how small (or

large) the gap between an observed value and an expected one needs

to be to view the observation as confirming (or contradicting) the ex-

1—
1—
2—

a ·· ·· z ? 440 Comments welcome at �̂�

mailto:morrison@fordham.edu
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pectation. This is a question of enormous practical importance. In-

deed, the whole science of statistics is devoted to studying its many

ramifications, and probability derives most of its application from its

use in statistics. The second subsection provides just a first glimpse

of how these questions are answered: it turns out that expected val-

ues are the key tool here as well.

Random variables and expected values

A random variable on a sample space S is just a function Y : S -R

that assigns a real number Y(x) to every outcome x in S. We already

know one important example: the probability distribution Pr on S is

a random variable. It assigns the number Pr(x) to each x. General

random variables, however, are much more flexible: they need not

obey the restrictions we impose on a probability distribution. We

require that Pr(x) lie between 0 and 1 (because we think of it as the

fraction of trials when we’ll observe x) but we allow the value Y(x) to

be any real number—it can be negative, or bigger than 1 (even very

large, as we’ll see), and correspondingly we can’t interpret a random

variable in terms of frequencies. Similarly, while we require that the

values Pr(x) for all x ∈ S total exactly 1, there’s no restriction on

the sum of the values Y(x). The fact that random variables can have

arbitrary values means that, as we’ll see in the examples to come, lots

of quantities that we’re interested in studying are random variables

in disguise.

Random Variable 4.8.1: A random variable Y on a sample space

S is a real-valued function Y : S -R. That is, we associate to each

outcome x ∈ S, a real number —any real number—Y(x).

Next, we want to look at how to condense the many values Y(x)—
there can be millions of them since there’s one for each x in S—into

a single expected value E(Y) that’s a kind of executive summary of

all this information. The way to think of an expected value E(Y) is
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as a probability average of Y . Informally, E(Y) should be value we’d

obtain if we performed a large number n of trials of our experiment,

recorded the n outcomes x that we observed, and averaged the cor-

responding n numbers Y(x). Even more loosely, E(Y) should be the

value of Y we’d observe on a mythical “average trial”. The formula

for E(Y) involves a term Y(x) for each x ∈ S, but instead of just

summing Y(x) we sum the products Pr(x)Y(x). The factor Pr(x) is

what’s needed to encode for the fact that if Pr(x) is big (meaning x is

observed often) and Pr(x′) is small (meaning that we seldom observe

x′), then in a series on n trials there’ll be many Y(x)s and few Y(x′)s
contributing to the average E(Y). Formally,

Outcomes Expected Value Formula 4.8.2: If Y is a random

variable on the probability space S, then the expected value E(Y) is

equal to the sum over outcomes x in S of the probability-weighted

values Pr(x)Y(x):
E(Y) :=

∑
x∈S

Pr(x)Y(x) .

Example 4.8.3: If our experiment consists of rolling a single die (so

S is the set of numbers from 1 to 6 each having probability 1
6 ), and

Y(x) = x (that is, we think of each roll as a real number rather than

a side of the die), then

E(Y) :=
∑
x∈S

Pr(x)Y(x) = 1
6
·1+ 1

6
·2+ 1

6
·3+ 1

6
·4+ 1

6
·5+ 1

6
·6 = 21

6
= 7
2
.

In other words, an “average” roll is 7
2—or better, if we roll many

times, the average of the numbers we’ll see will be close to 7
2 .

One point worth noting about this example is that we had a common

factor of 1
6 in the sum. That’s because this was an equally likely out-

comes probability space, so Pr(x) = 1
6 for every outcome x and so is

a common factor in the sum
∑
x∈S Pr(x)Y(x). So we could have saved

some arithmetic by writing

E(Y) := 1
6
(
1+ 2+ 3+ 4+ 5+ 6

)
= 21
6
= 7
2
.
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In this form, what we see is the average of the 6 values Y(x), in the

same way that the average of 2 numbers a and b is 1
2(a+ b) and the

the average of 3 numbers a, b and c is 1
3(a+ b + c) and so on.

Equally Likely Outcomes Expected Value Formula 4.8.4: If

Y is a random variable on the equally likely outcomes probability

space S, then the expected value E(Y) is equal to the average over all

outcomes x in S of the values Y(x):

E(Y) := 1
#S

∑
x∈S
Y(x) .

Here are a couple of easy problems to get you used to finding ex-

pected values. First one with equally likely outcomes.

Problem 4.8.5: Use an expected value to find how many sons are

there in the average family with 3 children, assuming that each child

is equally likely to be a son or a daughter.

i) List the 8 elements in the equally likely sample space S given by

recording the sexes of the 3 children. Hint: Use words in S and D.

ii) Gives the values of the random variable Y whose value on each

outcome is the number of sons.

iii) Find E(Y) using the Outcomes Expected Value Formula 4.8.2.

Now a problem with outcomes that are not equally likely to see that,

in general the expected value is not the arithmetic average but a

probability-weighted one.

Problem 4.8.6: You have a black urn containing balls numbered

1, 2 and 3 and a white urn containing balls numbered 4 and 5. An

experiment consists of picking an urn at random and then drawing

a ball at random from the selected urn. We’ll consider the sample

space S for this experiment to be the numbers from 1 to 5, since the

number let’s us determine the urn if we want.

i) Use a tree diagram to find the probability of each of the 5 out-

comes in S.
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ii) Show that the average of the numbers from 1 to 5 is 3 5 out-

comes in S.

iii) Let Y the random variable whose value on each outcome is the

number on the chosen ball. Show that E(Y) = 13
4 = 3 1

4 using the

Outcomes Expected Value Formula 4.8.2.

In other words, in this example, the expected value is more than the

average.

Problem 4.8.7: You have a black urn containing balls numbered

1 and 2 and a white urn containing balls numbered 3, 4 and 5. An

experiment consists of picking an urn at random and then drawing

a ball at random from the selected urn. Let Y the random variable

whose value on each outcome is the number on the chosen ball. Show

that E(Y) = 11
4 = 2, 34 using the Outcomes Expected Value For-

mula 4.8.2. In other words, in this example, the expected value is

less than the average.

In both cases, the explanation is clear. In Problem 4.8.6, the larger

numbers 4 and 5 are more likely than the smaller ones. In Problem

4.8.7, it’s the smaller numbers 1 and 2 that are more likely.

OK. These examples show that it’s pretty straightforward to find ex-

pected values—at least when #S is small—but, they don’t explain

what’s so interesting about such unconstrained functions Y and

their averages E(Y). And the whole point of our study of counting

was to be able to work with big sample spaces without listing their

elements. How will we ever find expected values for such S if what’s

involved is not just counting but totaling over outcomes?

Let’s look at one more complex example in detail to get a feel for

the answers. Then we’ll use this example to find a way to efficiently

calculate expected values that we can apply when #S is big. Finally,

we’ll look at a variety of questions whose answers involve random

variables and their expected values.

Our example involves the New York state lottery game Sweet Millions,

described on the lottery site. To play this “game”, you pay $1 to buy
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a card with the numbers from 1 to 40 on it, and pick 6 (distinct)

numbers from the card. If all 6 of your picks match a set of 6 num-

bers drawn at random by the lottery, you win $1,000,000—hence the

name. Matching 5 of the 6 numbers drawn wins you $500, matching

4 wins you $40, and matching 3 wins you $3. The question we’ll use

an expected value to answer is the obvious one. How much do you

expect to win each time you play Sweet Millions?

One answer to this question is, “Nada, zip, bupkis”. That’s because

of the 3,838,380 possible ways to fill in a card, only 128,300 will

win any prize—so you have a 96.7% of winning nothing. Before going

further, let’s check these numbers and find a few other counts that

we’ll need to complete our analysis.

Problem 4.8.8: Consider the sample space S whose outcomes are

all possible Sweet Millions game cards. Use standard counting tech-

niques to verify that:

i) The number of ways of filling in a Sweet Millions game card—that

is #S—is C(40,6) = 3,838,380.

ii) The number of ways of filling in a Sweet Millions card to match

exactly i of the 6 numbers drawn by the lottery—let’s call this event

Ei—is C(6, i) · C(34,6 − i). Hint: To match exactly i of the numbers

drawn, i of the 6 numbers on your card must be from the subset of 6
numbers drawn by the lottery, and the rest must be from the subset

of 34 numbers not drawn.

Number i matched Matching cards Probability

exactly 6 1 1
3,838,380

exactly 5 204 204
3,838,380

exactly 4 8,415 8,415
3,838,380

exactly 3 119,680 119,680
3,838,380

at least 3 128,300 128,300
3,838,380

2 or fewer 3 3,710,080 3,710,080
3,838,380

Table 4.8.9: Winning cards in Sweet Millions
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iii) Verify the counts in Table 4.8.9.

OK so our numbers check, but, of course, no one would play Sweet

Millions if they really expected to win nothing. The reason they play

is for the small chance of winning a million (and for the other smaller

prizes too). Because that chance is so small but the prize is so big,

it’s not clear what this chance is worth. One way to get an idea is to

ask what would happen if we bought 3,838,380 cards and filled out

one in each of the 3,838,380 possible ways. We’d then win 1 prize of

$1,000,000, plus 204 prizes of $500, plus 8,415 of $40, plus 119,680
of $3, for a total winnings of

1 · $1,000,000+ 204 · $500+ 8,415 · $40+ 119,680 · $3 = $1,797,640 .

An easier way to grasp what this means is to divide this by the

number of tickets—the size of our sample space—to get an average

amount won per card of 1,797,640
3,838,380 ' 0.4683329946. Thus, on the av-

erage (playing a great many cards indeed), we expect to gross about

47¢ in winnings each time we play—or more accurately, taking ac-

count of the dollar it costs to buy a card, to net about 53¢ in losses.

We’ve just found the expected value of two random variables. The

first is the random variable Y that assigns to each Sweet Millions

card (each outcome on our sample space) the gross amount it would

win—that is, if x ∈ E6 and matches all 6 numbers, Y(x) = 1,000,000,

if x ∈ E5 and matches exactly 5 numbers, Y(x) = 5000 and so on.

The variable Y illustrates why we want to allow random variables to

have large values. The second is the function Z that assigns to each

assigns to each Sweet Millions card, the net amount it would win. We

just subtract the cost of the card so Z(x) = Y(x)− 1 for every x ∈ S.

The variable Z shows why we want to allow random variables to have

negative values.

Let’s focus on Y for a moment. The expected value E(Y) = 1,797,640
3,838,380 '

0.4683329946 and represents the average amount we’d expect to

win each time we play Sweet Millions. The usual disclaimer that goes
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with probability expectations applies: we have to play Sweet Millions

a great many times before we can expect our observed average win-

nings to settle down anywhere near 47¢ a play. Even if we, say, play

100,000 times, we probably won’t win a million dollar prize. If we

don’t, our average winnings will only be about 21¢ (because about
1,000,00
3,838,380 ' 27 of the 47¢ come, on the average, from the million dol-

lar prize). And, if we get lucky and win a million dollar prize, then

our average winnings will be more than $10 per card.7

Why do I say we have calculated E(Y) (and E(Z))? The sample space

for Sweet Millions is an equally likely outcomes one, but even so, we

never computed any sum, or average, over the 3,838,380 possible

game cards. Indeed, while the “average of all the values” viewpoint

is intuitively helpful, as a practical matter, we’d never want use it to

calculate E(Y) because we’d have to add up 3,838,380 values Y(x).
OK, it’s true that 3,710,080 of these values (corresponding to card

where 2 or fewer numbers match) are 0, but that still leaves 128,300
non-zero values to total. That’s be one nasty homework problem.

What we did was use a second way of thinking of expected values

that is usually much better suited for calculating them. Instead of

totally over outcomes, we total over values of Y .

Range 4.8.10: The set of values of a function is usually called it

range. Since random variables on S are just functions with domain S,

we’ll use this term. We’ll denote by R(Y) the range, or set of values

y = Y(x) of the random variable Y .

EY,y or Ey 4.8.11: We define the event EY,y := {x ∈ S|Y(x) = y} to

be the set of outcomes on which Y takes on the value y . Of course,

unless y = Y(x) for at least one outcome, the event EY,y is the empty

set and we can ignore it. This leaves us with one event EY,y for each

7Across the state, the game nearly lost money in tis first month—there were two
million dollar winners on sales of less than $3,000,000—but then went another month
with no jackpot winner.
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value that Y actually takes on—that is for each y ∈ R(Y). When the

event Y is understood, we’ll usually just write Ey for simplicity.

It’s very common that the range R(Y)—number of values y we need

to consider—is quite small. In the example of Sweet Millions, only 5
values arise and R(Y) = {1000000,5000,40,3,0}. Correspondingly,

there are only 5 events Ey corresponding to winning these amounts,

or more directly, to matching 6, 5, 4, 3, or fewer than 3 numbers.

That’s a whole lot less than 3,838,380 outcomes.

I should disclaim that there are lots of random variables that take on

different values on every outcome. If we need to find the expected

value of one of these, we are up the creek: it’s no easier to total over

values than over outcomes. But, in practice, such random variable

just don’t come up very often and the strategy of totally over values

is very effective.

How do we take a total over values? Essentially, we convert the “re-

tail total” E(Y) =
∑
x∈S Pr(x)Y(x) over outcomes in S into a “whole-

sale total” over values in R(Y). The key point to notice is that ev-

ery outcome x lies in the event Ey for which y = Y(x) and no

other. So we can rewrite E(Y) =
∑
x∈S Pr(x)Y(x) as a double sum

E(Y) =
∑
y∈R(Y)

∑
x∈Ey Pr(x)Y(x).

This looks like we’re losing ground not gaining it, until we remember

that, by definition, the factor Y(x) is equal to y for every x ∈ Ey .
This lets us write

∑
x∈Ey Pr(x)Y(x) =

∑
x∈Ey Pr(x)y = y

(∑
x∈Ey Pr(x)

)
by pulling out the common factor y . The final observation is that the

last sum
∑
x∈Ey Pr(x) is nothing more than Pr(Ey) by the formula for

the Probability of an Event 4.2.2.

So we wind up with the formula E(Y) =
∑
y∈R(Y) y · Pr(Ey) . In other

words, we can find the expected value E(Y) by summing over values

y of Y , the product of y with the probability of seeing an outcome

where Y has the value y . In the example of Sweet Millions, where

there are only 5 values we have a sum with only 5 terms—really 4
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that we need to worry about because a term where y = 0 can be

ignored, as we did above.

When we are dealing with equally likely outcomes probability spaces,

we can make one further simplification which again, we have already

seen in our example. Since Pr(Ey) = #Ey
#S for every event Ey by the

Equally Likely Outcomes Formula 4.3.2, we can pull out a com-

mon denominator of #S and write E(Y) = 1
#S
∑
y∈R(Y) y ·#Ey . That is,

we sum products of values and counts and then divide by #S to get

E(Y). Let’s record these formulae for future reference.

Values Expected Value Formula 4.8.12: If Y is a random vari-

able on the probability space S , then the expected value E(Y) is equal

to the sum over the values y in the range R(Y) of Y of the probability-

weighted values Pr(EY,y) · y :

E(Y) :=
∑

y∈R(Y)
Pr(EY,y) · y .

Equally Likely Outcomes Expected Value Formula 4.8.13:

If Y is a random variable on the equally likely outcomes probability

space S, then the expected value E(Y) is equal to:

E(Y) := 1
#S

∑
x∈S

#EY,y · y .

Calculating expected values even by this simpler method usually

involves a fair bit of arithmetic. The computation is usually much

easier (and less error-prone) if you organize it using the following

method.

Method for finding expected values 4.8.14: I’ll first give a

general method that works in all problems, then explain how it can

be simplified .

Step 1: First find the sample space S and its size #S.

Step 2: Identify the random variable Y whose expected value you

want to find and determine its range or set of values R(Y).
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Step 3: Next make a table with one row for each value in R(Y), and

one row for totals, and with columns for: the values y ; the

probabilities Pr(Ey) of observing the value y ; and the prod-

ucts Pr(Ey)y .

Step 4: Fill in the values column of your table.

Step 5: Fill in the probabilities column of your table.

Step 6: Fill in each row of the products column with a by multiplying

the value y and probability in the same row.

Step 7: Total the products column to find the expected value E(Y).

This may seem a bit complicated but it mostly pretty easy in prac-

tice. Usually the only step that calls for thought rather than mere

arithmetic, is Step 5. Often, however, there is a pattern to the differ-

ent probabilities needed and the calculation that gives one entry can

be used to find all the rest by changing a single parameter in some

count or formula. To take advantage of this, it’s best to enter both

an unevaluated shorthand form and a numerical (fraction or deci-

mal) value. The former let’s you see the pattern, the latter is needed

in the next step

When outcomes are equally likely, we can avoid decimal or fractions

and save some arithmetic using a counts column instead of a proba-

bilities column. We then just enter the count #EY,y beside each value

in Step 5. However, to convert these counts back to probabilities, we

need to divide the total in the products column obtained in Step 7 by

#S to get E(Y).

Example 4.8.15: Consider a 5 member committee chosen at ran-

dom from the 59 Democrats and 41 Republicans in the U.S. Senate.

How many Republicans will such a committee contain on the aver-

age?

Solution
Here we’ll use the simpler, equally likely outcomes variant with

a count column.
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Step 1: As in Problem 3.8.20, the sample space S consists of sub-

sets of 5 members of the 100 member Senate and has order

C(100,5) = 75287520.

Step 2: The random variable Y is the number of Republicans on the

committee and its range (set of possible values) is R(Y) =
{0,1,2,3,4,5}.

Step 3: The completed table is Table 4.8.16

Step 4: Duh!

Step 5: Let’s pick the row corresponding to the value y = 2. Again,

as in Problem 3.8.20, there are C(59,3) · C(41,2) commit-

tees that contain 3 Democrats and 2 Republicans. To find the

count with any number y of Republicans we just replace the

2 by y and the 3 by 5−y . This lets us fill the whole column as

shown. Notice how I included both the shorthand count (to

see the pattern) and the value (used in the next step). Hav-

ing both seems like more work but, in the end, is the easiest

way. I also totaled this column as a check—the total should

always equal #S since every outcome is associated to exactly

one value y
Step 6: Simple arithmetic. I have shown the calculation of each entry,

just to be sure things are clear, but we’d usually just write the

products here.

Step 7: Ditto.

Value y Count #Ey Product #Ey · y
0 C(59,5) · C(41,0) = 5006386 0 · 5006386 = 0

1 C(59,4) · C(41,1) = 18660166 1 · 18660166 = 18660166

2 C(59,3) · C(41,2) = 26657380 2 · 26657380 = 53314760

3 C(59,2) · C(41,3) = 18239260 3 · 18239260 = 54717780

4 C(59,1) · C(41,4) = 5974930 4 · 5974930 = 23899720

5 C(59,0) · C(41,5) = 749398 5 · 749398 = 3746990

Total 75287520 154339416

Table 4.8.16: Expected number of Republicans
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Finally we divide the total 154339416 by 75287520 to get the

Expected value E(Y) = 154339416
75287520 =

41
20 = 2.05 for the number of

Republicans.

Here are three examples for you to practice with that deal with the

game Chuck-a-luck, discussed in Chuck-a-luck. If you get stuck you

can peek at Example 3.8.36 for all of the necessary probabilities. In

fact, in that example, we more or less computed the expected values

that follow, without calling them by this name.

Two points to note: although we’ll work with 3 different random vari-

ables Y , Z , andW , the sets of events Ey , Ez and Ew are the same—it’s

only the values of y , z and w associated to these events that are

different. This means that you can reuse the same counts or proba-

bilities column in all 3 parts of the problem. Second, it’s exactly the

difference between Z andW that’s the key to the con in Chuck-a-luck.

Problem 4.8.17: Consider the experiment of rolling 3 dice (one red,

one blue and one green) and recording the number on each. Describe

the sample space S and show that #S = 63 = 216.

i) Consider the random variable Y whose value on each triple of

numbers is the number of dice (from 0 to 3) that show a 6. Use the

Method for finding expected values 4.8.14 to show that E(Y) = 1
2 .

ii) Consider the random variable W whose value on each triple of

numbers is the amount you’d win or lose if you bet $1 and win $2
for each die that shows a 6. That is, Z is $− 1 if you roll no 6s, $+ 1
if you roll one 6, $ + 3 if you roll two 6s, and $ + 5 if you roll three

6. Use the Method for finding expected values 4.8.14 to show that

E(W) = 0.

iii) Consider the random variable Z whose value on each triple of

numbers is the amount you’d win or lose if you bet the number 6
at a Chuck-a-luck booth. That is, Z is $ − 1 if you roll no 6s, $ + 1
if you roll one 6, $ + 2 if you roll two 6s, and $ + 3 if you roll three

6. Use the Method for finding expected values 4.8.14 to show that

E(Z) = − 17
216 ' −$0.07870370370.
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When people gamble, they’re naturally interested in whether they

should model their expectation on something like the Z above, or

on something like the W . The two situations have acquired standard

names. In both cases, it is assumed that, whatever the game being

played, outcomes are randomized so that expected values computed

as we are doing represent actual expectations. This, of course, does

not apply if we’re playing roulette on a crooked wheel, or craps with

shaved dice, or blackjack with a dealer who is dealing seconds . . .

Fair Game 4.8.18: A game of chance in which the expected value

of a bettor’s winnings is 0 is called a fair game.

Of course, for this to happen, it must be possible that the winnings

are negative—that is, losses!

House Advantage 4.8.19: A game of chance in which the ex-

pected value of a bettor’s winnings is negative is called a unfair game.

The expected value of the players loss, expressed as a percentage of

the total bet, is called the house advantage.

We not allow for games where the expected winnings are positive,

but please email me about any you may encounter.

So Chuck-a-luck (the variable W ) is an unfair game and the house

advantage is about 7.87%, but a similar game played with stakes de-

scribed by the variable Z would be fair.

The next problem is a first look at betting “systems”. Gamblers often

think that they have found a method to beat the house advantage,

but they’re almost always making an incorrect evaluation of their

expected winnings. Our example will deal with roulette—a standard

wheel is shown in Figure 4.8.20.

There are 38 slots (our outcomes) of which 18 are red, 18 are black,

and 2—the 0 and 00—are neither. There are lots of ways to bet, but

we’ll look only at the most common, betting on the color of the slot

in which the ball comes to rest. Each dollar bet in this way returns

$2 if the selected color comes up and is lost otherwise.
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Figure 4.8.20: A standard roulette wheel

Problem 4.8.21: Assuming that the ball is equally likely to land in

any slot (that is, the wheel is fair), show that the expected value of a

$1 bet on black is −$ 2
38 ' −$0.05263.

So, not surprisingly, roulette is an unfair game with a house ad-

vantage of 5.263%. How can we beat this house edge? The simplest

system and one commonly favored by roulette players is called the

martingale system. You leave the table as soon as you have made a

winning bet and just double the amount of any losing bet. Suppose

we start by betting $1 on black. If black comes up, you quit and take

your $1. If not, we make a second bet of $2; if this wins, we are again

up $1—$2 from the second bet minus $1 from the first. If the sec-

ond bet loses, we place a third bet of $4: if this wins, we are again

up $1—$4 from the third bet minus $3 = $1+ $2 from the first two.

And so on. You can’t lose, can you?

Not only can you lose, but you should expect to. The catch is that

if red (or a 0) comes up often enough, you won’t have the money

needed to keep doubling your bet.8 The next problems let us quan-

8We’ll ignore the fact that the casino may also limit the size of bets for reason
we’ll discuss later.
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tify this idea. The only probabilities we will need are given in:

Problem 4.8.22: Assuming that the results of successive spins of

the wheel are independent, show that the chance that none of the

first k− 1 spins is black is
( 20
38

)k−1
.

Show that the chance of seeing k−1 spins that are not black followed

by a kth black spin is
( 20
38

)(k−1) 18
38 . Hint: most of the work is in the

previous probability.

Confirm these by drawing a tree diagram, assuming that we quit after

we win or after the third spin whether or not we win on that spin.

Example 4.8.23: Here we’ll find the expected value of playing the

martingale strategy assuming we stop after the third spin, regardless

of whether we have won or not. The first point to note is that we

either win $1 (if a ball lands on black on one of the three spins) or

lose $7 (if we see three non-black spins losing $1+$2+$4). So we’re

looking for the expected value of a random variable Y with just 2
values 1 and −7 and we just need to find the probabilities of the two

events E1 and E−7.

But, we lose $7 only if we see no black spin in the first 3 so by

Problem 4.8.22, Pr(E−7) =
(
20
38

)3
. Moreover, E1 and E−7 are comple-

mentary events so Pr(E1) = 1 − Pr(E−7) = 1 −
(
20
38

)3
. Applying the

Values Expected Value Formula 4.8.12—we don’t even need to

bother with a table—we find E(y) = 1 ·
(
(1−

(
20
38

)3)
+ (−7) ·

(
20
38

)3
=

1 · 4687254872 − 7 ·
8000
54872 = −

9128
54872 ' −$0.1664.

So what? You haven’t really played the system it you stop after 3
bets. The whole point is to keep playing. Nope. This just makes your

expected losses bigger.

Problem 4.8.24: Find the expected value of playing the martin-

gale strategy assuming we stop when we win but also, regardless of

whether we have won or not:
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i) after the fourth spin. Hint: You can imitate Example 4.8.23.

There are again only two possible values, win $1 or lose $15 (15 =
1+ 2+ 4+ 8).

ii) after the fifth spin. Here the two values are 1 and −31.

You should have seen the expected loss grow to about $0.2277 and

$0.2924 in these two examples. The next example uses different ex-

pected values to check this.

Example 4.8.25: As in Example 4.8.23, we’ll assume we stop betting

when we win, or after the third spin, regardless of whether we won

on that spin or not but here we want to find the expected value of

the random variable Z given by the total number of dollars we bet.

This has three values: $1 if we win on the first spin; $3 = $1+ $2 if

we lose on the first spin and win on the second spin, and $7 if we

do not win on either of the first 2 spins. Using the probabilities in

Problem 4.8.22, this leads to the following table, in which I have put

the probabilities over a common denominator to simplify taking and

summing the products:

Value z Probability Pr(Ez) Product Pr(Ez) · y

1 18
38 =

684
1444

684
1444

3 20
38

18
38 =

360
1444

1080
1444

7 20
38

20
38 =

400
1444

2800
1444

Total 400
1444

4564
1444

Table 4.8.26: Total bet in a three spin martingale

So E(Z) = 4564
1444 ' $3.1601. But, if we bet an average of $ 45641444 each

time we following the martingale strategy for three spins, and we

lose an average of $ 2
38 of each dollar we bet, we should expect to

lose $ 45641444
2
38 = $ 9128

54872 each time we bet this strategy. In decimals,

$3.1601 · $0.0526 ' $0.1664. This exactly confirms Example 4.8.23.
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Problem 4.8.27: Find the expected value number of dollars you will

bet following the martingale strategy assuming we stop when we win

but also, regardless of whether we have won or not:

i) after the fourth spin. Hint: Here you bet $7 if you lose on the first

2 spins then win the third, and $15 if you lose on the first 3, regard-

less of the outcome of the fourth; so you can again apply Problem

4.8.22.

ii) after the fifth spin.

Then use these two values to check your answers to Problem 4.8.24

as above.

Still, what these examples show is that if you bail out on a martingale

strategy—that is, stop doubling up even though you haven’t won—

you can’t expect to be a winner and that the longer you wait to bail,

the more you can expect to lose. But isn’t that an unfair test? The

whole idea behind a martingale strategy is that you never bail and

always double up. There’s just one problem with this idea. If you

lose too many spins, there will come a point when your bankroll will

no longer be big enough to double up and you’ll be forced to bail

whether you want to or not.

For example, suppose I come to the table with $50. If I lose the first

5 spins, I am down to $19 (bets of 1, 2, 4, 8 and 16) and I am forced

to bail because I do not have $32 to double up with. Most of the

time (from Problem 4.8.24 we can see it’s about 95.96% of the time)

you will win $1. But the other 4.04% of the time you’ll lose $31 and,

an the average, that means you’ll lose $0.2924 (again from Problem

4.8.24).

Problem 4.8.28: Show that if you come to the table with a bankroll

of $5,000, you’ll have to bail if you lose 12 times in a row—leaving a

$4,095 loser.

Challenge 4.8.29: Show that if you come to the table with a

bankroll of $5,000, the chance you will have to bail is only about
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0.00045181 or less than 1 in 2,000 but that, nonetheless, your ex-

pected losses will be $0.8506.

One further point to note is that the martingale strategy increases

the average amount you wager on each spin. As we will see at the

end of this section, you can’t expect to beat the house, but you can

hold out against it longer by keeping your bets small: so playing a

the martingale strategy will usually cause you to tap out faster than

repeatedly betting a single fixed sum. Worse, the more spins you

stick with the strategy the bigger your average bet gets.

Problem 4.8.30: Let’s denote by W the average number of dollars

on each spin by following the martingale strategy assuming you stop

when you win but also after k spins, regardless of whether you have

won or not.

i) Show that if we take k = 3 (stop after the third spin regardless),

then Show that the expected value E(W) = $ 30041444 ' $2.08.

Hint: Table 4.8.26 can be reused with only a little modification. To

get the value bet per spin of W , you just divide the values column

there by the corresponding number of spins, replacing 1/3/7 by
1
1/

3
2/

7
3 . The probabilities remain the same (they just depend on how

many spins you bet). So only the products column needs recalculat-

ing. You can use a common denominator of 382.

ii) Show that if we take k = 4 and k = 5, we get expected average

bets per spin of E(W) = $ 14615254872 ' $2.66 and E(W) = $ 68337762085136 '
$3.28.

Hint: Use common denominators of 383 and 384.

Finally, one challenge. Have you ever had to try to find the right key

to open a lock in the dark and noticed it can seem to take forever.

How many tries should you expect to have to make? First a warm-up.

Problem 4.8.31: Assume that you have 10 keys on your key ring.

You repeatedly choose a key at random from the ring and try it in
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the lock. If it doesn’t work, you put take the chosen key off the ring

and try again. How many keys do you expect to have to try before

you find the right one?

Hint: The probability you’ll succeed on the first try is 1
10 and that

you’ll fail is 9
10 . So the probability that you’ll succeed on the second

trial is 9
10 ·

1
9 =

1
10 and that you’ll fail the first two times is 8

10 .

Challenge 4.8.32: Assume again that you have 10 keys on your

key ring. You repeatedly choose a key at random from the ring and

try it in the lock. This time, however, if it doesn’t work, you simply

pick another key at random from the key ring (possibly one you have

already tried—remember it’s dark). Show that you expect to have

make 10 tries before hitting the right key.

Hint: Show that probability that you’ll succeed on the nth trial—that

is, that the value of the number N of keys you need to try is n—is
9
10
(n−1)· 110 . Use this to write E(N) as an infinite sum S. Then consider

S − 9
10S and use Geometric Series Formula 1.3.6.

Relations between expected values

The examples of the previous subsection—especially, the check in

Example 4.8.25 and Problem 4.8.27—make it clear that related ran-

dom variables have related expected values. It turns out that, if we

take advantage of these relations, we can enormously simplify many

expected value calculations.

Our goal here is to set down the simplest, but also the most useful,

rules of this type. These rules all easy-to-remember because they

are all Bang Zoom Rules 3.3.16 that say that operations of random

variable are reflected in their expected values. The bang in these

rules is “expected value” and we have a variety of zooms. To keep

the statements of these rules short I’ll abbreviate “expected value”

as EV. So we’ll be looking for rules that have the shape, “The EV of

the zoom is the zoom of the EVs”.
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First the simplest of all. Let’s write Ca (“constant a”) for the random

variable that has only one value a. Thus R(Ca) = {a}, then the Val-

ues Expected Value Formula 4.8.12
∑
y∈R(Ca) Pr(ECa,y)y becomes

just Pr(Ea) · a. But Ea = S so Pr(Ea) = Pr(S) = 1 and E(Ca) = a.

Constants are their own EVs 4.8.33: The expected value of the

constant random variable Ca with value a for every outcome x is

E(Ca) = a. Informally, constants are their own expected values.

Likewise, suppose that Z = aY for some constant a—in other words,

Z is a constant multiple of Y . Then the range of Z is just the set

of values z = ay where y is in the range of Y . Moreover, Z(x) = z
exactly when Y(x) = y so EZ,z = EY,y and hence Pr(EZ,z) = Pr(EY,y).
Thus the Values Expected Value Formula 4.8.12 gives, E(Z) :=∑
z∈R(Z) Pr(EZ,z) · z =

∑
y∈R(Y) Pr(EY,y) · ay = a

∑
y∈R(Y) Pr(EY,y) · y =

aE(Y) by pulling out the common factor of a.

The EV of the multiple is the multiple of the EV 4.8.34: If

the random variable Z is a constant a times Y , then E(Z) = aE(Y).
Informally, the expected value of a constant multiple is the multiple

of the expected value.

Next, the analogous rule holds for sums:

The EV of the sum is the sum of the EVs 4.8.35: If we can write

the random variable Y as the sum of two (or more) other random

variables Z andW—Y = Z+W , then E(Y) = E(Z)+E(Y). Informally,

the expected value of a sum is the sum of the expected values.

Saying Y = Z + W just means that for each outcome x the value

Y(x) is the sum of the values Z(x) and W(x): Y(x) = Z(x) +W(x).
This notion is a bit trickier than that of a multiple, so let’s look at an

example.

Example 4.8.36: Consider the sample space for a sequence of 2
binomial trials. To be definite, I’ll think of tossing a coin twice with

heads as s. Consider the random variables L1, L2 and K in the first
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three rows of the table below. We’ll use the L andM rows later in the

section.

Random variable Outcome Expected value

HH HT TH TT

L1 1 1 0 0 1
2

L2 1 0 1 0 1
2

K = L1 + L2 2 1 1 0 1

M = L1 · L2 1 0 0 0 1
4

N = K ·K 4 1 1 0 3
2

Table 4.8.37: Sums of random variables for two tosses

Informally, L1 is the “number of heads on the first toss”—of course,

this is either 1 if the first toss is a head or 0 if it’s a tail; likewise,

L2 is the “number of heads on the second toss”. As the table shows,

K = L1 + L2: each K(x) is obtained by summing the values L1(x) and

L2(x) above it. But we can also think of K, in its own right, as the

total number of heads in the 2 tosses. The expected values are easy

to find using the Equally Likely Outcomes Expected Value For-

mula 4.8.4 (all 4 outcomes have probability 1
4 ) and the main point

is that the value in K row is again the sum of those in the L1 and L2
rows.

For future reference, it’s useful to relate the expected values of

L1 and L2 to the binomial parameter p which here is 1
2 . Note that

L1(x) = 1 if the outcome of the first trial is s and L1(x) = 0 if the

outcome of the first trial is f. Thus Pr(EL1,1) = p and Pr(EL1,0) = q. So

we can compute E(L1) = p ·1+q ·0 = p using the Values Expected

Value Formula 4.8.12. Of course, we get back the value 1
2 . The same

reasoning can be applied equally well to L2.

Simple as it is, this example is the prototype for the most important

applications of the rule that, The EV of the sum is the sum of the

1—
1—
2—

a ·· ·· z ? 461 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.8 Who would have expected . . .

EVs 4.8.35. We can replace our experiment by any binomial one (with

any probability p of success and any number n of trials). Instead of 2
random variables L1 and L2, we define n—denoted L1, L2, . . . Ln—just

as above by setting Li(x) equal to the number of ss on the ith trial

(again, this always is either 1 or 0). Then we define K to be their sum:

K(x) =
∑n
i=1 Li = L1(x) + L2(x) + · · · + Ln(x). Just as above, we can

also think of K, in its own right, as the total number of heads in all

n trials.

Again, just as above, each of the expected values E(Li) = p. Seeing

s (or f) on the ith trial is the same as having Li(x) = 1 (or Li(x) = 0)

and has probability p (or q). Since the only values of Li are 1 and 0,

we again find E(Li) = p · 1 + q · 0 = p using the Values Expected

Value Formula 4.8.12. But, applying The EV of the sum is the sum

of the EVs 4.8.35, this means that

E(K) = E(L1)+E(L1)+ · + E(Ln) = p + p + · · · + p︸ ︷︷ ︸
n terms

= n · p .

This example is so important we record it.

Successes in the ith binomial trial 4.8.38: We denote by Li be

the random variable whose value is the number of success on the ith

trial alone. The variables Li all have expected value E(Li) = p, where

p is the probability of success in a single trial.

Indicator Expected Value Formula 4.8.39: Random variables

I that only take the values 0 and 1—like the Li above—come up fre-

quently enough to have a name. Such a random variable is called

an indicator variable. Every event E determines a unique indicator

variable IE : the variable that is 1 on outcomes in E and 0 on all

others. We can reverse this by associated to an indicator variable

I the event EI := EI,1 of outcomes where I has value 1. Moreover,

E(I) = Pr(EI,1) · 1+ Pr(EI,0) · 0 = Pr(EI).

Total Successes in Binomial Trials 4.8.40: Let K be the ran-

dom variable on the sample space of a sequence of n binomial trials
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whose value on each outcome is the total number of successes. Then

the variable K is the sum of the n variables L1, L2 to Ln: K =
∑n
i=1 Li

and, by The EV of the sum is the sum of the EVs 4.8.35, the vari-

able K has expected value E(K) = n · p.

Strictly speaking we should write Kn to make the number of tri-

als completely clear, but, as above, the number n is usually clear

from the context—so we’ll only add the subscript when it’s needed

to avoid confusion.

The most important part of Total Successes in Binomial Trials

4.8.40 is that the total successes K is the sum of the indicator vari-

ables Li . We will use this in the last subsection to understand spreads

or variances for binomial distributions. The formula E(K) = n · p
is very useful, but also very intuitive. When we say that if we toss

a fair coin 100 times we expect to see about 50 heads—which we

can do without much thought— we’re really using this formula: here

n = 100 and p = 1
2 and we mentally multiply 100 · 12 to get 50.

OK. So we’re going to have lots of applications for The EV of the

sum is the sum of the EVs 4.8.35 and we can how it works in

simple examples. But why is it always true? I’ll stick to explain-

ing it for a sum of 2 random variables; the case of more than 2
summands requires a bit of extra fiddling but the central idea is

the same. This is one of the few cases where the general Out-

comes Expected Value Formula 4.8.2 is needed. We use it to

write compute E(Y) =
∑
x∈S Pr(x)Y(x) =

∑
x∈S Pr(x)

(
Z(x)+W(x)

)
—

the last is just the definition of Y(x). Next we distribute the Pr(x)
and divide into two sums: E(Y) =

∑
x∈S

(
Pr(x)Z(x) + Pr(x)W(x)

)
=∑

x∈S Pr(x)ZY(x) +
∑
x∈S Pr(x)W(x). Finally, we use Outcomes Ex-

pected Value Formula 4.8.2 again to recognize the first sum as

E(Z) and the second as E(W) getting, E(Y) = E(Z) + E(W) as de-

sired.

I hope than many of you have guessed what’s coming next. If The

EV of the sum is the sum of the EVs 4.8.35, shouldn’t “The EV
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of the product equal the product of the EVs”? Unfortunately, this

is one of those Bang Zoom Rules 3.3.16 that’s just wrong. We can

see this by going back to Table 4.8.37 and considering the random

variable N that is the product of the variable K with itself. That is

N(x) = K(x) · K(x) for each outcome x as you can easily check. But

E(N) = 3
2 while E(K)·E(K) = 1·1 = 1. So here, and in general, “The

EV of the product is not the product of the EVs”.

On the other hand, it is correct in many cases. An example is the

random variableM from the same table which is equal to the product

of the L1 and L2 rows. Here E(M) = 1
4 which agrees with E(L1) ·

E(L2) = 1
2 ·

1
4 . So the real question we need to understand is “When is

the EV of the product equal to the product of the EVs?”. The answer

is when the random variables being multiplied are independent.

The EV of the product of Independent Variables is the

product of the EVs 4.8.41: If we can write the random variable

Y as the product of two (or more) independent random variables Z
andW—Y = Z·W , then E(Y) = E(Z)·E(W). Informally, the expected

value of a product of independent random variables is the product

of the expected values of the factors.

There’s just one problem here. We know what independence means

for events. What does it mean to say two random variables are inde-

pendent? Let’s postpone worrying about this for a while and try to

get a feel for what’s going on.

One analogy that’s helpful is to think of multiplication of random

variables as the analogue of intersection of events. Now recall In-

tersection Probability of Independent Events 4.7.12: If E and

F are independent, then Pr(E ∩ F) = Pr(E) · Pr(F). So if we have an

intersection product formula for independent events, it’s reasonable

to at least hope for one for independent random variables. We just

need to come up with the right notion of independence.

We can start by looking more closely at the random variables L1 (and
L2). In particular, let’s ask “What are the events EL1,1 and EL1,0?” A
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glance at Table 4.8.37 makes the answer clear: EL1,1 =“heads on the
first toss” and EL1,0 =“tails on the first toss”. Likewise, EL2,1 =“heads
on the second toss” and EL2,0 =“tails on the second toss”. In partic-
ular, any of the four pairs of events we get by specifying a value (0
or 1) for L1 and another value (0 or 1) for L2 are independent. This is
why E(L1 · L2) = E(L1) · E(L2) as we can see by evaluating the right
hand side using the Values Expected Value Formula 4.8.12:

E(L1) · E(L2) =
(
Pr(EL1 ,1) · 1+ Pr(EL1 ,0) · 0

)
·
(
Pr(EL2 ,1) · 1+ Pr(EL2 ,0) · 0

)
= Pr(EL1 ,1)Pr(EL2 ,1) · 1 · 1+ Pr(EL1 ,1)Pr(EL2 ,0) · 1 · 0

+ Pr(EL1 ,0)Pr(EL2 ,1) · 0 · 1+ Pr(EL1 ,0)Pr(EL2 ,0) · 0 · 0

= Pr(EL1 ,1 ∩ EL2 ,1) · 1 · 1+ Pr(EL1 ,1 ∩ EL2 ,0) · 1 · 0

+ Pr(EL1 ,0 ∩ EL2 ,1) · 0 · 1+ Pr(EL1 ,0)∩ EL2 ,0) · 0 · 0

by using the Intersection Probability of Independent Events

4.7.12 on each term.

Now we collect the probabilities that are multiplied by 0 and 1 to-

gether, obtaining Pr(EL1,1 ∩ EL2,1) · 1 +
(
Pr(EL1,1 ∩ EL2,0) + Pr(EL1,0 ∩

EL2,1)+Pr(EL1,0)∩EL2,0)
)
·0 and use the OrElse Formula for Prob-

abilities 4.2.6, to write the sum of the probabilities of the three

disjoint events in the second term as

Pr
(
(EL1,1 ∩ EL2,0)∪̇(EL1,0 ∩ EL2,1)∪̇(EL1,0)∩ EL2,0)

)
obtaining, finally,

E(L1)·E(L2) = Pr(EL1,1 ∩ EL2,1) · 1
+ Pr

(
(EL1,1 ∩ EL2,0)∪̇(EL1,0 ∩ EL2,1)∪̇(EL1,0)∩ EL2,0)

)
· 0 .

Here’s why I went to all this trouble to rewrite a probability that

is getting multiplied by 0 anyway. The event EL1,1 ∩ EL2,1—“heads

on both tosses”—is also a value event for M = L1 · L2. It’s just the

event that the product variable L1 ·L2 has value 1: EL1,1∩EL2,1 = EM,1.
Likewise the event

(
(EL1,1∩EL2,0)∪̇(EL1,0∩EL2,1)∪̇(EL1,0)∩EL2,0)

)
(when

either factor is 0) is equal to the event EL1·L2,0 (when the product is
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0). Plugging these in and then using the Values Expected Value

Formula 4.8.12 for L1 · L2 we see that

E(L1) · E(L2) = Pr(EL1·L2,1) · 1+ Pr(EL1·L2,0) · 0 = E(L1 · L2) .

Of course, this was a lot more work than just computing all the ex-

pected values and comparing. But we’ll have applications in which

using this product relation is the only way to get the answer. More-

over, this toy calculation contains all the ideas needed to show The

EV of the product of Independent Variables is the product of the

EVs 4.8.41 in general. The key point is a value event EZ·W,y for the

product Y = Z · W is the disjoint union of the intersection events

EZ,z ∩ EW,w for all solutions z and w of the equation y = z ·w . If we

know the pairs of events EZ,z and EW,w are all independent, then this

is enough to give E(Z ·W) = E(Z) ·E(W) by imitating the argument

given above for L1 and L2. The details are a bit messy, so I won’t give

them, but the ideas needed are exactly the same. So we’ve found out

what the right definition of independent random variables is.

Independent Random Variables 4.8.42: We say the random

variables Z and W are independent if for every value Z of Z and

every value w of W the value events EZ,z and EW,w are independent

events—that is, Pr(EZ,z ∩ EW,w) = Pr(EZ,z) · Pr(EW,w).

As we have seen above, any two of the variables Li and Lj that count

Successes in the ith binomial trial 4.8.38 are independent in this

sense. Hence

Successes Product Formula 4.8.43: When i and j are not equal,

E(Li · Lj) = E(Li) · E(Lj) = p · p = p2 .

Here are a couple of problems that show how relations amongst can

simplify expected value calculations.

Problem 4.8.44: First, let’s look again at Example 4.8.15 involving

the number of Republicans Y on a 5 member committee chosen at
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random from the 59 Democrats and 41 Republicans in the U.S. Sen-

ate. We first define some indicator random variables, then use them

to recompute E(Y) = 2.05.

i) For each Senator s, show that the probability that s is on the

committee is 5
100 = 0.05. Hint: Show that 3,764,376 of the possible

committees contain s.
ii) Let Zs be the random variable that is 1 if s is on the committee

and 0 otherwise. Show that E(Zs) = 5
100 = 0.05.

iii) Show that Y is the sum of the 41 variables Zs for which s is a

Republican.

iv) Use the previous two parts and The EV of the sum is the sum

of the EVs 4.8.35 to show that E(Y) = 41 · 0.05 = 2.05.

Consider a bus that makes 10 stops after it leaves the terminal. If

there are 5 passengers on the bus, each is equally likely to get of at

each stop and they choose their stops independently of each other,

how many stops can you expect the bus to make?

What’s the sample space S? Outcomes—all equally likely—are just

choices of 8 stops from 10 and since R? is “Yes”, #S = 105 = 100,000.

The number of stops is a random variable—call it Y—which can take

the values 1 to 5 and we just want to find E(Y). So one way to pro-

ceed is just to count the events Ey and apply the Equally Likely

Outcomes Expected Value Formula 4.8.13. Let’s try.

Problem 4.8.45: First we’ll get some numbers that are not quite

the right counts.

i) Show that the number of outcomes in which all the passengers

get off at the first 4 stops is 45.
ii) Show that the number of outcomes in which all the passengers

get off at the first y stops is y5.
iii) Show that the number of different sets of exactly y stops is

C(10, y).
iv) How many outcomes are there for which there are y stops where

all the passengers get off?
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I’m guessing that your answer to iv) was y5 · C(10, y). We need

to choose which y stops the passengers get off at, then count the

ways they can get off at these stops. Sadly, there’s a lot of over-

counting in that number and it’s wrong. We can see this by evalu-

ating it when y = 5—all the passengers get off at different stops—

when it gives 55 · C(10,5) = 787,500 which is much bigger than the

100,000 outcomes in the sample space. The right answer in this case

is P(5,5) · C(10,5) = 30,240.

The problem is that a count like 45 in i) includes the cases where

some passenger got off at each of the first 4 stops, but also cases

where passengers only got off at the first 3 stops, or where they

all got off at the second stop, and so on. Moreover, these cases are

often multiply overcounted so unwinding this overcounting is quite

tricky, and I’m not even going to try it here. I’ll just give you the

answer below.

Problem 4.8.46: Complete the table below to show E(Y) = 4.0951:

this confirms the Murphy’s Law feeling the bus always stops pretty

much as many times as possible.

Stops y Count Product

1 10
2 1350
3 18000
4 50400
5 30240

Total 100000

Table 4.8.47: Expected Number of Times the Bus Stops

Now we’re going to find E(Y) without doing any tricky counting,

by relating Y to simpler random variables. The idea is to let Zi be

the indicator variable whose value is 1 on the event Ei that “some

passenger(s) get off at the ith stop”. (and 0 on any outcome where
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no one gets off at this stop). The variable Y is just the total number

of stops where someone gets off—in other words Y is the sum of

the 10 variables Z1 to Z10. Moreover, the probabilities that someone

gets off at stop i are clearly the same for all i so all 10 of these

expected values are the same. So, by the Indicator Expected Value

Formula 4.8.39, all we have to do is find, say Pr(E1), and multiply

by 10 to get E(Y).

Whether any given passenger does or doesn’t get off at the first stop

is a binomial trial. since stops are chosen at random. Since the 5 pas-

sengers make independent choices, we have a binomial experiment

with n = 5 and p = 1
10 (since there are 5 passengers and 10 stops). By

the Binomial Distribution Formula 4.7.23, the chance that no pas-

senger will get off at the first stop is C(5,0)
(
1
10

)0( 9
10

)5
= 59049

100000 . We

want the probability of the complementary event E1 that at least one

passenger does get off at the first stop, so Pr(E1) = 1− 59049
100000 =

40951
100000 .

Thus E(Y) = 10 · 40951
100000 = 4.0951 as above.

Problem 4.8.48: At how many stops, should we expect exactly 2
passengers to get off? Hint: You can use the Binomial Distribution

Formula 4.7.23 to find the chance of the event E that “exactly 2
passengers get off at the first stop”. Use the indicator variable ZE
(and 9 analogues for the other stops).

Problem 4.8.49: If the bus route has 20 stops and there are 30
passengers how many stops should the driver expect to make? At

how many stops should she expect more than 1 passenger to get

off?

Problem 4.8.50: This is a follow up to Problem 3.8.43, where we

saw that in a group of 23 people with randomly chosen birthdays,

it’s more likely than not that there’ll be two people with the same

birthday.

Suppose that a club has 50 members whose birthdays fall on ran-

dom days of the year and independently of each other (and none on
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February 29th). Find the expected number of days of the year that are

the birthday of:

i) 0 members;

ii) exactly 1 member;

iii) at least 2 members;

Hint: In each case, use 365 indicator variables, one for each day,

determined by having the desired birthday(s) on that day.

Simpson’s Paradox

What we’ve been studying are relations between the expected values

of different random variables on the single sample space S. Before

we turn to the most critical applications of the relations between ex-

pected values developed in the preceding subsection, a few cautions

are in order.

One way to think of the relations we use is as ways of dividing a sin-

gle random variable Y into smaller, hopefully simpler, pieces. A typ-

ical example is Total Successes in Binomial Trials 4.8.40 where

we divide the “total successes” binomial random variable Kn into n
“bite-size” Bernoulli pieces Li .

Let’s ask, instead “Can we understand the expected value of a ran-

dom variable Y on a sample space S more easily by dividing S into

smaller subsets T and studying the expected values of Y on these

pieces?” As I have stated it, this question makes no sense.

A random variable Y on S is a way of assigning a number Y(x) to

every outcome x in S, so we have such numbers for the outcomes

in each of the smaller pieces T . But a probability distribution on S—

meaning numbers Pr(x) for each outcome x—won’t give us a proba-

bility distribution on the subset T . We have probabilities Pr(x) for x
in T because T is a subset of S, so each x is also in S, but these only

sum to 1 when we total over all of S, not over the subset T .
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If we stick to the equally likely outcomes case, this isn’t so hard to

get around. All the outcomes x in S have the same probability Pr(x) =
1

#S . Can we find a new probability PrT on T so that all the outcomes in

T have the same probability too and so that these new probabilities

total to 1 over outcomes in T? Sure, we simply set PrT (x) = 1
#T for

each x in T .

Now we can at least ask our question sensibly. Let’s write ES(Y)
for the expected value of Y on S: i.e.

∑
x∈S Y(x)Pr(x). Likewise for a

subset T of S, write ET (T) for the expected value
∑
x∈T Y(x)PrT (x)

on T . What we want to know is whether we can expect there to be

useful relations between ES(Y) and the expected values ET (Y) for

various subsets?

The short answer is “Usually not” and we’ve already seen what can

go wrong in “We wuz robbed”. In the rest of this section, I want to

look at better known example. Let’s take as our sample space S the

set of applicants to the graduate and professional schools at a large

university with the Equally Likely Outcomes Probability Mea-

sure 4.3.1. Although I have made up the data to keep things simple,

this example is based on a celebrated 1973 class action suit involving

the graduate programs at Berkeley summarized in this paper.

What random variable Y on S do we want to consider? To make ev-

erything as simple as possible, I’ll take Y to be the indicator variable

for the subset A of admitted students: that is Y(x) is 1 if applicant x
was admitted, and is 0 otherwise. The expected values ES(Y) is just

the overall fraction of all applicants who are admitted as the next

problem shows.

Problem 4.8.51: se the Equally Likely Outcomes Expected Value

Formula 4.8.4 to show that ES(Y) = #A
#S .

Similarly, for a subset T of S the expected value ET (Y) is just the

fraction of the applicants in T who get admitted: ET (Y) = #A∩T
#T .

There’s an even simpler way to think of these fractions. The first #A
#S
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is just the unconditional probability Pr(A) of the event A and the

second #A∩T
#T is the conditional probability Pr(A|T).

The last element in the setup is to decide what subsets T of the full

pool of applications S we want to consider. In the Berkeley case, the

pool was divided in two ways.

First, we divide by the gender of the applicant. That is, we write

S = F∪̇M as the disjoint union of the subsets of female and male

applicants. So EF(Y) = Pr(A|F) is just the chance that a female

applicant was admitted and EM(Y) = Pr(A|M) the chance that a

male applicant was admitted. The fact that these numbers were

unequal—the proportion of female applicants admitted was substan-

tially lower than the proportion of male applicants—was the basis

of the suit. It alleged that this demonstrated discrimination on ad-

mission on the basis of sex. Table 4.8.52 shows simplified data to

illustrate this claim.

Female Male Total

Admitted 800 1500 2300

Not admitted 3200 4500 7700

Total 4000 6000 10000

Table 4.8.52: Overall admission rates by gender

The case seems pretty clear. Overall, 25% of male applicants were

admitted but only 20% of female applicants. The surprise came in

the University’s defense. It acknowledged that discrimination on the

basis of sex was taking place, but claimed that all of the University’s

post-graduate programs were actually favoring women applicants.

The University’s claim was supported by data like that in Table

4.8.53. I’ll let you check that the overall totals in each category match

those in Table 4.8.52. In this table we have divided the applicants by

the school—Business (B), Law (L), Engineering (E) or Health Sciences

(H)—to which each applied.
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Business Female Male Total

Admitted 200 850 1050

Not admitted 200 1150 1350

Total 400 2000 2400

Engineeering Female Male Total

Admitted 200 400 600

Not admitted 400 1100 1500

Total 600 1500 2100

Law Female Male Total

Admitted 200 150 350

Not admitted 800 850 1650

Total 1000 1000 2000

Health Sciences Female Male Total

Admitted 200 100 300

Not admitted 1800 1400 3200

Total 2000 1500 3500

Table 4.8.53: Program based admission rates by gender

In other words, we are writing S = B ∪̇ E ∪̇ L ∪̇ H and then dividing

each of programs by sex

S = F ∪̇ M
=

(
(B ∩ F)∪̇(E ∩ F)∪̇(L∩ F)∪̇(H ∩ F)

) ∪̇(
(B ∩M)∪̇(E ∩M)∪̇(L∩M)∪̇(H ∩M)

)
.

The numbers support the University’s claim. In each of the four

programs, the admission rate of female applicants was significantly

higher than that of males: 50.0% versus 42.5% in Business, 33.3%

versus 26.7% in Engineering, 20.0% versus 15.0% in Law and 10.0%

versus 6.7% in Health Sciences.
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How is it possible that every program favors women and yet women

have a lower overall chance of being admitted? The answer is that

the programs to which most women were applying were very selec-

tive (half the applications were in Health Sciences where the admis-

sions rate was less than 10% and another quarter were in Law where

it was less than 20%) while most men were applying to much less

competitive schools (here three-quarters of the applications were to

Business and Engineering which had admission rates of over 40% and

25% respectively).

Let’s restate this in terms of expected values. For example, 200 of

the 1000 female applicants to the Law school, or 20%, were admitted.

This 20% is the expected value E(F∩L)(Y), or as above, the conditional

probability Pr(A ∩ F ∩ L | F ∩ L). Likewise, the 50.0% of women ad-

mitted to the Business school is E(F∩B)(Y). The point is that there’s

no way to relate the overall chance of 25% that a woman is admit-

ted to the four program based chances 50.0%, 33.3%, 20.0% and

10.0%. To reconstruct the overall chance E(F)(Y) we need to know

just these component expectations but also the sizes of the events

(like F ∩ L) associated to each. It’s the different sizes of the program

based events (like F∩L versusM∩L) that allow the uniformly higher

program based chances that a woman is admitted to combine to a

lower overall chance.

The moral is that, even if we only have a single random variable in

mind, we cannot use an expected value taken over an entire sample

space S to draw conclusions about expected values from subsets

T of our sample space S, nor can we hope, in general, to combine

expected values from subsets T that fill out S to tell us much about

the overall expected value.

Here’s a problem along the same lines that deals with averages that

are close to home for many of you. What average do students pay

most attention to? Their GPA, of course. Like the overall admissions

figures at Berkeley, the GPA is an average of averages. your GPA is
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built up from your grades in individual courses, each of which is

an average of your work in that course—each course grade plays a

role like that of a programs at Berkeley. The general view is that a

student with a higher GPA is a better student. Does this view hold

water? The following problem shows that it does not. Once again, I

have made up data to keep the numbers simple, but the conclusion

of the problem—a better student can have a lower GPA because he

or she takes harder courses—holds in real life, where, for example,

the GPA penalizes students majoring in the sciences.

Problem 4.8.54: Consider a University with two classes of courses.

In science courses, science majors average a grade of B- (GPA 2.7) and

humanities majors average a C- (GPA 1.7). In humanities courses, sci-

ence majors average a grade of A- (GPA 3.7) and humanities majors

average a B+ (GPA 3.3). A science major takes 30 science courses and

10 humanities courses while at the University while a humanities

major takes 35 humanities courses and 5 science courses.

i) Why does this data demonstrate that science majors at this Uni-

versity are better students than humanities majors?

ii) Show that the GPA of a typical science major is 2.95 while that

of a typical humanities major is 3.10.

iii) Explain how to reconcile the two answers above and discuss how

they illustrate the same paradox as the Berkeley discrimination data.

iv) What GPA would a science major who took the same mix of

courses as a humanities major expect? What GPA would a human-

ities major who took the same mix of courses as a science major

expect?

Spreads: variance and standard deviation

In this section, we want to scratch the surface of a problem of critical

importance in all kinds of practical testing in virtually every social

and physical science. How can we decide when an observed value is
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sufficiently different from an expected one that we should doubt our

expectation?

Suppose, as a very typical example, we want to test a new treatment

for some form of cancer. The standard protocol is to enroll a set

of patients in a trial and then to randomly give patients either the

old and new treatment. At this point, you have no evidence that the

new treatment is either better or worse than the old, so you start

from the expectation that both groups of patients will fare equally

well. This “makes no difference” starting point is usually called a

null hypothesis.

The problem is that, even if the null hypothesis is true, it’s unlikely

that you’ll actually observe both groups doing equally well (just as

you probably won’t observe 50 heads in 100 tosses). So just ob-

serving that the patients receiving the new treatment do better (or

worse!) does not contradict our expectation that neither treatment is

more effective. For such a trial to be useful, you need to know going

in, by how much the observed outcomes of the two groups must dif-

fer before you can be confident that the new treatment is better (or

worse) than the old—that is, before you reject the null hypothesis

that there’s no difference.

It turns out that expected values are the key to assessing observa-

tions in this way. For any degree of confidence, usually specified

as a percentage, expected values can be used to predict how much

the observed outcomes of the two groups must differ before you can

conclude, with the specified degree of confidence, that one treatment

is superior to the other.

It’s common, for example, to speak of a 95% confidence interval. This

is a range or interval of possible observed values surrounding the

expected one. By chance alone, an observed value will lie inside this

interval in 95% of trials. So we’ll observe a value outside this inter-

val only 5% of the time, or 1 time in 20. If the observed difference

between the old and new treatments lies outside this interval, then
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we’ve either observed a relatively unlikely outcome, or the null hy-

pothesis is wrong and the one treatment is more effective than the

other. If we draw the latter conclusion, we will only be wrong about

1 time in 20.

If we are more skeptical, we can ask for a higher level of confidence—

99% is a common one. There’ll be a larger 99% confidence interval.

Our observation will lie outside this interval only 1 time in 100. So if

we conclude that the treatments differ, we’ll only be wrong about 1%

of the time.

As I’ve already indicated, to really understand how to make such

judgements calls for lengthy study—a course in statistics, or even

several. Here we will just study a single example where we have most

of the necessary tools in hand. Suppose we are interested in studying

the number of successes in a series of n binomial trials. By Total

Successes in Binomial Trials 4.8.40, we know that the expected

number of successes is just E(K) = n · p. How do we judge the

likelihood of seeing a observed value of ` for this number?

First, let’s describe the setup for a general random variable Y a bit.

Then we’ll get down to brass tacks with the number of successes K
in a binomial distribution. It turns out we’ll need to use the expected

value E(Y) to create a new random variable related to Y and then

calculate the expected value of this new variable. To avoid getting

confused about which Es we have calculated and which we are trying

to calculate, it’s standard to use the Greek letter µ—mu, pronounced

like the cat not the cow, for mean—to indicate an expected value we

already know. So we’ll set µY = E(Y) in the

Mean 4.8.55: The mean µY of a random variable is just an alter-

nate term for the expected value E(Y). We use µY when we want to

think of this value as known constant, rather than as something to be

computed.

OK. The expected value Y tells us where we expect our observations

to center. To assess how likely a given observation is, what we need
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is a measure of how widely the values are spread around. The plan

is to cook up a random variable W whose values measure how far

values of Y are from µY , and then find E(Y).
The first idea you might try is setting W = Y − CµY—remember

CµY is the constant random variable with value µY on every out-

come. The value of W is exactly how far Y deviates from its mean,

which seems like just what we want. Unfortunately, E(W) is al-

ways 0: because The EV of the sum is the sum of the EVs 4.8.35,

E(W) = E(Y)−E(CµY ) and both these expected values equal µY : the

first, by definition, and the second because Constants are their

own EVs 4.8.33.

We need to find some way to make all the deviations positive and

prevent cancellations. One way to do this is by taking an absolute

value and setting W = |Y −CµY |. This approach is not used much for

two reasons. At a practical level, the absolute value makes computing

and working with the corresponding expected values very difficult,

because relations involving Y will have no analogue for W . Theoreti-

cally, it turns out that this overemphasizes small deviations from µY
and underemphasizes big ones. The second way to guarantee that

things are positive is to square them.

Squared Deviation 4.8.56: The squared deviation of a random

variable is the random variable (Y − CµY )2.

The squared deviation of Y turns out to capture perfectly how far it’s

values tend to deviate or spread away from µY . It’s expected value

condenses these squared deviations down to a single number that

carries such basic information about Y that it has its own name.

Variance 4.8.57: The variance Var(Y) of a random variable is de-

fined by either of the two equivalent formulae:

i) (Variance First Definition) Var(Y) := E
(
(Y − CµY )2

)
.

ii) (Variance Second Definition) Var(Y) := E(Y 2)− µ2Y .

It’s usually best to think about Var(Y) as the squared deviation of Y
(that is, using the first formula) but to calculate it using the second.
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4.8 Who would have expected . . .

First, an easy, but useful, remark about this definition. For any Y , the

square in (Y − CµY )2 makes this variable greater than or equal to 0
and the same must hold for its expected value Var(Y). But, looking

a bit more closely, we can only get 0 for Var(Y) if all the values of

Y − CµY are 0: in other words, Y equals the constant Cµ . So

Variance is Positive Except for Constants 4.8.58: If Y is a

constant random variable, then Var(Y) = 0. If Y is not constant, then

Var(Y) is strictly positive.

Next let’s calculate a few variances to get a feel for the two formulae.

Example 4.8.59: First we continue Example 4.8.3 where our exper-
iment consists of rolling a single die, Y(x) is just the number that
comes up, and E(Y) = 7

2 . We can then calculate Var(Y) using the
Outcomes Expected Value Formula 4.8.2. Pulling out the common
factor of 1

6 from the Pr(x), then Variance 4.8.57.i) gives:∑
x∈S

Pr(x)
(
Y(x)− µY

)2
=1
6

((
1− 7

2

)2
+
(
2− 7

2

)2
+
(
3− 7

2

)2
+
(
4− 7

2

)2
+
(
5− 7

2

)2
+
(
6− 7

2

)2)

=1
6

(25
4
+ 9
4
+ 1
4
+ 1
4
+ 9
4
+ 25
4

)
= 35
12
.

On the other hand, Variance 4.8.57.ii) gives Var(Y) as(∑
x∈S

Pr(x)Y(x)2
)
− µ2Y

=1
6
(
12 + 22 + 32 + 42 + 52 + 62

)
−
(7
2

)2
= 91
6
− 49
4
= 35
12
.

This illustrates why the second formula is preferred for calculations.

Problem 4.8.60: Here we will use the probabilities you found in

Problem 4.8.17, to further analyze the random variable Z that gives

your winnings when you play Chuck-a-luck. First find the expected

value of Z2, then use this and the value of µZ for find the variance

VarZ . Finally, show that the standard deviation σZ ' 1.113.

Here are a couple of more substantial examples for you to try.
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4.8 Who would have expected . . .

Problem 4.8.61: This problem is a continuation of Problem 4.8.46

where we considered a bus carrying 5 passengers and with 10 stops

on its route. Complete the table below to find E(Y 2).

Stops y y2 Count m Product y2m
1 10
2 1350
3 18000
4 50400
5 30240

Total 100000

Table 4.8.62: Expected Number of Times the Bus Stops

Then use the fact, from Problem 4.8.46, that E(Y) = 4.0951 to show

Var(Y) = 0.52825599.

Problem 4.8.63: This is a continuation of Problem 4.8.63, in-

volving the number of Republicans Y on a 5 member committee

chosen at random from the 59 Democrats and 41 Republicans in

the U.S. Senate. As above add a “squared value” column to Table

4.8.16 and use it to find E(Y 2). Then use µY = 2.05 to show that

Var(Y) = 45961
39600 ' 1.160631. That bar means a repeating 31.

Next, let’s check that the two formulae for Var(Y) always agree. This

gives the first confirmation that Var(Y) has nice properties (and in-

cidentally shows why we want to all the trouble to understand re-

lations between expected values in the last subsection). First we ex-

pand the square and use the fact that The EV of the sum is the sum

of the EVs 4.8.35 to get E
(
Y − CµY )2

)
= E

(
Y 2 − 2CµY · Y + C2µY

)
=

E(Y 2)−E(2CµY · Y)+E(C2µY ).

Since CµY is constant, we can rewrite E(2CµY ·Y), first as E(2µy ·Y),
then as 2µyE(Y) using the rule that The EV of the multiple is the

multiple of the EV 4.8.34, and finally as 2µ2y since E(Y) = µY by

definition. Likewise, the variable C2µY is constant with value µY 2 so
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4.8 Who would have expected . . .

using Constants are their own EVs 4.8.33 gives E(C2µY ) = µY 2.
Plugging all this in and cancelling, we are left with E(Y 2)− µ2Y .

In these checks, we used heavily the relations between expected val-

ues from the previous subsection. It’s natural to ask whether there

are similar relations for variances—after all variances are expected

values. To get a feel for the answer, let’s compute a few more vari-

ances.

Problem 4.8.64: This problem continues Example 4.8.36 and asks

you to find the variances of the variables studied there by completing

the last two columns of the table below.

Random variable Y Outcome µY E(Y 2) Var(Y) = E(Y 2)− µ2Y
HH HT TH TT

L1 1 1 0 0 1
2

L2 1 0 1 0 1
2

K = L1 + L2 2 1 1 0 1

C1 1 1 1 1 1

2 ·K 4 2 2 0 1

N = K + L1 3 2 1 0 3
2

Table 4.8.65: Variances for two tosses

The completed table makes it clear that, even though variances are

expected values, most relationships between random variables are

modified or eradicated in their variances. For example the variance

of the constant variable C1 is not 1 but 0. This holds for any constant

variable because the rule that Constants are their own EVs 4.8.33

means that µCa = a and hence Ca − µCa is the zero random variable.

Likewise, the Var(2 · K) = 4 · Var(K). In general, if we multiply a

variable by a, its variance gets multiplied by a2.

Variance is Quadratic 4.8.66: For any Y , Var(aY) = a2 Var(Y).
The variance of a multiple get multiplied not by the multiple a but
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4.8 Who would have expected . . .

by the square of a.

Looking at the row forN = K+L1 we can see that, in general, the vari-

ance of the sum is not the sum of the variances. We have Var(N) = 5
4

but Var(K) + Var(L1) = 1
2 +

1
4 =

3
4 . On the other hand, looking at

the row for K = L1 + L2, we see that this sum is sometimes true:

Var(K) = 1
2 =

1
4 +

1
4 = Var(L1)+ Var(L2).

Once again, the question we need to understand is when this relation

holds and once again the key is independence. This is expressed

in the following fundamental formula that is they key to almost all

applications of variances.

Variance of Independent Sums 4.8.67: If the random variables

Z and W are independent, then Var(Z +W) = Var(Z) + Var(W). In-

formally, the variance of a sum of independent variables is the sum

of their variances.

A moment’s thought should make you wonder how this beautifully

simple formula can possibly be true in general. After all, we’ve just

proved that variance is more-or-less a “squaring” operation, and de-

spite the fact that thousands of students use the rule that “the

square of the sum is the sum of the squares” every day, this rule

is just wrong! Try it with 1 and 2! So something very special (and im-

portant) is going on here. The proof of the formula is actually quite

easy and we won’t go beyond it to penetrate the mystery completely,

so I’ll content myself with emphasizing its presence.

So we start calculating. Using Variance 4.8.57.ii), Var(Y + Z) =
E
(
(Y + Z)2

)
− (µY+Z)2. We’ll simplify the two terms separately then

combine them.

For the first, we expand and use the rule that The EV of the sum is

the sum of the EVs 4.8.35 to get: E
(
(Z + W)2

)
= E

(
Z2 + Z · W +

W · Z + W 2) = E(Z2) + E(Z · W) + E(W · Z) + E(W 2). Then, and

here’s where the mystery hides and where the independence of Z
and W is crucial, we use the fact that The EV of the product of
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4.8 Who would have expected . . .

Independent Variables is the product of the EVs 4.8.41 to write

both E(Z ·W) = µZ · µW = E(W · Z). Summing up, E
(
(Z +W)2

)
=

E(Z2)+E(W 2)+ 2 · µZ · µW .

The second term is easier. By definition, µZ+W = E(Z +W); because

The EV of the sum is the sum of the EVs 4.8.35, E(Z + W) =
E(Z) + E(W); and, again by definition E(Z) + E(W) = µZ + µW . So

(µZ+W )2 = (µZ + µW )2 = µ2Z + 2 · µZ · µW + µ2W .

Combining the two terms, E
(
(Z+W)2

)
−µZ+W 2 =

(
E(Z2)+E(W 2)+

2 ·µZ ·µW
)
−
(
µ2Z +2 ·µZ ·µW +µ2W

)
=
(
E(Z2)−µ2Z

)
+
(
E(W 2)−µ2W

)
.

But the last two terms are just Var(Z) and Var(W) by Variance

4.8.57.ii). So Var(Z +W) = Var(Z)+ Var(W).

To see how useful Variance of Independent Sums 4.8.67 is, let’s

use it to find the variance of the variable K =
∑n
i=1 Li that counts

successes in a sequence of n Bernoulli trials as the sum of the indi-

cator variables Li that count successes on the ith trial. Since Li has

value 1 with probability p and value 0 with probability q = 1 − p
and mean µLi = p, Variance 4.8.57.ii) gives Var(Li) = E(L2i )−µLi 2 =
(12·+02 · q) − p2 = p − p2 = p(1 − p) = pq. Since the variables Li
are independent, Variance of Independent Sums 4.8.67 then im-

mediately gives Var(K) =
∑n
i=1 Var(Li) =

∑n
i=1 pq = n · pq. This is so

important we record it.

Variance of Successes in Binomial Trials 4.8.68:

i) Var(Li) = pq = p(1− p).
ii) Var(K) = n · pq = n · p(1− p).

Problem 4.8.69: A better feeling for the power of Variance of

Independent Sums 4.8.67 is given by trying to calculated Var(K) as

E(K2)− µK2 =
n∑
k=0
k2
(
C(n, k)pkq(n−k)

)
− (np)2 .

i) Evaluate this sum for n = 8 and p = 1
2 . You should get 2 by

Variance of Successes in Binomial Trials 4.8.68.ii).
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4.8 Who would have expected . . .

ii) Evaluate this sum for n = 9 and p = 1
3 . You should again get 2.

Already just these two examples are much more work than the gen-

eral derivation above. For a really hard challenge, try to evaluate this

sum for general n and p.

Problem 4.8.70: An experiment consists of rolling a die 12 times

and recording all 12 outcomes.

i) Show that the sample space S consists of sequences of length 12
in the numbers from 1 to 6 and that #S = 612.
ii) Consider the events E2,3 =“the number on the 2nd roll is 3” and

E9,1 =“the number on the 9th roll is 1”. Show, by counting outcomes,

that Pr(E2,3) = Pr(E9,1) = 1
6 and that Pr(E2,3 ∩ E9,1) = 1

36 . Conclude

that E2,3 and E9,1 are independent.

What would happen if we changed the rolls from the 2nd and 9th to

any pair of different rolls? What would happen if we changed the

numbers that came up from 3 and 1 to any other values, equal or

not?

iii) Consider the random variable Y given by totalling the numbers

that come up on all 12 rolls. The variable Y is the sum of 12 variables

Zi whose values are the number on the ith roll. Use this and Example

4.8.3 to find E(Y).
iv) Explain why ii) shows that Zi and Zj are independent variables

if i and j are different rolls.

v) Find Var(Y) by using Example 4.8.59 to give Var(Zi) and apply-

ing Variance of Independent Sums 4.8.67.

Find the variance and expected value of the analogous total when 2
dice are rolled and when 60 dice are rolled.

Here’s a problem by way of warning you not to skip a careful check

that, when you use Variance of Independent Sums 4.8.67, the vari-

ables you are summing are indeed independent.

Problem 4.8.71: Let’s compare Problem 4.8.44 and Problem

4.8.63 involving the number of Republicans Y on a 5 member com-

mittee chosen at random from the 59 Democrats and 41 Republicans
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4.9 Everything is back to normal

in the U.S. Senate. Let Zs be the random variable of Problem 4.8.44

that is 1 if Senator s is on the committee and 0 otherwise. Recall that

Pr(EZs ,1) = 0.05 and hence that E(Zs) = 5
100 = 0.05.

Since whether Senator s is chosen for the committee has no effect on

the possible choice of Senator t—regardless of the parties of s and

t—the variables Zs and Zt (that is, the events EZs ,1 that s is selected

and EZt ,1 that t is selected) are independent.

i) Show that Var(Zs) = .0475 using Variance 4.8.57.ii).

ii) Use Variance of Independent Sums 4.8.67 and the fact that Y
is the sum of the 41 variables Zs for which s is a Republican, to show

that Var(Y) = 41 · .0475 = 1.9475.

Why doesn’t this agree with the answer of 45961
39600 ' 1.160631 we got

in Problem 4.8.63? Because the claim I made above that Zs and Zt
are independent seems right but isn’t! So Variance of Independent

Sums 4.8.67 did not apply above.

iii) Show that for any two Senators s and t there are C(98,3) =
152096 committees containing both s and t .

iv) Conclude that Pr(EZs ,1 ∩ EZt ,1) = 152096
75287520 =

4
99 ' 0.0020 (that is,

the 20 is a repeating decimal).

v) Show, on the other hand, that Pr(EZs ,1) · Pr(EZt ,1) = 0.0025.

Since these last two answers don’t match up, we conclude that EZs ,1
and EZt ,1—and likewise Zs and Zt—are dependent. That 4

99 explains

why: once we pick s, then t is one of 99 Senators vying for 4 spots

—not one of 100 vying for 5—so picking s reduced t ’s chances by

partially filling the committee.

4.9 Everything is back to normal

In this section, we’ll look what are probably the two most important

theorems in probability, the Law of Large Numbers 4.9.3 and the
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Central Limit Theorem 4.9.12, and see how these can be applied,

using the test case of binomial distributions. We’ll be especially inter-

ested in understanding the binomial random variable Kn that counts

Total Successes in Binomial Trials 4.8.40 when the number n of

trials is large.

These theorems will be exceptions to the general rule in Math4Life,

that we understand why every result we use is true. The reason is

that what both theorems tell us about is not the value of a single

Kn but the behavior of all the values Kn when n becomes large. We

can state this more succinctly in language of calculus as saying they

predict the limiting behavior of Kn as n goes to infinity. And quite a

few tools from calculus are needed to verify these predictions.

Fortunately, applying these predictions to get answers to questions

about binomial (and, although we won’t consider them here, many

other distributions) that come up in just about every area of the

physical, medical, social and human sciences turns out to be ele-

mentary. We’ll finally be able to say when we should think that the

difference between an observed value and a probability expectation

is small enough that it’s probably just random, and when such a

difference is large enough that it’s highly unlikely to be random. De-

signing experiments that produce such unlikely differences is the

most common way that economic trends are identified, drugs are

tested, quality is controlled in manufacturing processes—the list is

endless.

Let’s start by describing the general setup, and pinning down what

each component amounts to for our binomial example.

i) We start with a a trial probability space S and a random variable

Z on S with expected value E(Z) = µ: we’ll use the Bernoulli Trial

4.7.18 Bp as our trial space and the indicator variable L for success s
on this trial so our mean value µ is just p.

ii) Next, we consider a sequence of n independent trials with sam-

ple space T n the length n sequences of outcomes in S: our sample
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space will be the binomial distribution space Bn of sequences of n
Bernoulli trials.

iii) On T n, we have n independent random variables Z1, Z2, . . . , Zn
that are “copies of Z”—the value of Zi is just the value of Z on the

ith trial—and we can form a new random variable Yn by summing all

of these.

When we start from the indicator variable L, our Li are the variables

of Successes in the ith binomial trial 4.8.38 and their sum is the

variable Kn whose value is the total number of successes in all n
trials.

iv) By The EV of the sum is the sum of the EVs 4.8.35, the mean of

Yn is given by E(Yn) =
∑n
i=1E(Zi) = nµ since each Zn has expected

value µ. By The EV of the multiple is the multiple of the EV

4.8.34, we can just divide both sides by n, getting E(Ynn ) = µ. We can

informally think of Yn
n as the average value of the variable Z on the

sequence of n trials, and the equation E(Ynn ) = µ as saying that we

expect this average value to be close to µ.

In our binomial example, Knn is the average proportion of successes

observed in our sequence of n trials and we expect this proportion

to be close to p: E(Knn ) = p.

The statement, “We expect this average value to be close to µ.” comes

with a lengthy voiceover of disclaimers. First, when we say we expect

something in a probability sense, we only mean that it’s “likely” to

happen. We always have to allow for “unlikely” possibilities where

we observe something very different from what we expect.

Example 4.9.1: If we toss a coin 10 times, we expect to see about

5 heads. This is our binomial examples with p = 1
2 and n = 10. But,

of the 1024 outcomes of such an experiment, there’s 1 where the

observed number of heads is 10 (and another where it’s 0), and 10
each where it is 9 or 1. Even if we toss the coin 100 times we can’t be

sure we won’t see 100 heads (or 1 or 97)—we can only say that these

observations are very “unlikely”.
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Next, we only really expect the average to be “close” to the expected

value µ when the number of trials n is “large”. Even this statement

needs to be watered down: how close is “close” and how large is

“large”? We can’t, in general, say.

Example 4.9.2: Suppose for example that our basic variable Z
equals 1,000,000 with probability 1

1000000 and is otherwise 0. Then

µ = 1
1000000 · 1,000,000 = 1. Now suppose we perform n =

500,000 trials. Then we’ll either see 0 outcomes in which Z equals

1,000,000—that is, each individual Zi = 0 and the average value Yn
n is

also 0—or, at least one Zi will be 1,000,000—and then
∑n
i=1E(Zi) ≥

1,000,000 so the average Yn
n is at least 1,000,000

500,000 = 2. To sum up, even

though we made a “large” number of trials (half-a-million), our ob-

served average and the expected average will never be as any “closer”

than 1 apart.

What makes both the Law of Large Numbers 4.9.3 and, even more,

the Central Limit Theorem 4.9.12 so valuable is that they allow us

to be more precise about what “unlikely”, “close” and “large” mean

by comparing them to fixed quantities: in fancy terms, they let us

quantify these terms.

Let’s look at the simpler Law of Large Numbers 4.9.3 first. It in-

troduces two quantities, a big whole number N and real numbers ε
and τ . The positive whole number N provides a threshold for “large-

ness”. A number n of trials is “large” if n ≥ N. The positive real

number ε provides a threshold for “unlikeliness”. The symbol ε is

the Greek letter epsilon—the equivalent of a Roman ‘e’—and is the

standard way to denote a small error or other quantity. An event

is E “unlikely” if Pr(E) < ε (that is, we’ll see E happen less that an

ε-fraction of the time) and E is “likely” if Pr(E) > 1 − ε. The posi-

tive real number τ (τ is the Greek letter t) provides a threshold for

“closeness” An observed average Yn
n is close to an expected value µ

if |Ynn − µ| < τ . We use the absolute value signs here to make sure

that y is within an error τ of µ whether y is bigger or smaller than µ.

1—
1—
2—

a ·· ·· z ? 488 Comments welcome at �̂�

mailto:morrison@fordham.edu


4.9 Everything is back to normal

In terms of these, the statement—if the number of trials is “large”,

then it’s “likely” that an observed average is “close” to the expected

value—can be quantified as:

Law of Large Numbers 4.9.3: For any positive ε and τ , there is

an N := Nε,τ for which:

If n ≥ Nε,τ , the probability that
∣∣Yn
n
− µ

∣∣ < τ is greater than 1− ε.

Informally: By taking enough trials, we can it as likely as we wish

that our observed average is as close as we want to the expected or

mean value.

The Law of Large Numbers 4.9.3 asserts, in a more precise math-

ematical form, our intuitive sense of what we should expect when

we run as lot of trials. But it’s still too vague to be of much prac-

tical value. In a practical situation, we’ll usually have an ε and τ in

mind—we know how much error we’re willing to tolerate and how

much certainty we want to have. If we pick, say, ε = 0.01and τ = 0.2,

then we’re saying that we want the difference between our observed

average and the mean to be less than 0.2 at least 99% of the time

(1 − 0.01 = 0.99). The Law of Large Numbers 4.9.3 tells we can

have this if we run enough trials, but it gives us no clue as to how

many trials is enough. In other words, we know there’s an N that

works and we’re OK if we run at least N trials, but we have no idea

how to find this N so we have no idea how many trials is enough.

What we need is an effective result: one that tells us how to find the

Nε,τ that works for any chosen ε and τ . The Central Limit Theorem

4.9.12 is the fundamental result of this type. It works by allowing us

to compare the random variable Yn we’re interested in to a standard

random variable N called a standard normal (or Gaussian) random

variable on a standard normal probability space or distributionN .

What’s most amazing about the Central Limit Theorem 4.9.12 is

that it’s universal. By this, I mean that for any sample space S and

random variable Z that we want to start from, we can effectively com-

pare the variable Yn that we get by summing n independent copies
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of Z to the same variable N on the same space N . No matter how

different two starting points Z and Z′ are, the corresponding sums

Yn and Y ′n will always match the same standard normal model.

What is the magic normal spaceN ? On the one hand, it’s something

you’re already familiar with. It’s the famous bell curve that you’re

referring to when you ask instructors if they “grade on a curve”. On

the other hand, it’s very different from anything we have done to

this point because it uses a infinite rather than a finite sample space.

In fancier terms, we have been studying discrete probability distri-

butions and N is a continuous distribution. Such distributions are

really the main subject studied in probability, but this study requires

techniques from calculus. So we won’t enter into any of the general

theory. Instead, here I will explain just enough about N for us to

state and use the Central Limit Theorem 4.9.12.

The sample space for N is the set R of real numbers. Not only is

R infinite, but as explained in Infinities and an argument from

The Book, it’s infinite is a really big way. This means that we can’t

describe a probability distribution by assigning a number Pr(x) to

each real x. There are just too many x for us to be add these up and

get 1 as required in Probability Measure 4.2.1. Well, we could set

Pr(x) = 0 for all but a few x, but that’s not what we want. We want

the probability to be spread out over all of R.

−4 −3 −2 −1 0 1 2 3 4

0.5

1.0

Figure 4.9.4: Unscaled graph of G(x) = 1√
2π e

(
− x22

)
To arrange this “spread out” probability, we introduce the Gaussian

density G(x) := 1√
2π e

(
− x22

)
. I have included 3 graphs of G. In Figure

4.9.4, the graph is shown with equal x and y scales. In Figure 4.9.5,

the y-scale has been magnified by a factor of 10 to make it easier
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to see values of G. Even so, the graph gets quite low at the sides, so

the third graph shows the “right side” of the graph with the y-scale

magnified by 100 and the region from x = 3 to x = 4 shaded.

−4 −3 −2 −1 0 1 2 3 4

• (0,0.39894228)

• (1,0.24197072)

• (2,0.05399097)

0.25

0.5

Figure 4.9.5: Rescaled graph of G(x) = 1√
2π e

(
− x22

)

2 3 4

0.01

0.00443185

0.02

0.24197072

0.00013383-

•

•
•

Figure 4.9.6: Rescaled graph of “right side” of G(x)

Now we want to assign probabilities to events—that is, subsets—of

the real numbers using G. As with the outcomes—point of R—there

are too many subsets for us to be able to work with them all. Instead,

we’ll be able to get by with assigning a probability only to each closed

interval event [a, b] The idea for doing this, reminiscent of how we

defined ln in Area definition of ln 1.4.21, is to use areas under the
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graph of G. So we define PrG([a, b]) to be the area under the graph of

G(x) from x running from a to b. It turns out that the area under the

whole (infinite graph)—that is the probability we assign to the inter-

val (−∞,∞) which is all of R—is exactly the required value 1. In fact,

arranging this is why we need the funny factor of 1√
2π—no other will

work—in front of the exponential. From the symmetry of the graph,

the probabilities of the positive and negative halves—the intervals

[0,∞) and (−∞,0]—are each 1
2 . The probabilities associated to all

other intervals have to be found using calculus.

−4 −3 −2 −1 0 1 2 3 4

Figure 4.9.7: Graph of G(x) with standard bands shaded

Figure 4.9.7 shows as shaded areas a few of these interval events.

For example, PrG([−1,1]) = 0.68268949 is the area of the “central”

band running from −1 to +1. Likewise, PrG([−2,−1]) = Pr([1,2]) =
0.13590512 is the area of either of the lighter “middle” bands and

PrG([−3,−2]) = PrG([2,3]) = 0.02140023 is the area of either of the

darker “outside” bands. Referring back to Figure 4.9.6, the shaded

band has area 0.00131827 which is PrG([3,4]). Fortunately, we only
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need a very small number of these values to be apply to apply the

Central Limit Theorem 4.9.12. They are listed—where they are

needed—below in Table 4.9.15, Table 4.9.16 and Table 4.9.17.

How can we compare a discrete random variable—think of the vari-

able KN that counts total successes in n binomial trials which takes

values from 0 to n—with the standard normal graph G? This turns

out to be amazingly easy. We extend the general notion of expected

value, and the special cases mean and variance to quantities like G.

I’m not going to try to even give any details here—I’ll just state that,

once again, this comes down to using calculus to define (and com-

pute) these quantities in terms of areas under graphs related to G.

It turns our that E(G) = µG = 0 (not surprising, given the symmetry

of the graph about 0) and that Var(G) = 1—making this work out so

simply is the reason for the 2 in the denominator of the exponential

defining G.

Now we simply normalize Yn so that it has the same mean and vari-

ance as G. To make the mean 0, we just need replace Yn by Yn−nCµZ .

Since Yn has mean nµZ , this shifted version has mean 0 by The EV

of the multiple is the multiple of the EV 4.8.34 and The EV of

the sum is the sum of the EVs 4.8.35.

Matching the variance takes a moment’s more thought. Now that we

have the right mean, we need to adjust without altering the mean.

The way to do this is to rescale Yn − nCµZ—that is, replace it by a

multiple a · (Yn−nCµZ ). Because Variance is Quadratic 4.8.66, we

need to scale not by the variance of y but by it’s square root. This

square root is so important in the sequel it has a name.

Standard Deviation 4.9.8: For any random variable Z , the

standard deviation σZ of Z is defined to be the square root of the

variance of Z : σZ =
√

Var(Z). For the random variable Yn given by

summing n independent copies of Z , we have Var(Yn) = nVar(Z) and

hence, σYn =
√
nVar(Z) = √nσZ
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For example, the standard deviation of the binomial variable L for

success in a single Bernoulli trial is σL :=
√

Var(L) = √pq, and the

standard deviation of the binomial variable Kn for total successes in

a sequence of n such trials is σKn :=
√

Var(Kn) =
√n · pq = √nσL.

The most important feature of σYn is the
√
n in the formula

√
nσZ .

Although, on the one hand, it means that the absolute deviation be-

tween an observed value for Yn and its expectation grows with n, it

also means that, viewed this deviation gets very small as a proportion

of µYn . This, as we’ll soon see, is very powerful.

Problem 4.9.9: Show that Z has standard deviation σZ = 1 if and

only if it has variance Var(Z) = 1.

The
√
n that relates σYn to σZ may seem like an annoyance, but it’s

the key to the applications of the Central Limit Theorem 4.9.12.

The random variable

Yn =
(Yn − nCµZ )√

n · σZ
again has mean 0 and now also has variance 1.

Normalized Sum 4.9.10: The normalized sum Yn of the sum Yn
of n independent copies of the variable Zis defined to be the random

variable Yn =
Yn−nCµZ√
nσZ . The normalized sum Yn has expected value or

mean E(Yn) = µYn = 0, variance Var(Yn) = 1 and standard deviation

σYn = 1.

Example 4.9.11: For example, the normalization of the of the bino-

mial variable Kn for total successes in a sequence of n Bernoulli trials

with probability p—that is, where Z = L— is Yn = Yn−nCp√
n√pq =

Yn−nCp√n·pq .

To complete the comparison of G and Yn, we assign probabilities

to real intervals using Yn. We just define PrYn([a, b]) to be the sum

of the probabilities of all values y of Yn whose normalizations lie

between a and b. Formally,

PrYn([a, b]) =
∑

a≤y≤b
Pr(EYn,y) .
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A better way to think of PrYn([a, b])—the way we’ll usually use—is

to view it as the chance that the value of the original sum Yn lies

between a and b standard deviations away from its mean. We can do

this by “unnnormalizing” a and b—that is scaling up by
√
nσZ and

shifting right by nµZ to get

PrYn([a, b]) =
∑

√
nσZa+nµZ≤y≤

√
nσZb+nµZ

Pr(EYn,y) .

In effect we measure deviations from the mean µ in units of σ and

then we ask, “What is the chance the value of Yn falls between a and

b of these σ units from its mean?” It’s important to remember that

a and b can be either positive (which means that we are looking σ
units above the mean), or negative (which means that we are looking

σ units below the mean).

Central Limit Theorem 4.9.12: For any basic random variable

Z , let Yn be the normalized sum of as above, of n independent trials

of Z . Then, there is an integer N := Nε for which:

If n ≥ Nε, then
∣∣PrG([a, b])− PrYn([a, b])

∣∣ < ε for any [a, b].

More informally, if we combine enough trials in Yn (that is, take N big

enough), then we can make its probability distribution “as close as we

like” to the universal Gaussian distribution G.

Figure 4.9.13 shows what this amounts to. In it, I have overlaid, the

probabilities of the normalized variable K100 for total number of suc-

cesses in 100 Bernoulli trials with probability p = 0.40 and the graph

of G. Of course, to make the pictures—especially, the areas that mea-

sure probabilities—match up, we need to “normalize” the binomial

picture. This means shifting horizontally by nµZ and scaling hori-

zontally by 1
σK100

= 1√
nσZ . This horizontal scaling reduces areas so I

have multiplied all the values of K100 by σK100 to make the areas, and

the graphs visibly match.

The probability of each number of successes from 20 to 60 is shown

as a vertical line segment: the height of the segment gives the prob-
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ability of this number of successes (scaled up by σK100 ) and the hori-

zontal position gives the corresponding y (shifted and scaled down).

−4 −3 −2 −1 0 1 2 3 4

Figure 4.9.13: Normal vs. binomial with n = 100, p = 0.40

For example, the mean of 40 successes corresponds to y = 0; this

has probability C(100,40) · 0.440 · 0.660 = 0.081219145 which we

scale up by σK100 =
√
100 · 0.4 · 0.6 = 4.8989795 to produce a line of

length 0.39789094 which is off by only 0.001 from the central value

0.39894228. The line segment just to the left of −2 corresponds

to 30 successes and has height σK100 · C(100,30) · 0.430 · 0.670 =
4.8989795 · 0.010007504 = 0.049026561.

But there’s no need to check all these numbers. The agreement be-

tween the vertical lines and the curve is just too striking.

Let me emphasize the amazing part of this theorem, its universality:

we don’t need to know anything about the basic random variable Z ,

just that the trials in our series are independent. If we have indepen-

dence, then whatever Z we take, the normalized sums Yn will match

the “National Bureau of Standards” Gaussian distribution G, more

and more accurately as n gets bigger and bigger.

A warning is also in order here. Exactly how big you need to take

n does depend on the original random variable Z used, as well as,

of course, on how accurately you want the graphs to match. In our

binomial examples, it turns out that when p (or q) is very close to

0, then you need a much larger n. Figure 4.9.14 shows an example
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with, once again, 100 trails but with the much smaller value of p =
0.03. Notice how far the lines overshoot on the left and undershoot

on the right. There are far fewer visible lines too because the mean

number of successes is only 3—to the left of 0 for example, there are

only three lines corresponding to 0, 1 and 2 successes. To the right,

there are 97 but they are both mostly too short (even shorter than

the little tick between 3 and 4) and too far too the right to be seen.

−4 −3 −2 −1 0 1 2 3 4

Figure 4.9.14: Normal vs binomial with n = 100, p = 0.03

How, then, do we know when n is big enough? Why is the Central

Limit Theorem 4.9.12 any more effective a tool than the Law of

Large Numbers 4.9.3? We still need to find that mysterious Nε.
Telling when n is big enough in general is what you’ll learn if you

take a statistics course. For our binomial example, we’ll just use the

rough Big-enough n Rule-of-Thumb 4.9.18 which I’ll explain when

we come to applications.

What makes it possible to find a N that works in applications is

the fact that the Central Limit Theorem 4.9.12 lets us compare

the sum of random variables we are interested in to a fixed target,

the standard normal distribution G. We simply tabulate probabili-

ties that G has values in some standard intervals and then, by “de-

normalizing”, translate these intervals back to intervals that tell us

about the variable YN that we’re interested in.

Table 4.9.15 contains the most commonly used values: to make the
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table more readable I have used µ and σ for µYn = nµZ and σYn =√
nσZ . First, we list the probabilities of being “within” an interval

about the mean (that is, close to the mean).

Informal name Yn interval G interval G- Probability

within σ [µ − σ,µ + σ] [−1,1] 0.682689

within 2σ [µ − 2σ,µ + 2σ] [−2,2] 0.954500

within 3σ [µ − 3σ,µ + 3σ] [−3,3] 0.997300

within 4σ [µ − 4σ,µ + 4σ] [−4,4] 0.999937

Table 4.9.15: “Within” Gaussian Probability Values

In our applications, we want to use this information to say that an

observed value is unlikely, or very unlikely. This will be the case, not

if the observation is close to the mean, but if it’s far away from it.

So it is more convenient to display the information in Table 4.9.15

using the complementary “beyond” or far from the mean ranges and

the complementary probabilities as in Table 4.9.16. For example the

0.317311 in the first row of this table is just 1 minus the 0.682689
from the first row of Table 4.9.15. The middle two rows are the ones

most commonly used in applications.

Informal name Yn interval G interval G- Probability

beyond σ (−∞, µ − σ)∪ (µ + σ,∞) (−∞,1)∪ (1,∞) 0.317311

beyond 2σ (−∞, µ − 2σ)∪ (µ + 2σ,∞) (−∞,2)∪ (2,∞) 0.045500

beyond 3σ (−∞, µ − 3σ)∪ (µ + 3σ,∞) (−∞,3)∪ (3,∞) 0.002700

beyond 4σ (−∞, µ − 4σ)∪ (µ + 4σ,∞) (−∞,4)∪ (4,∞) 0.000063

Table 4.9.16: “Beyond” Gaussian Probability Values

There’s one more refinement. In most applications, we only really

care about observed values that are not only far from the expected

ones (the mean), but to one side of it—that is, either far “above” or

far “below” the mean.

For example, suppose we are trying to decide whether a new medical

procedure is more effective than an old one. We compare the out-
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comes of two groups of patients, one getting the new treatment and

the other the old one. If the results from the two groups are close to

each other, we don’t draw any conclusion, attributing the small dif-

ference to random effects. This is a “within” result and hence fairly

likely to occur by chance.

We consider the results to be unlikely to be due to chance only if

the two groups are show result that are far different—a “beyond”

result. But there are two kinds of “beyond”. Patients getting the new

treatment can do a lot better than those who got the old one. This

this kind of unlikely “above” observation is what would tend to make

us think the new treatment is more effective than the old one. But

patients getting the old treatment might very well do a lot better than

those who got the new one. This “below” result is also a “beyond”

result, but not one that argues for the new treatment. So we really

want to ask how likely is the “above” observation.

Informal name Yn interval G interval G- Probability

more than σ above (or below) (µ + σ,∞) (1,∞) 0.158655

more than 2σ above (or below) (µ + 2σ,∞) (2,∞) 0.022750

more than 3σ above (or below) (µ + 3σ,∞) (3,∞) 0.001350

more than 4σ above (or below) (µ + 4σ,∞) (4,∞) 0.000032

Table 4.9.17: “Above or Below” Gaussian Probability Values

Mathematically, this is again easy to derive from the numbers we

have. Since the Gaussian distribution is symmmetric about the mean

(the above side is the mirror image of the below), the probability of

being either “above” or “below” is just half the probability of being

“beyond”. The fact that these numbers are smaller is an advantage:

the same observation is more unlikely (half the probability). So when

are only interested in one-sided differences, it’s smart to test for

them as we are more likely to be able to find good evidence. The

table below gives the corresponding numbers. Again, the middle two

rows are the ones most commonly used in applications.
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The numbers in these tables are often referred to rather loosely. For

example, it’s common to say that observed values lie “within 2σ” of

expected ones is often loosely stated as “with 95% certainty” or that

this is a “95% confidence interval”. Likewise, the chance 0.001350 of

an observation that is “more than 3σ above” an expectation is often

loosely stated as “about one in a thousand”.

All we need now is some way to tell when n is big enough that we can

use these probabilities to analyze the total successes in n trials bino-

mial random variable Kn. We’ll just use the following rule-of-thumb

which is based on simply calculating probabilities for Kn for many

n and p and looking for those furthest from agreeing with normal

probabilities in the table. It’s actually rather conservative (usually

the agreement between probabilities for Kn and for g is much closer

than that claimed) but it will more than suffice for our purposes.

Big-enough n Rule-of-Thumb 4.9.18: If the number of trials in

a binomial distribution is n and the probability of success in each

trial is p, then n is big enough to apply the Central Limit Theorem

4.9.12 if npq > 10.

More precisely, for such n and p, the entries in the second rows of

Table 4.9.15, Table 4.9.16 and Table 4.9.17 are within ±.015 of the

true probability that Kn lies in the corresponding interval and those

in the thirsd rows are within ±0.004.

Unlikely Successes Percentages 4.9.19: When npq > 10, the

chance of observing a value of Kn that is:

i) less than 2σKn from the expected value µKn is more than 94%;

ii) more than 2σKn from µKn is less than 6%;

iii) more than 2σKn above (or below) µKn is less than 3%.

The chance of observing a value of Kn that is:

i) less than 3σKn from µKn is more than 99%;

ii) more than 3σKn away from µKn is less than 1%; and,

iii) more than 3σKn above (or below) µKn is less than 0.5%.
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When analyzing deviations between observations and expectations

in formal scientific situations, its standard to give these kind of nu-

merical measures of likelihood. But, in everyday life, we just want

to distinguish between informal degrees of likelihood. the following

rule-of-thumb tells us how to do this.

Unlikely Successes Rule-of-Thumb 4.9.20: Suppose npq > 10.

i) If an observed value of Kn is within 2σKn of the expected value

µKn , then the difference is reasonably likely to be due to chance alone.

ii) If an observed value of Kn is further than 2σKn from the expected

value µKn , then the difference is unlikely to be due to chance alone.

iii) If an observed value of Kn is further than 3σKn from the ex-

pected value µKn , then the difference is extremely unlikely to be due

to chance alone.

As a first example of how we can use this, let’s see what it says

about tossing a coin. Here E(L) = µL = p = 1
2 , VarL = 1

2 ·
1
2 and σL =√

VarL = 1
2 . Now we can finally quantify what it means to say that if

we toss a coin 100 time (this, of course, is n) we expect “about” 50
heads. We expect about 50 heads because µKn = n·µL = 100· 12 = 50.

And the standard deviation is σKn =
√
n · σL =

√
100 · 12 = 5.

We can now calculate the intervals referred to in the Table 4.9.15,

Table 4.9.16 and Table 4.9.17: we just start at the center µKn and

go up or down by a whole number multiple of σKn . Warning: σ is

almost never a whole number as above, so you need to work most of

these examples using decimal bounds. For example, “within 2σ” is

the interval 50± 2 · 5 or [40,60]; and “more than 3σ above” means

above 50+ 3 · 5 = 65 and gives the interval (65,100].

Now, n · p · q = 25 here, so the binomial probabilities we are asking

about are close to Gaussian probabilities. We can therefore translate

the statements above about Kn into statements about the coin. Us-

ing Unlikely Successes Percentages 4.9.19, we expect to observe

a number of heads between 40 and 60 at least 94% of the time. We
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expect to see more than 65 heads about 0.5% of the time—about one

time in two-hundred. In these two cases, the actual binomial proba-

bilities are 98% and 0.2%. We don’t really mind these gaps because

they’re on the right side. We want to classify events as “likely” and

“unlikely” and we’re making the right calls if, in real life, “likely”

events are even likelier (and unlikely ones less likely) than we pre-

dict.

But Unlikely Successes Rule-of-Thumb 4.9.20 lets us classify ob-

servations as “likely” and “unlikely” with no need to remember any

numerical probabilities. Any number of heads between 40 and 60 is

“reasonably likely” to be due to chance alone. More than 60 heads

(or fewer than 40) constitute an observation “not likely” to be due to

chance alone. More than 65 heads (or fewer than 45) constitute an

observation “extremely unlikely” to be due to chance alone.

Now comes the last key element. As the number n of trials increases,

the “reasonably likely” interval gets “tighter and tighter”. To see how

this works, suppose we toss the coin 10,000 times—now n is 100
times bigger. The expected number of heads µKn goes up by factor

of n from 50 to 5,000 but σKn only increases by a factor of
√
n = 10

from 5 to 50. Correspondingly, the expected width of the “within

2σ” and “outside 3σ” bands only increases by a factor of 10. For

example, “within 2σ” is the interval 5000 ± 2 · 50 or [4900,5100];
and “more than 3σ above” means above 5000 + 3 · 50 = 5150 and

gives the interval (5150,10000].

What’s more at this point n is big enough that for all practical pur-

poses the Gaussian G and binomial Kn coincide. So the chance is

better than 95% that the observed number of heads will be between

4900 and 5100, and it’s less than 0.001350 that we’ll see more than

5150 heads.

Problem 4.9.21: Use Table 4.9.15 and Table 4.9.17 to estimate the

chance of seeing between 4950 and 5050 heads, and the chance of

seeing more than 5200 heads.
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Why do I say that the intervals when n = 10,000 are “tighter” than

those with n = 100? In fact, the former are 10 times as big as the lat-

ter, because σKn goes up by 10. What I mean is that the relative size

of these intervals—their length expressed as a fraction or percentage

of the expected value µn is getting smaller and smaller.

With 100 tosses, 2σ = 10 so we need to allow a deviation from the

mean of ±10 to catch 95% of observations; and 10 is 20% of the mean

50With 10,000 tosses, 2σ = 100 so we only need to allow a deviation

of ±100% from the mean of 5,000. But this deviation is now only 2%

of the mean versus 20% when we had n = 100. When n goes up by

a factor of 100, the absolute length goes up by a factor of 10 (from

10 to 100 in our example) but the relative or percentage length goes

down by a factor of 10. And, as we’ll see in the examples that follow,

it’s this relative length that we usually care about.

In general, if we increase n by a factor f (above, we had f = 100), then

µ also increases by a factor of f . Of course, σ also increases, but only

by a factor of
√
f . Thus ratios like 2σ

µ and 3σ
µ that measure the relative

or percentage size of the intervals where “likely” observations get

smaller by a factor of
√
f : 2
√
fσ
fµ = 1√

f
· 2σµ . That’s the magic of the

square root in σ .

Example 4.9.22: Consider a series of n binomial trials by spinning

a roulette wheel with s given by “seeing a black number”—so, as

in Problem 4.8.21 p = 18
38—and the associated total number of suc-

cesses variable Kn which is the sum of n independent Bernoulli suc-

cess variablesL.

i) Find the µL, VarL and σL and use them to give formulae for µKn ,
VarKn and σKn .

ii) Find the “within 2σ” and “more than 3σ above” intervals for:

a. n = 400.

b. n = 40,000.

c. n = 4,000,000.
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iii) Use the answers in the previous part and the Unlikely Suc-

cesses Rule-of-Thumb 4.9.20 to justify the qualitative statements

below.

a. If you bet black at roulette 400 times tonight, you are reasonable

likely to go home a winner. Hint: You expect to win about 189.47
spins and to go home a winner you need to observe at least 201
wins.

b. If you go to the casino two nights a week—call it 100 times

a year—and each night you play roulette 400 times, you’re ex-

tremely unlikely to go home a winner on the year.

c. Suppose a casino’s roulette tables host 10,000 players a month

and each player bets 400 times for a total of 4,000,000 bets.

The casino expects to lose 1,894,736 of these bets and win the

other 2,105,263 so it expects to make $210,527. But the casino

is extremely unlikely to make less than $200,000.

Solution
Here, keeping 5 places, we have p = 18

38 ' 0.47368 and q = 20
38 '

0.52632.

i) Using the values for p and q and Variance of Successes in

Binomial Trials 4.8.68, we have µL = 0.47368, VarL = 0.24931 and

σL = 0.49930 and use them to give formulae for µKn = 0.47368n,

VarKn = 0.24931n and σKn = 0.49930
√
n. For example, for n = 400,

µKn = 0.47368 · 400 = 189.47, and σKn = 0.49930 · 20 = 9.9861.

ii) Thus “within 2σ” and “more than 3σ above” intervals are:

a. for n = 400, (169.50,209.45) and (219.43,∞);
b. for n = 40,000, (18748,19147) and (19247,∞);
c. for n = 4,000,000, (1.8927 · 106,1.8967 · 106) and (1.8977 ·
106,∞).

iii) We justify the statements as follows:

a. The reasonably likely “within 2σ” interval for K400 includes the

range from 201 to 209 in which you are a winner.

b. Here the range in which you are a winner starts at K40000 =
20,000 which is a lot “more than 3σ above” and hence extremely
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unlikely to occur.

c. For the casino to make less than $200,000, we’d have to observe

a number K4000000 of player wins above 1,900,000—2,100,000−
1,900,000 = 200,000. Again this is a lot “more than 3σ above”

so is extremely unlikely.

This kind of qualitative assessment of likeliness is what we’ve been

looking for, and it’s all that needed in most cases. But, by going back

to the tabulation of the Gaussian distribution we can get more quan-

titative assessments too. The next example illustrates how.

Problem 4.9.23: Use Example 4.9.22 and the values in Table 4.9.17

to justify the claims below.

i) If you bet black at roulette 400 times tonight, you expect to lose

about $21 and you have bit less than a 15% chance of going home a

winner.

ii) If you go to the casino two nights a week—call it 100 times a

year—and each night you play roulette 400 times, the chance you’ll

lose at least $1700 on the year is over 97% and that you’ll lost at

least $1500 is more than 99.86%.

iii) Suppose a casino’s roulette tables host 10,000 players a month

and each player bets 400 times for a total of 4,000,000 bets. The

casino expects to lose 1,894,736 of these bets and win the other

2,105,263 so it expects to make $210,527. How likely are they to

make more than $219,000?
Partial Solution
For example, take the case when n = 400 and we have µ400 =
189.47 and σ400 = 9.9861. So we expect to bet $400 and

2·189.47 for a net loss of $21.06. But to win, we just have to ob-

serve a K400 that’s a bit more than “σ above” (i.e. above 199.46),

and the first line of Table 4.9.17 says that this will happen about

15% of the time.

Likewise, n = 40,000, you expect to win 18,947 spins and lose

about $2106. To lose less than $1700, you’d need to win at least
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19,150 spins. This is “more than 2σ above” so occurs, by the

second line of Table 4.9.17, only about 2.3% of the time. You can

handle the other parts similarly, but using the third and fourth

lines.

That last problem puts the universal message of the Law of Large

Numbers 4.9.3 and Central Limit Theorem 4.9.12 in a nutshell.

In a binomial experiment with rather few trials (small n), we can

observe values quite far in relative or percentage terms from our

expectation. Even though the house advantage on roulette is over 5%

and we expect to lose $21, we still have an almost 15 percent chance

of beating he house over 400 spins.

As the number of trials increases, any observations we are likely to

make become more and more tightly grouped—again, in a percent-

age sense—so that if we make 40,000 bets over a year, we expect to

lose $2,106 but we no longer have any practical chance of winning

and we can be pretty sure our losses won’t be more than a few hun-

dred dollars from this expectation. Finally, at the level of the casino,

not merely are we certain that the players will lose, but we can ac-

curately predict how much they will lose. If there’s a discrepancy

of as little as 4% up or down in this handle, then the casino knows

that someone is cheating! Yes, $219,000 is more than they expected:

too much more, and such a gap is so unlikely to happen by chance

that we’re damn sure the binomial probabilities no longer apply—

somebody’s cheating!

Here are a few more problems to give a feel for working with setting

intervals to achieve desired levels of confidence.

Problem 4.9.24: A math professor has decided to give a multiple

choice final on which there will be 75 questions, each with 3 answers.

He assumes that getting the right answers on any 2 questions are

independent events.

i) The professor wants to set the minimum number of correctly an-

swered questions for a pass high enough that a student who guesses
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all the answers will have little chance of passing. He decides that his

cutoff should be a score “more than 3σ above” the expected num-

ber of correct answers of a student who did guess all the questions.

Show that the passing grade should be 38. Hint: Each guessed ques-

tion is a binomial trial with a probability of success—guessing the

right answer—of p = 1
3 .

ii) How likely is it that a student who has a 50% chance of answering

any question correctly will fail?

iii) Show that a student must be able to answer roughly 60% (or

more) of the questions correctly for his or her chance of failing the

test to be less than 5−6%? Hint: The passing grade needs to be “more

than 2σ below” the student’s expected number of correct answers.

iv) Discuss the soundness of the professor’s assumptions of inde-

pendence:

a. for the student who guesses all the answers.

b. for students who do their best to answer correctly and have a

50% or a 60% chance of getting any question correct.

Problem 4.9.25: A math professor has decided to give a multiple

choice final on which there will be 100 questions, each worth 1 point.

He assumes that getting the right answers on any 2 questions are

independent events.

i) The professor wants to set the minimum number of correctly

answered questions for an A low enough that a student who has

95% chance of answering any question correctly will have earn an A

with probability 99% or higher. What’s the highest he can set the A

grade? Hint: The passing grade needs to be “more than 3σ below”

the student’s expected number of correct answers.

ii) In the previous question, we considered a binomial distribution

with p = 0.95 and n = 100. Show that this example falls outside the

Big-enough n Rule-of-Thumb 4.9.18 by finding npq.

iii) To check the cutoff for A’s, we can just use the Binomial Dis-

tribution Formula 4.7.23 to directly compute probabilities for 100
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binomial trials with a probability p of success of 0.95. Show that the

probability of

a. at least 89 successes is about 99.57.

b. at least 90 successes is about 98.85.

These answers illustrate that even when the Big-enough n Rule-

of-Thumb 4.9.18 does not hold, the agreement between a binomial

distribution and its gaussian approximation is often—if not always—

very good.

As an final example of what the Unlikely Successes Rule-of-

Thumb 4.9.20 means, let’s go back and look at the data from Chuck-

a-luck. This example is not binomial. However, we can still apply the

Central Limit Theorem 4.9.12 to it. We will work with the random

variable Z that gives our winnings in a single spin of the Chuck-a-

luck cage. The expected value and standard deviation of Z were cal-

culated in Problem 4.8.17 and Problem 4.8.60 as µZ ' −$0.078704
and σZ ' 1.1132—I’ve used more accurate values in the table below

but rounded to 5 place accuracy. Now we want to turn to the variable

Yn we get by adding n independent copies of Z : in other words, by

totaling the winnings (or losses) from playing Chuck-a-luck n times.

Problem 4.9.26: Verify the bold entries in the table below which

summarizes Yn for various choices of n.

n 100 10,000 1,000,000

µYn −7.8704 −787.04 −78,704
σYn 11.132 111.32 1113.2

(µYn − σYn , µYn + σYn ) (−19.002,3.2618) (−898.32,−675.68) (−79813,−77587)
(µYn − 2σYn , µYn + 2σYn ) (−30.134,14.394) (−1019.6,−564.36) (−80926,−76474)
(µYn − 3σYn , µYn + 3σYn ) (−41.265,25.525) (−1121.0,−453.05) (−82040,−75360)
(µYn − 4σYn , µYn + 4σYn ) (−52.397,36.657) (−1232.3,−341.73) (−83153,−74247)

Table 4.9.27: Standard Intervals for Chuck-a-luck

Now we’d like to compare these answers to the observations in

Chuck-a-luck. First let’s look at the case n = 100. Combining the
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intervals from Table 4.9.27 with the probabilities in Table 4.9.17,

we get the prediction that about “15.8” of the 100 observations in

the dataset in Table 2.1.23 should lie below −19.002 and about the

same number should lie above 3.2618. In both cases, we observe 15
such counts. Likewise, we’d expect to find 95 of these observations

inside (−30.134,14.394) and we see 94. We expect that only about

0.27% of observations (or 1 in 400) will lie outside (−41.265,25.525)
and none of our 100 do.

Our expectations are the same for the data in Table 2.1.24, but

here the data agrees a bit less well. There are 21 observations

below −19.002 but only 12 above 3.2618, and only 3 outside

(−30.134,14.394).

Does this mean that this second set of observations is “worse” than

the first? Not at all! We’re once again dealing with the difficulty of

making statements about theoretical probabilities on the basis of

some observations. We expect to find about 95 of any 100 observa-

tions in the interval (−30.134,14.394) observing 94 or 97, as in the

data sets, is likely to be due to random variation. Could we test our

expectation? Yes, though I won’t do so here. Why? Because it would

take us too far afield: we’d have to take a large sample of such data

sets (not just 2) and look at the distribution of the number of obser-

vations outside (−30.134,14.394) across the sample, using the tools

in this section.

Next let’s look at how the observations in Table 2.1.25 and Table

2.1.28. Both of these involve n = 10,000 spins. Here we expect to see

about “15.8” observation below, and the same number above, the

interval (−898.32,−675.68): the actual counts are 17 and 19 below

and 13 and 9 above. We expect to see about 95 entries in the interval

(−1019.6,−564.36) and observe 91 and 93. Recall that there is one

really surprising entry in Table 2.1.28: the number −361 is almost

4σ above the expected value (−361−(−787.04)111.32 ' 3.8). The chance of

that an observation is this far above the mean is only about 1 in
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15,000. So our set of 200 observations contains one very rare bird.

Such extreme observations are usually called outliers; our example

is almost one-and-a-half σ ’s above the next highest observation.

Problem 4.9.28: Compare the observations in Table 2.1.28 with

the intervals for n = 1,000,000 in Problem 4.9.26 and discuss

how well these observations agree with the expectations from Ta-

ble 4.9.17.

Let me conclude this example by emphasizing the basic principle

that as the number of trials n goes up, our observations become

relatively more tightly grouped about the mean. When n = 100, the

spread of the 100 observations is much bigger than the mean; for n =
10,000, the spread of the 100 observations is about the same size as

the mean; for n = 1,000,000, the spread of the 100 observations is

less than 8% of the mean.

Here’s a final problem in which you can see how we might apply the

ideas underlying the Central Limit Theorem 4.9.12 to a practical

decision.

Problem 4.9.29: You want to decide whether a prep course is an

effective means of raising your expected score on the Verbal SAT.

You know that the mean score on the Verbal SAT is 550 with a stan-

dard deviation of 130. For each set of prep course results described

below, decide how likely it is that the results demonstrate that the

course will raise your Verbal SAT score.

Hint: Here our basic random variable Z has mean µZ = 550 and stan-

dard deviations σZ = 130, and we want to test a random variable Yn
which is a sum of n copies—assumed independent—of this Z .

i) A sample of 25 graduates of course I scored an average of 575.

ii) A sample of 25 graduates of course II scored an average of 625.

iii) A sample of 225 graduates of course II scored an average of 575.

iv) A sample of 225 graduates of course II scored an average of 625.
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Chapter 5

Time is money

Everyone has heard the phrase, “Time is money”. If so, then just as

there is a rate for converting between two different currencies like

dollars and pesos, there ought to be a rate from converting between

time and money. There is! Such a rate is called an interest rate and

the use of such rates is the subject of this chapter.

Before we start, I’d like to mention that the material covered in this

chapter is the one part of Math4Life which just about every student

finds useful in later life. If you ever use a credit card, buy a house,

have a retirement plan at your job, take out an insurance policy, or

save for your children’s college education, you’ll be able to make use

of what we are going to learn here. And if you don’t understand how

interest affects you, you can be pretty sure that people who do will

be taking advantage of your ignorance to their profit.

5.1 Simple interest

Why do we feel that “time is money”? The basic reason is that money

can be used to take advantage of opportunities. Such opportunities
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5.1 Simple interest

may be as small as the chance to buy a soda between classes, or as

important as the chance to buy the house of your dreams but the

principle is the same. If you don’t have a buck in the first case or a

bundle in the second, you can’t take advantage of the opportunity.

Ogden Nash put it very nicely: “Money may not buy happiness, but

have you ever tried to buy happiness without money”. So if I give you

money now and you give the exact same amount of money back to

me later I still lose out on the deal: while you are holding my money, I

can’t use it to take advantage of opportunities that interest me. This

is a qualitative loss. The goal of the mathematics of interest is to

put a numerical value on what I give up when I lend you the money.

Then, we can strike a fair deal. You give me back what I loaned you

plus interest in an amount which we agree roughly equals the cost of

my missed opportunities and we’re both happy. All that’s left is to

find an amount of interest we can agree on. To begin with, we can

agree to denote the interest by I.

What should this amount depend on? Two principles are pretty clear.

The more money I lend you and the longer you keep it the greater

the opportunities I miss and the more I interest I will need to con-

vince me to lend you the money. We’re going to make two somewhat

stronger assumptions. To state them we introduce two important

definitions:

Amount 5.1.1: The amount A of a loan is the number of dollars

loaned.

Term 5.1.2: The term T of a loan is the length of time for which the

money is loaned.

So if I lend you a dollar until lunch time the amount A is $1 and the

time T is a few hours and if I lend you a $100,000 for 10 years the

amount A equals $100,000 and the term T equals 10 years. While

we almost always use dollars as the units for amounts, we will find

it convenient to use many different units—all very familiar—to mea-

sure terms and call the unit used a period.
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Period 5.1.3: A period is any unit of time used to measure the term

of a loan.

The most common periods are years, months and days but quarters

(periods of three months) and semesters (periods of 6 months) will

also come up. When we want to talk about the units of time used to

measure a term without making a specific choice we will call them

periods. Now we can state our basic principles:

Equality of dollars 5.1.4: The interest I on a loan should be

proportional the amount A loaned. In other words, every dollar earns

the same interest during the period of the loan.

Equality of periods 5.1.5: The interest I on a loan should be

proportional to the term T of the loan. In other words, the inter-

est earned during any two days of the loan should be the same, as

should the interest earned in any two months, or any two years, and

so on.

Remember that saying a quantity I is proportional to a quantity J
means that I = pJ where p does not depend on J at all. Mathemati-

cally, our two equality principles can thus be summarized by saying

that interest I satisfies the equation

Simple Interest Formula 5.1.6: I = p ·A · T

where p does not depend on either the amount nor the term of the

loan.

What does p depend on? Our answer is going to be: nothing. In other

words,

Periodic Rate 5.1.7: The quantity p is a constant called the peri-

odic interest rate or periodic rate for short.

Warning: although in any given interest calculation, the periodic in-

terest rate p will be constant, we will definitely want to use different

constants in different problems. Why do we call the constant of pro-

portionality p a periodic interest rate? To answer this question, let’s
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look at the units of the Simple Interest Formula 5.1.6. On the left

side, interest I is measured in dollars. So is the amount A on the

right. The term T is measured in periods. So to make the units come

out, we must have

$ = units of p × $ × periods

or

units of p = 1
periods

= fraction-per-period .

Remember that a rate generally stands for a ratio or fraction. Since

the denominator of the rate p is measured in periods we see why p is

called a periodic rate. It’s the fraction of the amount I lend you which

you must pay me as interest for each period you hold my money.

In the real world, people want to be able to discuss interest rates

in general without worrying about the time units, or periods used

to measure the term of a particular loan. This is generally done

by quoting all interest rates as “per-years”. In most situations, the

nominal interest fraction r is fairly small. It ranges from about .025
for money you lend to your bank my depositing it in your bank ac-

count, to about .19 for money the bank lends you by allowing you

not to pay off your credit card bill every month. Since people prefer

to work with whole numbers rather than small decimals, we usually

talk about the interest rate not as an absolute fraction per year but as

a percentage per year. In other words, we multiply the absolute frac-

tion by 100 : so your bank pays you 2.5% per year on your deposits

but charges you 19% per year on your credit card balance. To keep

the difference in units between the fraction-per-period rate p we’ll

use in calculations and the informal percent-per-year rates clear we

call the second kind nominal interest rates and use the letter r to

denote them.

Nominal Rate 5.1.8: A nominal rate (also called a nominal interest

rate), denoted by the letter r , is one which expresses interest as a

percentage-per year without reference to the periods used to measure

the term or calculate the interest owed.
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Fine: in everyday life we speak of the nominal or r kind of interest

rate: percent-per-year or often just a percentage with the per-year un-

derstood. But when we make any interest calculation in Math4Life—

for example, using the Simple Interest Formula 5.1.6—we must

work with the periodic or p kind of interest rate which is an absolute

fraction per period. This means we need to:

• multiply by 0.01 to convert from percent to an absolute

fraction; and,

• divide by the number of periods in a year to convert from

years to periods.

Periods Per Year 5.1.9: When a period or until of time is fixed in

an interest problem, the corresponding number of periods per year

will be denoted by m. In other words, one period is
(
1
m

)th
of a year.

For example, if periods are months, thenm = 12; if they are quarters,

then m = 4; and so on. We can summarize the conversion steps

above with the equation:

Interest Rate Conversion Formula 5.1.10: p = 0.01·r
m

There’s one very important rule about using the Interest Rate Con-

version Formula 5.1.10 that is critical to getting the right—accurate

to the nearest cent—answers in formulae that use it.

Periodic rate rule 5.1.11: Never evaluate 0.01·r
m and plug this

value in for p. Instead, always plug in the “raw” fraction 0.01·r
m .

Why? The reason is that m in the denominator. In the two most

common cases, when the periods are months (m = 12) and days

(m = 365), that m in the denominator means that the decimal value

of p that your calculator returns is messy—the decimals go on as far

as your calculator does.

All those messy decimals lead you into temptation: the temptation to

break the First Rule of Rounding 1.2.4 and to round p by writing

down only some of those messy digits (in effect, rounding p). This
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makes life easier for you two ways: fewer digits to copy down when

recording the value of p and fewer to type into your calculator when

plugging in the value of p in the final formula.

Unfortunately, there’s very often a price to pay. The error you intro-

duced by rounding p shows up in your final answer and it’s off by a

few cents or a few dollars. Experience teaches that it’s very hard to

decide in advance how many digits of p are “enough”. And there’s

no way to tell from looking at the kind of messy final answers we’ll

be getting that those last few digits are wrong.

You may think that I am overdramatizing, but decades of teaching

this material have shown me that rounding p is the single most com-

mon source of small errors in working financial math problems. For-

tunately, the Periodic rate rule 5.1.11 provides a simple and bul-

letproof solution. If you always plug in the formula 0.01·r
m for p, you’ll

never make any errors of this type.

What’s more, it’s actually faster and easier to just type in 0.01·r
m when-

ever you need to plug in p than it is to copy and retype the decimal

value for p that it gives. So train yourself now to always follow this

rule and you’ll save yourself time and errors throughout this chap-

ter.

In fact, the most important points to grasp in this introductory sec-

tion are all of this type. You won’t have much use for the Simple In-

terest Formula 5.1.6 later on. But if you train yourself to apply it as

outlined below, you’ll go a long way to being able to correctly apply

all the more complex formulae that will come later. So pay careful

attention to the Method for finding simple interest 5.1.15 and

the Periodic rate rule 5.1.11.

Example 5.1.12: If the nominal interest rate is 6% a year and we

measure periods in months, then m = 12 and the periodic interest

rate is p = 0.01·r
m = 0.01·6

12 . This comes out to be 0.005 which is not

such a messy decimal, but if you’ve absorbed the Periodic rate
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rule 5.1.11 you’ll never know this (and never need to know it) be-

cause you’ll just plug in 0.01·6
12 when p is called for.

If we measure periods in days, thenm = 365 and the periodic rate is

p = 0.01·r
m = 0.01·6

365 . Now p comes out to be 0.0164383561643836 and

you start to see why it’s easier to stick with 0.01·6
365 and never have to

worry about the decimal value.

Even if we measure periods in years so that m = 1, we still have to

convert to get p = 0.01·r
m = 0.01·6

1 = 0.06.

Remember. The first step in almost any interest problem is to deter-

mine the units in which periods are measured and the correspond-

ing m and to convert the nominal percent-per-year interest rate r in

the problem to a fraction-per-period rate p using the Interest Rate

Conversion Formula 5.1.10. This periodic rate p is the one you’ll

need in most formulae. You don’t even need to evaluate 0.01·r
m —in

fact, the Periodic rate rule 5.1.11 tells you not to—but forgetting

this simple conversion step is the most common source of big er-

rors in interest calculations. So, don’t forget it! Then remember the

Periodic rate rule 5.1.11 and plug in 0.01·r
m for p rather than precal-

culating it and you’ll avoid the most common source of small errors

too.

But wait: there’s more. We need to use the same period or unit of

time measure both the periodic rate p and the term T in the Sim-

ple Interest Formula 5.1.6. In practice, the most common units are

“months” (used for consumer loans like your credit card, mortgage,

pension contributions, car loan) and “days” (used for bank accounts

and most more commercial loans). But people being people, we like

to speak about time in years if at all possible: after all it’s a lot sim-

pler to think about a 15 year mortgage than a 180 month mortgage,

or a 5 year CD than a 1,826 day CD.

So, a conversion of time units is almost always needed. This almost

always means converting a term stated in years, for which we’ll use
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the letter y , into a term T measured in whatever periods are the

time units for the problem. The second step in working any interest

problem is to make sure the term T in the problem is expressed in

periods. Fortunately, this is very easy: if there are m periods in 1
year (this is the definition of m), then there will be my periods in y
years, so

Term Conversion Formula 5.1.13: T =m · y

Example 5.1.14: If term is given as 4 years and we measure periods

in months, then m = 12 and the term in periods is T = m · y =
12 · 4 = 48. If we measure periods in days, then m = 365 and the

term in periods is T =m · y = 365 · 4 = 1460.

What is the second most common source of errors in interest calcu-

lations? You guessed it: forgetting to convert from years to periods.

So don’t forget that either! We can formalize all this as a:

Method for finding simple interest 5.1.15:

Step 1: Determine the periods in the problem (that is, the units in

which the term is measured) and the value of m, the num-

ber of periods per year.

Step 2: Use the Interest Rate Conversion Formula 5.1.10 to find

the periodic interest rate p from the nominal interest rate r
and the Term Conversion Formula 5.1.13 to find the term

T in periods from the term in years y .

Step 3: Apply the Simple Interest Formula 5.1.6.

Example 5.1.16: An amount of $2,235.00 is loaned for a term of

3 years at a nominal rate of 9% a year. Find the simple interest due

using months as periods.

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·9

12 and T =my = 12 · 3 = 36.

Step 3: I = p ·A · T =
(
0.01·9
12

)
· $2,235.00 · 36 = $603.45.
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5.1 Simple interest

That’s about it. When you think you have learned the basic ideas in

this section try the Self Test. Once you can complete the self-test

perfectly, you are ready to start on the problems.

Here are a few warm-up problems. You’ll want your calculator. Re-

member the First Rule of Rounding 1.2.4: do not round until the

very end of the calculation. I have provided a solution for one part

of each to get you warmed up.

For each of the following loans, first find the periodic interest rate

p and the term T in periods. Then determine the amount of interest

in the loan using the Simple Interest Formula 5.1.6 to the nearest

cent.

Problem 5.1.17: In the following problem, measure the term T in

periods of “years”.

i) An amount of $1,000.00 is loaned for a term of 2 years at a

nominal rate of 6% a year.

Solution

Step 1: The periods are years so m = 1.

Step 2: p = 0.01·r
m = 0.01·6

1 and T =my = 1 · 2 = 2.

Step 3: I = p ·A · T =
(
0.01·6
1

)
· $1,000.00 · 2 = $120.00.

ii) An amount of $1,100,000.00 is loaned for a term of 5 years at a

nominal rate of 4.9% a year.

iii) An amount of $16,235.00 is loaned for a term of four and a half

years at a nominal rate of 8.22% a year.

Problem 5.1.18: In the following problem, measure the term T in

periods of “months”.

i) An amount of $1,000.00 is loaned for a term of 2 years at a

nominal rate of 6% a year.

ii) An amount of $1,100,000.00 is loaned for a term of 5 years at a

nominal rate of 4.9% a year.

Solution

Step 1: The periods are months so m = 12.
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5.1 Simple interest

Step 2: p = 0.01·r
m = 0.01·4.9

12 and T =my = 12 · 5 = 60.

Step 3: I = p·A·T =
(
0.01·4.9
12

)
·$1,100,000.00·60 = $269,500.00.

iii) An amount of $16,235.00 is loaned for a term of four and a half

years at a nominal rate of 8.22% a year.

Example 5.1.19: Before we go on, let’s see what could have hap-

pened in ii) above, if I’d ignored the Periodic rate rule 5.1.11. In

this example p =
(
0.01·4.9
12

)
= 0.00408333333333333. Who needs

all those 3s, especially as the amount A = $1,100,000.00 is such

a round number?

Let’s just write down p = 0.004008333. Nine decimals has got to be

enough. Now I get

I = p ·A · T = 0.004008333 · $1,100,000.00 · 60 = $269,499.97800 .

which rounds to I = $269,499.98. Close, but still off by 2¢.

It turns out in this problem, ten decimals were needed. If I had

written down write down p = 0.0040083333, I’d have gotten

$269,499.997800 and, after rounding, $269,500.00. But the only way

to know that 10 is enough and 9 isn’t, is by having the right answer

to compare to. So the only smart plan is not to round and the easy

way to do this is never to write p down, as in the solution above.

Problem 5.1.20: In the following problem, measure the term T in

periods of “quarters”.

i) An amount of $1,000.00 is loaned for a term of 2 years at a

nominal rate of 6% a year.

ii) An amount of $1,100,000.00 is loaned for a term of 5 years at a

nominal rate of 4.9% a year.

iii) An amount of $16,235.00 is loaned for a term of four and a half

years at a nominal rate of 8.22% a year.

Solution

Step 1: The periods are quarters so m = 4.

Step 2: p = 0.01·r
m = 0.01·8.22

4 and T =my = 4 · 4.5 = 22.
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Step 3: I = p·A·T =
(
0.01·8.22

4

)
·$16,235.00·22 = $7,339.8435 =

$7,339.84 to the nearest cent.

Problem 5.1.21: In the following problem, measure the term T in

periods of “days”. Don’t worry about leap years.

i) An amount of $1,000.00 is loaned for a term of 2 years at a

nominal rate of 6% a year.

Solution

Step 1: The periods are days so m = 365.

Step 2: p = 0.01·r
m = 0.01·6

365 and T =my = 365 · 2 = 730.

Step 3: I = p ·A ·T =
(
0.01·6
365

)
·$1,000.00 ·730 = $119.999999 =

$120.00.

Here’s another example which illustrates that it’s actually easier

not to write down p. In this example, p ' 0.000164383561643836.

Which is easier, 0.01·6365 or 0.000164383561643836 ?

ii) An amount of $1,100,000.00 is loaned a term of for 5 years at a

nominal rate of 4.8% a year.

iii) An amount of $16,235.00 is loaned for a term of four and a half

years at a nominal rate of 8.22% a year.

If you made all the conversions and used the formula correctly, you

should find that the answers to the corresponding parts of the three

problems above are equal to the penny! So why did I make all that

noise about converting from nominal to periodic rates and from

years to periods? It really doesn’t seem to matter. The answer is

that for calculations which only use the Simple Interest Formula

5.1.6 it doesn’t matter—I’ll show why in a moment—but the inter-

est calculations which come up in real life almost always involve the

Compound Interest Formula 5.2.4 which we’ll study in the next

section. And, in compound interest calculations the units always do

affect the answer. I think it’s just easier to learn how to make the

conversions at the start before the formulas get complicated (which

they will) and to get in the habit of always making the conversions

so you never forget to do so.

1—
1—
2—

a ·· ·· z ? 521 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.1 Simple interest

Why do the answers above agree even though the intermediate calcu-

lations are very different? Answer: the m’s cancel! (But they won’t in

the future). For example, suppose we measure the term T in months.

Then the formulas above give

p = 0.01 · r
12

and T = 12 · y

hence

I = pAT = 0.01 · r
12

·A · (12y) = (0.01r)Ay .
Note that the final answer is what we’d get right away if we used

years as periods. To really convince ourselves that the answer will

not involve the period, we can just replace 12 months-per-year by a

general number m of periods-per-year to get

p = 0.01 · r
m

and T =m · y

hence

I = pAT = 0.01 · r
m

·A · (my) = (0.01r)Ay .
After cancelling them’s, the final answers agree: Note, however, that

even if we measure the term in years (m = 1), we need to convert

rates from per-cent to fractions: although T equals y in this case, p
equals not r but 0.01 · r .

Although we think of the Simple Interest Formula 5.1.6 as telling

us the interest I given the amount A, periodic rate p and term T ,

we can, as usual, turn it around and solve for any one of these four

quantities given the other three. Here are some problems to practice

this. The Method for finding simple interest 5.1.15 still applies

but with one small difference. If a problem asks us for an interest

rate or term, the corresponding conversion in Step 2 of the method

has to be postponed until after Step 3—before Step 3, we won’t know

the value to be converted—and we have to carry out a fourth step

and convert in the opposite direction. The Simple Interest Formula

5.1.6 will give us the periodic rate or the term in periods and the

conversion will give us the corresponding nominal rate or term in

years. Once again I have provided a few sample solutions as models.
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Solve each of problems 5-7 below three ways, measuring the term T
in periods of years, months and days.

Problem 5.1.22: Your three answers to each part of this problem

should agree to the nearest penny.

i) Find the amount which will earn interest of $22.75 when loaned

at a nominal rate of 5% for a term of 2 years.

Solution (using months for periods)

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·5

12 and T =my = 12 · 2 = 24.

Step 3: Since I = p ·A · T ,

A = I
p · T =

22.75(
0.01·5
12

)
· 24

= $227.50000004 = $227.50

to the nearest cent.

ii) Find the amount which will earn interest of $121.00 when loaned

at a nominal rate of 8% for a term of 3 years.

Problem 5.1.23: Your three answers to each part of this problem

should be different numbers of periods. However, if you convert

these periods into years, the three numbers of years should be iden-

tical.

i) Find the term (as a number of periods) over which an amount

of $1,200.00 will earn interest of $128.00 when loaned at a nominal

rate of 8%.

ii) Find the term (as a the number of periods) over which an amount

of $500.00 will earn interest of $146.00 when loaned at a nominal

rate of 7.3%.

Solution (using days for periods)

Step 1: The periods are days so m = 365.

Step 2: p = 0.01·r
m = 0.01·7.3

365 . Since the answer we are seeking is

the term T , we wait until we have found T to convert the

term.

Step 3: Since I = p ·A · T , T = I
p·A =

146.00
( 0.01·7.3365 )·500

= 1460 days.
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Step 4: Now we convert the term T in days back to years y . Since

T =m · y , y = T
m =

1460
365 = 4 years.

Problem 5.1.24: Your three answers to each part of this problem

should be different periodic interest rates. However, if you convert

these periodic rates into nominal rates the three nominal rates you

obtain should be identical.

i) Find the periodic interest rate at which which an amount of

$900.00 will earn interest of $135.00 when loaned for a term of 2
years.

Solution (using quarters for periods)

Step 1: The periods are quarters so m = 4.

Step 2: Since the answer we are seeking is the periodic rate p,

we wait until we have found p to convert to a nominal rate r .
But we do want to convert the term: T =m · y = 4 · 2 = 8.

Step 3: Since I = p ·A · T , p = I
A·T =

135.00
900·8 = 0.01875.

Step 4: Now we convert the periodic rate p back to a nominal

percent-per-year rate r . Since p = 0.01·r
m , r = 100 · m · p =

100 · 4 · 0.01875 = 7.5%.

Let’s just check that we get the same nominal rate when we use years

as periods. The calculation proceeds: m = 1, T = m · y = 1 · 2 = 2,

p = I
A·T =

135.00
900·2 = 0.075 and hence we get a nominal rate r = 100 ·

m · p = 100 · 1 · 0.75 = 7.5% exactly as before.

ii) Find the periodic interest rate at which which an amount of

$850.00 will earn interest of $170.00 when loaned for a term of 4
years.

Here are a few more problems to practice with. Solve each of prob-

lems 8-11 below three ways, measuring the term in periods of years,

months and days and check that your three answers agree (convert-

ing periodic rates to nominal rates and periods to years if needed).

Problem 5.1.25: Find the term over which an amount of $600.00
will earn interest of $64.80 when loaned at a nominal rate of 7.2%.
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5.1 Simple interest

Problem 5.1.26: Find the amount which will earn interest of $70.00
when loaned at a nominal rate of 9% for a term of 1.5 years.

Problem 5.1.27: Find the interest due when an amount of $21,000.00
is loaned for a term of 15 years at a nominal rate of 3.22% a year.

Problem 5.1.28: Find the periodic interest rate at which which an

amount of $1,125.00 will earn interest of $46.00 when loaned for a

term of 8 years.

Here is one that involves a bit more calculation but will prepare you

for the ideas in the next section on compound interest.

Problem 5.1.29:

i) A sum of $1,000.00 is loaned at 6% interest using periods of

years. Find the total (amount loaned plus interest) which will be due

if the loan term is:

a. 1 year.

b. 2 years.

c. 3 years.

ii) Suppose that, at the end of one year, the loan amount plus the

interest due is paid and the total is loaned for a second year at 6%

interest. How much will the second loan plus interest come to at the

end of the second year? Your answer should be $1,123.60 whereas

the answer to part i)b is $1,120.00 Can you explain the difference?

iii) If the total (including interest) at the end of the second year is

loaned for a third year at 6% interest, how much will the total due at

the end of the third year be? Not only is this answer different from

that to i)c but the difference is bigger than the difference in ii). Can

you explain why this is?

Project 5.1.30: The Simple Interest Formula 5.1.6 is based on

three principles: equality of dollars, equality of periods, and con-

stancy of the interest rate. Are our three principles correct in the

real world? As is so often the case, the answer is “Not quite!”.
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5.1 Simple interest

i) Look at the mortgage rates quoted in your local Sunday news-

papers real estate section. Are the rates the same for all mortgage

amounts? If not, how do they vary? What might the explanation be

for such a variation?

ii) Look at the interest rates paid for Treasury Bills or various ma-

turities (a fancy word for the term during which the government gets

to keep the money). Are the rates the same for all maturities? If not,

how do they vary? What might the explanation be for such a varia-

tion?

iii) We have already seen that there is no such thing as the interest

rate: instead there are many different rates for many different kinds

of loans. Make a list of a variety of different rates and discuss what

factors might explain the differences. For example, why is a bank

able to attract deposits when it pays only a few percent a year in

interest while you have to pay rates close to 20% a year to borrow via

your credit card?

iv) Interest rates not only vary by the type of loan but change over

time. How much have interest rates on bank deposits, or mortgages,

or treasury bills varied over the last thirty years. How can we try to

explain this variation? What is the role of the Federal Reserve Bank

in influencing this process? You might find it helpful to speak to a

friend who is majoring in economics or finance (or to a professor in

your economics or finance department).

If you looked into the research project, you will see that our inter-

est formulas are based on some imprecise assumptions. We assume

that, in any given transaction, there’s a single fixed interest rate that

applies. While this is often true—examples are bank CDs and fixed

rate mortgages—it’s more often false. We’ll just ignore the possibil-

ity that the interest rate charged on a transaction often changes over

time. The reason is the usual one in math. If we do not ignore this,

then all our interest calculations become much more complicated—

so complicated that a substantial component of many jobs is keep-
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ing track how interest rates change and taking suitable actions to

respond to these changes. People who devote a lot of effort to this

include: bankers, accountants, stockbrokers, actuaries, . . .

5.2 Compound interest

Let’s start by recalling the basic argument for interest on loans: if you

loan me money, you receive interest to compensate you for losing

various opportunities to make attractive purchases with the money.

In this section, we refine this argument.

Let’s imagine that I want to borrow an amount A = $100,000.00
from the bank for a term of 30 years to purchase a house at a nom-

inal interest rate of 8% and calculate the simple interest I would

owe at the end of the thirty year term using years as periods.

Here p = 0.01·r
m = 0.01·8

1 = .08—I break my rule of never evaluat-

ing p in the Interest Rate Conversion Formula 5.1.10 here to

make the calculations easier to follow—and T = y = 30). We find

I = pAT = 0.08 × $100,000.00 × 30 = $240,000.00. The interest

outweighs the amount when I go to pay back.

Now let’s ask what the situation would be if the bank asked me to

pay them back after 15 years, but offered to give me a second 15
year loan once I did. We now have T = y = 15 so

I = pAT = 0.08× $100,000.00× 15 = $120,000.00

so I have to pay the amount of $100,000.00 plus interest of $120,000.00.

Now, I take out a second $100,000.00 loan and after the second 15
years pay it back with another $120,000.00 in interest. At first it

looks like nothing has changed: in both cases the bank has its orig-

inal loan money back along with a total of $240,000.00 in interest

at the end of 30 years. However, there is one big difference. In the

second scenario, the bank is holding an extra $120,000.00 for the
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second 15 years. This affords the bank many opportunities it would

not have in the first scenario. In effect, if I can wait the full 30 years

to pay, then for the second 15 years the bank is making me an inter-

est free loan of $120,00.000. Nice work if you can get it.

One thing the bank might be willing to let me do is to borrow the

$120,000.00 interest for the second 15 years but make me pay inter-

est on the second loan too: I’d owe an extra

I = 0.08× $120,000.00× 15 = $144,000.00 .

Instead of receiving its $100,000.00 loan plus $240,000.00 in in-

terest at the end of the thirty years the bank now gets the

$100,000.00 loan plus the $120,000.00 in interest on that loan plus

the $120,000.00 it loaned me back after 15 years plus $144,000.00 in

interest on the amount of the reloaned interest. By making me pay

the interest I owe twice rather than just once, the bank comes out

ahead $144,000.00 at the end of the thirty years. This $144,000.00
is the interest due in the second 15 years, not on the amount of the

loan but on the interest due in the first 15. Such interest on the in-

terest of a loan is called compound interest. More generally,

Compound Interest 5.2.1: An amount of money is at compound

interest when, at regular intervals called compounding periods, the

accrued interest is added to the amount current at the start of the

period and this sum is used as the current amount for the next com-

pounding period. A compounding period is no different from a period

like those we used in the previous section. Unless we really want to em-

phasize that we are dealing with compound interest, we’ll generally

just speak of periods.

I suspect you are already asking the same question the bank ought

to. If it was smart for the bank to ask to get paid off twice wouldn’t it

be smarter still to ask to be paid off three times? The answer is yes:

I’ll let you fill in the details and just summarize the numbers this

time. After 10 years, I’d owe $80,000.00 in interest. If I borrowed
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this back, then after 20 years, I’d owe another $80,000.00 interest

on the original loan plus the rolled over interest loan amount of

$80,000.00 plus $64,000.00 in interest on the rollover loan for a

total of $224,000.00 in various interests. Finally, if I rollover this

second amount of interest and borrow it back back for another 10
years, then at the very end, in addition to repaying the original loan

of $100,000.00 I’d owe another $80,000.00 in interest on the original

loan plus the $224,000.00 amount of the second rollover loan plus

$179,200.00 in interest on this second rollover. The upshot is that

in addition to repaying the bank its $100,000, .00 this time I’d owe

$483,200.00 so the bank would be up $243,200.00 compared to the

scenario in which I only paid interest once and $99,200.00 compared

to the scenario in which I paid interest twice.

Before we go any further, let’s ask what happens if I borrow the

money for a term of three years instead of thirty. I claim that if

interest is collected once, I will owe $24,000.00 in interest at the end

of the three years; if it is collected twice, I will owe $25,440.00; and,

if it is collected three times, I will owe $25,971.20. Before you read

any further, test whether you have followed the discussion above

by checking these numbers. If you have not worked Problem 5.1.29

which gets you warmed up for these calculations, you should do so

first.

Problem 5.2.2:

i) Check the figures given above for a three year term by imitating

the the calculations in the preceding paragraphs.

ii) What are the corresponding numbers if I borrow the money for

a term of 12 years?

Several ideas seems clear from the examples above. Qualitatively,

we can draw two basic conclusions. First, the more often I have to

pay off the outstanding interest on my loan the better off the bank

is going to be. Put in more technical language the more frequently

my loan is compounded, the more interest I will owe. Second, the
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longer my loan is outstanding the greater the differences in interest

owed caused by more frequent compounding, or put another way,

the more important interest on interest becomes.

We can draw some quantitative conclusions too. First, the simple

interest formula contains all the information we need to calculate

exactly how much better off the bank will be in any of these cases

in principle. What if the bank wants me to pay interest 4 times, or

5 times, or 30 times (once a year) or 360 times (once a month)? We

could probably slog our way through all the calculations for 4 or even

5 payments. But, in principle be damned, there is no way we are going

to extend these calculations to 30 or 360 payments. To make such

calculations practical, we need a better way to think about compound

interest. Fortunately, there is a very effective point of view.

To describe it, we begin with a simple question: If I borrow an

amount A at a periodic interest rate p for a term T of 1 period how

much will I owe at the end of the period including accrued interest?

The answer is easy: the Simple Interest Formula 5.1.6 tells me that

I owe interest of I = pAT = pA since T = 1. To this I have to add the

amount A which I borrowed so the total is

A+ I = A+ pA = A(1+ p) .

In words,

One period principle 5.2.3: The total amount I owe at the end

of any period is the amount I owed at the beginning of the period

times the magic factor (1 + p) where p is the periodic interest rate.

Alternatively, to get from the starting amount to the ending amount,

you add the starting amount times the periodic rate.

The key point about this statement is that we only have to multiply

by the magic factor (1 + p) regardless of the amount of the loan or

the units used to measure periods. Every $1 dollar owed at the start

becomes $(1+p) owed at the end: this is a consequence of Equality

of dollars 5.1.4.
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Let’s restate this yet another way. We’ll write A0 for the amount owed

now: the “0” is called a subscript and is usually used, as we will use it

here, to distinguish a series of related quantities, in this case related

amounts. We’ll also write A1 for the outstanding balance (that is,

amount owed with interest) after 1 period, A2 for the outstanding

balance at the end of 2 periods, A3 for the outstanding balance at

the end of 3 periods and so on with AT standing for the outstanding

balance at the end of a general number T of periods. The formula

above can then be rewritten

A1 = A0 (1+ p) .

But we immediately get many similar equations:

A2 = A1 (1+ p)
A3 = A2 (1+ p)

and more generally

AT = AT−1(1+ p) .

In each case, the amounts on the left and right sides of each equality

side are the totals owed exactly one period apart and the One period

principle 5.2.3 tells us these always differ by a factor of (1+p). But,

things are even nicer: we can write all the amounts An very simply in

terms of the original amount A0. I claim:

Compound Interest Formula 5.2.4: AT = A0(1+ p)T

Conceptually, this follows directly from the One period principle

5.2.3. Each period the loan is outstanding causes the amount out-

standing to get multiplied by a factor of (1+p). So, over a term of T
periods the amount picks up T factors of (1+ p) which is the same

as a factor of (1+ p)T . We can check this argument algebraically for
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small values of the number T of periods.

A1 = A0(1+ p) = A0(1+ p)1

A2 = A1(1+ p)=
(
A0(1+ p)1

)
(1+ p) = A0(1+ p)2

A3 = A2(1+ p)=
(
A0(1+ p)2

)
(1+ p) = A0(1+ p)3

A4 = A3(1+ p)=
(
A0(1+ p)3

)
(1+ p) = A0(1+ p)4

and so on. The first equality on each line is one of those listed above,

the second comes from substituting the equality of the previous line,

and the third comes by combining the powers of (1+ p).

Finally, let’s check that the calculations we made above by hand also

agree with this formula. This will also, help us to start coming to

grips with a point that confuses many students. In the compound

interest formula, the term T is given in units of the compounding

period, the period of time between interest calculations (so, as we

will see again below, T is always equal to the number of compound-

ings). In the previous section, you were forced to get used to using

different units for T but the answer came out the same regardless of

what units we used.

This is no longer true: we will only get the right answer in a com-

pound interest calculation if we use compounding periods as our

units of time. In other words, if we pay interest monthly, then we

must express the term of the loan in months. If we pay compound

annually, we must express the term of the loan in years. If we pay

compound daily, we must express the term of the loan in days.

To start with, we consider the $100,000.00 loan at a nominal rate of

8% with a thirty year term with which we began the section. In first

calculation we made, interest was paid only once at the end of the

thirty years. This means that the compounding period was 30 years,

so that the quantitym which represents the number of compounding

periods per year is a fraction!: m = 1
30 . (This problem will be one

of the very few cases in which m is not a whole number.) Once we

swallow this, however, everything becomes very simple. The initial
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5.2 Compound interest

loan amount A0 is $100,00.000.00. The term T =m · y = 1
30 ·30 = 1

corresponding to the fact that 30 years is 1 compounding period and

the periodic interest rate is

p = 0.01 · r
m

=
0.01 · 8

1
30

 = 0.08 · 30 = 2.4 .
This problem will also be one of the very few cases in which p is

not a small decimal and I have again broken my rule and evaluated

the Interest Rate Conversion Formula 5.1.10 to make it easier

to see what’s happening. So,the Compound Interest Formula 5.2.4

AT = A0(1+p)T becomes A1 = $100,000.00(1+2.4)1 = $340,000.00
as hoped: this is the sum of the $100,000.00 needed to repay the

principal of the loan plus the $240,000.00 in simple interest we com-

puted above.

What happens when we compound twice? Now the compounding pe-

riod is 15 years so m = 1
15 , the 30 year term T =m · y = 1

15 · 30 = 2,

the periodic interest rate is p = 0.01·r
m = 0.01·8

1
15
= 0.08 · 15 = 1.2, and

the compound interest equation gives a final outstanding amount of

A2 = $100,000.00(1+ 1.2)2 = $100,000.00 · 4.84 = $484,000.00 .

This is exactly $144,000.00 more than the we got when we com-

pounded once exactly as above. By now, I hope you are getting the

hang of things. When we compound three times, the compounding

period is 10 years, m = 1
10 , T = 3 and p = 0.8 and the compound

interest equation gives a final outstanding amount of

A3 = $100,000.00(1+ 0.8)3 = $583,200.00

which is exactly $99,200.00 more than the we got when we com-

pounded twice and $243,200, .00 more than the we got when we

compounded twice. Once again, we recover exactly the hand calcula-

tion above.

We can formalize these examples with a method. It looks a lot like

the Method for finding simple interest 5.1.15. The only differ-
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ence is the third step where we use the Compound Interest For-

mula 5.2.4 instead of the Simple Interest Formula 5.1.6. We call

this a provisional method because we’ll only apply it to some easy

problems. Later in this section, you’ll find a final version which you’ll

be able to apply to a larger range of problems.

Provisional method for finding compound interest 5.2.5:

Step 1: Determine the periods in the problem (that is, the units in

which the term is measured) and the value ofm, the number

of periods per year.

Step 2: Use the Interest Rate Conversion Formula 5.1.10 to find

the periodic interest rate p from the nominal interest rate r
and the Term Conversion Formula 5.1.13 to find the term

T in periods from the term in years y .

Step 3: Apply the Compound Interest Formula 5.2.4.

Example 5.2.6: Let’s try redoing Problem 5.2.2 using our new

method. Since this problem tells us how many compoundings we

are to make—that is, the number T of periods—we first need to de-

termine the length of each compounding period in years and then,

by inverting this, the number m of periods per year. We then use

these to find the periodic rate and compounded amount. The tables

below summarize the results.

First, we switch the term to three years. I have once again evaluated

the periodic rates p in these examples to let you warm up.

T y m p AT

1 3 1
3 0.24 $100,000.00(1+ 0.24)1 = $124,000.00

2 2 1
2 0.16 $100,000.00(1+ 0.16)2 = $125,440.00

3 1 1
1 0.08 $100,000.00(1+ 0.08)3 = $125,971.20

Table 5.2.7: Compounded amounts for a 3 year term
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Finally, we switch the term to 12 years. Now, it’s time to start listen-

ing to the Periodic rate rule 5.1.11 and stop evaluating p.

T y m p AT

1 12 1
12

(
0.01·8

1
12

)
$100,000.00

(
1+

(
0.01·8

1
12

))1 = $196,000.00

2 6 1
6

(
0.01·8

1
6

)
$100,000.00

(
1+

(
0.01·8

1
6

))2 = $219,040.00

3 4 1
4

(
0.01·8

1
4

)
$100,000.00

(
1+

(
0.01·8

1
4

))3 = $229,996.80

Table 5.2.8: Compounded amounts for a 12 year term

You might notice that the columns labelled T are identical in both

tables. They’d better be: remember anytime you use the compound

interest formula, you must measure the term T in compounding pe-

riods, so this is just another way of saying that T equals the number

of compoundings.

Now you should be ready to try a few easy problems. While you are

working these, try to get a feel for how the final amount AT changes

as we change the length of the compounding period. I have inserted

a few solutions as models. As usual, we’d like to get amounts correct

to the nearest penny so we want to plug in the “raw” Interest Rate

Conversion Formula 5.1.10 for p rather than evaluating it first.

Problem 5.2.9: Find the final amount which will accrue if an

amount of $13,253.44 earns nominal interest of 4% for a term of

7 years if:

i) interest is compounded annually.

Solution

Step 1: The periods are years so m = 1.

Step 2: p = 0.01·r
m = 0.01·4

1 and T =my = 1 · 7 = 7.

Step 3: AT = A0(1+p)T = $13,253.44
(
1+

(
0.01·4
1

))7
= $17,440.62.

ii) interest is compounded quarterly.

iii) interest is compounded monthly.
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Problem 5.2.10: Find the final amount which will accrue if an

amount of $2,600.00 earns nominal interest of 9% for a term of 3
years if:

i) interest is compounded annually.

ii) interest is compounded quarterly.

Solution

Step 1: The periods are quarters so m = 4.

Step 2: p = 0.01·r
m = 0.01·9

4 and T =my = 4 · 3 = 12.

Step 3: AT = A0(1+ p)T = $2,600.00
(
1+

(
0.01·9
4

))12
= $3,395.73.

iii) interest is compounded monthly.

Problem 5.2.11: Find the final amount which will accrue if an

amount of $1,255,000.00 earns nominal interest of 6.73% for a term

of 5 years if:

i) interest is compounded annually.

ii) interest is compounded quarterly.

iii) interest is compounded monthly.

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·6.73

12 and T =my = 12 · 5 = 60.

Step 3: Using AT = A0(1+ p)T = $1,255,000.00
(
1+

(
0.01·6.73

12

))60
= $1,755,397.74.

So far all the examples and problems have had one common feature:

we know how much we want to borrow (or invest) and would like

to find out how much we will owe (or collect) after a certain term

at interest. In other words, the amount AT that we are seeking only

exists at a time which is in the future relative to the time at which

the amount A0 which we know exists. For this reason, problems like

those we have been working are often called future value problems.

Future Value 5.2.12: A future value problem is one in which an

amount or value is sought which lives in the future relative to a known

amount or value.
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5.2 Compound interest

However, there are many situations in which there is an amount

which we’d like to be able to collect in the future and what we’d like

to figure out is the amount we’d need to set aside at interest today

to do so. For example, on my daughter’s eighth birthday, it might

occur to me that I’ll need to have $120,000.00 or so available for her

college education in 10 years (perhaps, half of what sending her to

a good private college will cost) and I might like to know how much

I’d need to put away now in order to have $120,000.00 on hand 10
years from today. Or, I might want to plan ahead in similar ways for

retirement or other goals. Business often face a similar need to make

provisions today for anticipated future expenses. Since the amount

we are trying to determine usually lives in the present such problems

are generally called present value problems.

Present Value 5.2.13: A present value problem is one an amount

or value is sought which lives in the past relative to a known amount

or value.

If you compare this definition to the previous one, you’ll see that the

terminology is not very good. Unfortunately, it is completely stan-

dard. So let me emphasize that the important factor is not whether

the known sum lives in the past present or future and it is not

whether the unknown sum lives in the past, present or future. What’s

important is whether the unknown sum lives after the known sum

(in the future relative to it) in which case we have a future value prob-

lem or whether it lives before the known sum (in the past relative to

it) in which case we have a present value problem.

Perhaps you’re also wondering, “What’s the difference between a

value and an amount?” None. They both stand for a quantity of

money at a point in time. The word “value” has many other mean-

ings in mathematics so I’d prefer to avoid it. The word “amount” is

the natural one to introduce in connection with interest, as we did

Section 5.1. And I’d like to use the letter A for all amounts wherever

I can. Then, if you see an A, you know it’s an amount and to find
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the amount, you just look for the A. However, the terms present and

future value are completely standard in dealing with compound in-

terest. As a practical matter, you need to learn to recognize and work

with them too. The solution I’ve adopted is a compromise. I’ll try to

keep an A in the notation for all amounts, but I’m going to feel free to

use the word value instead of amount at times. In particular, future

value and present value are such standard terms that you’ll almost

never see terms like “future amount” or “present amount problem”.

Example 5.2.14: We can use the Compound Interest Formula

5.2.4AT = A0(1+p)T to solve present value problems too. Just divide

both sides by (1+ p)T to get the formula

A0 =
AT

(1+ p)T
which allows us to find the present value A0 given the future value

AT (and of course p and T which we’d figure out as usual from r ,
y and m). Suppose, in the example of my daughter’s college fund

that my bank will sells 10 year CDs (certificates of deposit with a 10
year term ) which earn 3.6% interest compounded monthly. What I

want to know is how much money I need to to put into these CD’s

now to have AT = $120,000.00 worth of them in 10 years. Fine: the

bank compounds monthly so m = 12. Thus p = 0.01·r
m = 0.01·3.6

12 and

T =m · y = 12 · 10 = 120. Finally,

A0 =
AT

(1+ p)T =
$120,000.00(
1+

(
0.01·3.6
12

))120 = $83,766.29 .

Gleep! I don’t have that kind of money. I should have started plan-

ning for this sooner. What if I had invested when my daughter was

born? All that changes is that now y = 18 so T = 216 and when I

calculate A0, I now get $62,831.83. I could never have afforded that

much eight years ago. Yow! What should I do? We’ll find out the an-

swer to this question in the section on Section 5.6.

For now, let’s just draw a few simple conclusions. First, the prin-

ciple that a sum of money at one point in time changes in value
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when we try to move it to a second point in time—interest is earned

to compensate for the loss of use of the money—continues to ap-

ply. However, there is now one significant difference. Amounts which

we know about today become larger when we move them to the fu-

ture because interest is paid on them. Turning this around, amounts

which we know about in the future (like that $120,000.00 college

fund) become smaller when we move them to the present (or past)

because the interest they could have been earning must be deducted.

Second, solving present value problems involves the same ideas and

formulas we use in solving future value problems. With the approach

in the previous paragraph, the only difference is whether we multiply

or divide by (1+ p)T .

However, I’d like things to be even simpler. I’d like to always use

A0 to denote the sum of money which is known and I’d like to al-

ways use AT to denote the sum of money which is to be determined.

Moreover, I’d like to always be able to find AT by multiplying A0
by (1 + p)T : I just don’t want to worry about whether to multiply

or divide. I always want to be able to use the using the Compound

Interest Formula 5.2.4 as it stands: AT = A0(1+ p)T .

“Yeah, well if pigs had wings, they could fly. Get real, Dr. Morrison.”

Not so fast: if we are willing to stretch our brains just a bit, we can

have everything I ask for. The key idea is simply to allow the number

of periods T to be either positive or negative. Just think of T as telling

us the number of periods between the moment in time when the

amount A0 whose value we know lives and the moment in time when

the amount AT whose value we are seeking lives. A positive T means

that we have to move forward in time—towards the future—to get

from the amount A0 to the amount AT . A negative T means that we

have to move backward in time—towards the past—to get from the

amount A0 to the amount AT . In all the future value problems we

have worked to this point, the the amount we knew lived before the

amount we were seeking, we moved forward in time, and so T was
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positive.

But, in the example of my daughter’s college fund, the amount I

know I’ll need—the $120,000.00—lives in the future when she turns

18. The amount I want to determine—the “unknown” $83,766.29 I’d

need to invest—lives in the present: to get to this time I have to travel

10 years backwards in time. I now want to think of this as (−10)
years. Correspondingly, I have to consider a term of T = m · y =
12 · (−10) = −120 monthly periods. A bit strange, but once I do so,

I can just apply the Compound Interest Formula 5.2.4 unchanged

using as A0 the known amount $120,000.00 and p =
(
0.01·3.6
12

)
as

above to find the “unknown” amount AT . I get

AT = A0(1+p)T = $120,000.00
(
1+

(
0.01 · 3.6

12

))−120
= $83,766.29

exactly as before.

This problem is pretty typical. Even though we are mentally mov-

ing backwards in time towards the past, we never actually enter the

past. We stop at the present because that is when the amount we are

seeking—the $83,766.29 I’d need to invest today—lives. That’s why

problems where we move towards the past and use a negative num-

ber of periods T are called present rather than past value problems.

But, things work just as well if I really do travel into the past. We can

check this by thinking about the investment I might have made when

my daughter was born. Now, the known amount A0 = $120,000.00
lives 10 years in the future when my daughter turns 18 and the

unknown amount lives 8 years in the past when she was born. To

get between them, I have to travel backwards 18 years in time so

y = −18 and T = −216. When I compute the “unknown” amount this

time, I find that AT = A0(1+p)T = $120,000.00
(
1+

(
0.01·3.6
12

))−216
=

$62,831.83 exactly as before.

If you remember your Rules of exponents 1.4.10, you’ve proba-

bly already figured out why both approaches give the same answer.

When I did the problem the first time, I divided the known amount
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of $120,000.00 by
(
1+

(
0.01·3.6
12

))120
. When I did it the second time,

I wound up multiplying the $120,000.00 by
(
1+

(
0.01·3.6
12

))−120
. But,

by Problem 1.4.57,(
1+

(
0.01 · 3.6

12

))−120
= 1(

1+
(
0.01·3.6
12

))120
so multiplying by

(
1+

(
0.01·3.6
12

))−120
has exactly the same effect as

dividing by
(
1+

(
0.01·3.6
12

))120
and the answer comes out the same.

More generally, dividing by (1+p)T and multiplying by (1+p)−T are

the same.

Many of you are probably saying to yourselves: “He may think it’s

simpler to multiply by a power with a negative exponent and than to

divide by one with a positive exponent, but I sure don’t. If you get

the same answer both ways, why do I need to worry about positive

or negative numbers of periods?” Fair question. Most books try to

avoid the negative periods and negative exponents. There are two

good reasons why it’s better to swallow and use them.

First, doing so allows us to solve all compound interest problems—

present or future value—with a single formula and a single method. If

there is one key to the power of mathematics, it’s the ability to sim-

plify by seeing patterns and generalizing. It is much easier and less

error prone to understand one idea well enough to be able to use it to

solve several different kinds of problems than to learn several ideas

each of which can only be applied to one particular kind of prob-

lem. To take advantage of this power, you must continually strive to

apply methods you know to new problems rather than seeking new

methods for every different problem. Here is a concrete case where

you can try to do this. Rather than having to learn two formulas—one

for future value problems and one for present value problems—and

then to learn how to apply each and which problems each applies

to, we will make the Compound Interest Formula 5.2.4 do all the

work.
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The second reason for using negative exponents here, where we do

not absolutely have to, is like the reason for using periodic interest

rates in Section 5.1. By always converting terms to periods and rates

to periodic rates even when it was still optional, we avoided having

to train ourselves to do this in compound interest calculations when

it these conversions are obligatory and learned to avoid the most

common error in interest problems.

We’ll get a similar benefit from training ourselves now to ask whether

terms and periods are to be counted positively or negatively—that is,

whether we have to find present value problem or a future value—

even though we could avoid the negative exponents in this section.

That’s because, when we reach the sections which discuss amorti-

zation (things like mortgages and retirement savings), there will be

formulae where negative terms and negative exponents are unavoid-

able.

So I want you to train yourselves now to ask the question, “Does

the unknown sum of money live after the known sum or does it live

before the known sum?” and to use a positive term if the answer

is after (future value) and a negative term if the answer is before

(present value).

The payoff will come when we work with amortizations because once

again we won’t need to learn any new concepts—just a new formula.

We’ll be able to classify all our amortization problems by asking ex-

actly the question above. Finally, can you guess what the most com-

mon error in working amortization problems is? Right, it’s getting

positive and negative terms mixed up! Once again, we can train our-

selves to avoid these errors by learning to use negative exponents in

this section.

So, let’s get to it. First, let’s formalize the examples above into a

method we can use on all the remaining problems in this section.

The only difference from the Provisional method for finding
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compound interest 5.2.5 will be that we’ll need to determine the

sign of the term T .

Method for finding compound interest 5.2.15:

Step 1: Determine the periods in the problem (that is, the units in

which the term is measured) and the value ofm, the number

of periods per year.

Step 2: Use the Interest Rate Conversion Formula 5.1.10 to find

the periodic interest rate p from the nominal interest rate r .

Step 3: Subtract the point in time at which the known amount in the

problem lives from the point in time at which the amount

unknown in the problem lives to obtain the term as a signed

number of years y or other periods: the sign is positive if the

known amount lives before the unknown amount and nega-

tive if the known amount lives after the unknown amount. If

the the signed term in you obtain is in years y , use the Term

Conversion Formula 5.1.13 to convert to a signed term T in

periods.

Step 4: Apply the Compound Interest Formula 5.2.4

Experience shows that lots of students have a hard time with signed

periods and that you can’t repeat the basic idea enough, so . . . If the

known amount lives before the unknown amount then the differ-

ence in step 3 gives a positive number of years and the unknown

amount will be larger than the known amount. If the known amount

lives after the unknown amount, then the difference gives a negative

number of years and the unknown amount will be smaller than the

known amount.

Here are some present value problems so you can get a feel for work-

ing with negative terms.

Problem 5.2.16: Find the present value of a amount of $4,200.00
which will be due in 4 years if the nominal interest rate it 12% and:

i) interest is compounded annually.
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Solution

Step 1: The periods are years so m = 1.

Step 2: The known amount of $4,200.00 lives 4 years from

now; the unknown present value lives today. The difference

(time of unknown amount) subtract (time of known amount)

equals (today) subtract (today +4) years or (−4) years.

Step 3: p = 0.01·r
m = 0.01·12

1 and T =my = 1 · (−4) = −4.

Step 4: AT = A0(1+ p)T =$4,200.00
(
1+

(
0.01·12
1

))−4
= $2,669.18.

Two comments. Usually, we’ll be more concise in step 2 and just say

the known amount lives−4 years from the known amount. Also, note

that, as in any present value problem, the present value is smaller

than the known amount.

ii) interest is compounded quarterly.

iii) interest is compounded monthly.

Problem 5.2.17: Find the amount you’d have to put in the bank

at age 25 at an interest rate of 4.8% to have $100,000.00 when you

retire at age 65 if:

i) interest is compounded annually.

ii) interest is compounded quarterly.

iii) interest is compounded monthly.

Solution

Step 1: The periods are months so m = 12.

Step 2: The known amount of $100,000.00 lives 65 − 25 = 40
years after the unknown amount so the term is −40 years.

Step 3: p = 0.01·r
m = 0.01·4.8

12 and T =my = 12 · (−40) = −480.

Step 4: AT = A0(1 + p)T = $100,000.00
(
1+

(
0.01·4.8
12

))−480
=

$14,716.95.

Problem 5.2.18: Find the amount you’d have to put in the bank

at age 45 at an interest rate of 7.2% to have $100,000.00 when you

retire at age 65 if:

i) interest is compounded annually.

ii) interest is compounded quarterly.
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Solution

Step 1: The periods are quarters so m = 4.

Step 2: The known amount of $100,000.00 lives 65 − 45 = 20
years after the unknown amount so the term is −20 years.

Step 3: p = 0.01·r
m = 0.01·7.2

4 and T =my = 4 · (−20) = −80.

Step 4: AT = A0(1+p)T =$100,000.00
(
1+

(
0.01·7.2

4

))−80
= $23,998.15.

iii) interest is compounded monthly.

You may find one point about your answers to these exercises a bit

puzzling. When we were computing future values—sending money

forward in time—it grew in value. Moreover, if we kept the nominal

rate and term fixed, then the more frequently we compounded the

greater the growth. In these present value problems—where we send

money backward in time—it shrinks in value. But, if we keep the

nominal rate and term fixed as in the problems above, we find that

the more frequently we compound the greater the shrinkage. Aren’t

these two conclusions about how compounding more frequently af-

fects money travelling forward and backward in time contradictory?

The answer is no, but it can be a bit confusing. The way to remove the

confusion is to forget which amount is known and which is unknown

for a moment.

Let’s just think about the present and future values. It’ll help to name

them. I’ll use B for the present value—the amount at the start of

the term—and S for the future value—the amount at the end of the

term. (Why the apparently random letters B and S? In later sections,

we’ll want to discuss buying and selling investments. The buying

price B will be the present value of the investment and the selling

price S will be its future value. We’ll need similar notations when we

discuss savings and loan amortizations, where B will usually be a

loan Balance and S a Savings goal. It’s easier to just use B all present

values and S for all future values than to introduce new letters in

each new situation.)

Now let’s ask, “How does the frequency of compounding affect the
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5.2 Compound interest

ratio S
B of the future value S to the present value B?” We can restate

the fact that more frequent compounding makes future values like

S larger by saying that more frequent compounding makes the ratio

bigger. But, we can also restate the fact that more frequent com-

pounding makes present values like B smaller by saying that more

frequent compounding makes this the bigger. The conclusions are

the identical. This is worth noting for future reference.

Effect of More Frequent Compounding 5.2.19: If the nomi-

nal interest rate and term are fixed, then the more frequently inter-

est is compounded, the greater the ratio S
B of the future value S to

the present value B. If the nominal interest rate, term and present

value B are fixed, then the more frequently interest is compounded,

the greater the future value S. If the nominal interest rate, term and

future value S are fixed, then the more frequently interest is com-

pounded, the smaller the present value B.

Now, some exercises in which present and future values problems

are intermixed and you must think about the sign of the term. I have

worked the first one for you.

Problem 5.2.20: A U.S. bond which earns 5.2% interest com-

pounded quarterly will be redeemable for $1,000.00 in 15 years.

What does it sell for?

Solution

Step 1: The periods are quarters so m = 4.

Step 2: The known amount of $1,000.00 lives 15 years after the

unknown amount—what the bond sells for today—so the

term is −15 years.

Step 3: p = 0.01·5.2
12 and T =my = 12 · (−15) = −300.

Step 4: AT = A0(1+ p)T =$1,000.00
(
1+ 0.01·5.2

12

)−300
= $459.18.

Problem 5.2.21: A money market account containing $3,200.00
earns 3% interest compounded monthly. What will its balance be in

5 years?
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5.2 Compound interest

Problem 5.2.22: I put $32,000.00 in my son’s college fund when he

was born. If the fund pays 6% interest compounded monthly, how

much money will he have for college when he is 18?

Problem 5.2.23: Five years ago, the University trustees put money

in an account which earns 4% a year interest compounded daily to be

used to retire a loan of $250,000.00 next year. How much did they

set aside?

Problem 5.2.24: Loan sharks typically charge interest of 2% a week,

compounded weekly. This is one of the few cases where interest is

stated in terms of the compounding period and the periodic rate (i.e.,

here p = 0.02—we’re given the periodic rate rather than, as usual, the

nominal one—andm = 52). What would a debt of $1,000.00 amount

to in a year at these rates if no payments were made to the loan

shark? What would the debt amount to in 5 years?

Project 5.2.25: In 1636, Peter Stuyvesant bought the island of Man-

hattan for $24.00. Was this good deal? In other words, if Peter had

deposited the $24.00 at interest for the intervening 370-some years,

would his heirs have enough in their account to buy Manhattan to-

day? To answer this question, you will need to find out two types

of information. First, about how much would the land in Manhattan

be worth today? (Just ignore the cost of buildings roads etc.) Sec-

ond, what kind of interest could the Stuyvesants have expected to

earn over the past four centuries? One thing you’ll find out is that

interest rates have varied considerably over this period. The Com-

pound Interest Formula 5.2.4 only deals with accruals at a fixed

rate of interest. So another question you’ll need to answer is: how

should we to deal with the variations in interest rates in a problem

like this? The interest rate on common accounts—like money mar-

ket accounts—also changes frequently. Ask people in your business

school how financial institutions handle the complications this in-

troduces. You’ll see how much simpler math is than everyday life!
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5.3 Approximating compound interest

The Simple Interest Formula 5.1.6 is just that: simple. As long as

you remember Periodic rate rule 5.1.11 and you just multiply and

it is pretty hard to go wrong. What’s more there is an easy way to

check any answer: since changing the periods used to measure the

term has no effect on the final value of the interest, you can just re-

calculate with different periods. The Compound Interest Formula

5.2.4 is not really more complicated. However, since the choice of the

compounding period now has a substantial effect on the answer, you

can’t just blindly recalculate with different periods to check.

In this section, we’ll learn how to keep our eyes open while changing

periods. This leads to easy approximations for compound interest

which can be used to check that a compound interest answer at least

“looks right”. While doing this, we’ll find out that calculators don’t

always compute the compound interest formula correctly and learn

how to work around their limitations. In later sections (Section 5.4

and Section 5.5, for example), what we’ll learn will turn out to be

handy in many other ways.

The simple interest approximation

The first approximation we’ll use is truly simple: just ignore com-

pounding and use the Simple Interest Formula 5.1.6. If we use

years as periods—so p = 0.01·r
m = 0.01r and T = y—then the in-

terest on an amount A0 is I = p · A0 · T = 0.01r · A0 · y and the

future value AT—the total of principal plus interest at the end of the

period—is roughly A0 + 0.01r · A0 · y = A0(1 + 0.01r · y). We can

use this to approximate the compound interest formula. Here’s an

example.
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5.3 Approximating compound interest

Example 5.3.1: Let’s try checking my answer to one of the Problems

in Section 5.2. In part ii) of Problem 5.2.10 which asked for the

future value S of $2,600.00 at nominal interest of 9% for a term of 3
years compounded quarterly, my answer was $3,395.73. The Simple

Interest Approximation 5.3.3 gives A0(1+ 0.01r · y) = $2,600(1+
0.09 · 3) = $3,302.00 which is just a bit smaller than my answer.

If we think of A0 as an initial amount or present value B and think

of AT as a final amount or future value S, we can rewrite the approx-

imation

AT ' A0(1+ 0.01r · y) as S ' B(1+ 0.01r · |y|)

This new formula on the right can be used to check both future

and present value problems. Just remember that S is to be the final

amount and B the starting amount, so in a present value problem

we’d have to reverse the A’s: S = A0 and B = AT . The bars around

the y are absolute value signs and remind us to always make y posi-

tive in this formula—just as we have always done when working with

simple interest.

Example 5.3.2: In part i) of Problem 5.2.16 which asked for the

present value of a sum of S = $4,200.00 which will be due in 4

years at a nominal interest rate of 12% compounded annually, I got

B = $2,669.18. The Simple Interest Approximation 5.3.3 gives

B(1 + 0.01r · |y|) = $2,669.18(1 + 0.12 · 4) = $3,950.39. There

are two points to note. First, this time we plugged in the answer as

the present value or starting amount—because we were checking a

present value problem. Second, even though I used a negative period

of −4 years in Problem 5.2.16 I plugged in |y| = 4 in the check.

Unfortunately, this “approximation” is only close to the correct value

when the term is quite short. If you look over the example at the start

of section Section 5.2, you’ll see that over terms of many years, the

interest on the interest in a compound interest calculation can be-

come much larger than the original amount or the interest on the

1—
1—
2—

a ·· ·· z ? 549 Comments welcome at �̂�

mailto:morrison@fordham.edu
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original amount. However, we can still make some use of this for-

mula by thinking of it somewhat differently. Using the Simple In-

terest Formula 5.1.6 amounts to making the entire term a single

period so that, in effect, there is no compounding. In other words

we want T = 1. We can check this idea by working work backwards.

Since T =m · y by the Term Conversion Formula 5.1.13, m · y = 1
so m = 1

y . Then, by the Interest Rate Conversion Formula 5.1.10

p = 0.01 · r
m

= 0.01r1
y

= 0.01r · y .

Finally, applying the Compound Interest Formula 5.2.4

AT = A0(1+ p)T = A0(1+ 0.01r · y)1 = A0(1+ 0.01r · y) .

By combining this with what we know about the Effect of More

Frequent Compounding 5.2.19, we can squeeze out a bit of in-

formation even when the approximation is way off. Remember that

more frequent compounding increases future values and decrease

present values. Since using simple interest amount to doing the least

compounding possible—none at all—it should definitely underes-

timate future values. Note that both examples above confirm this:

the approximations are both slightly smaller than the answers being

checked.

Simple Interest Approximation 5.3.3: The ending or future

amount S in a compound interest calculation should be greater than

the approximation B(1+0.01r ·|y|) (where B is the starting or present

value) and the approximation should be fairly good if the term is not

too long.

Both Example 5.3.2 and Example 5.3.2 illustrate reasonable uses of

the Simple Interest Approximation 5.3.3. I often do something

even cruder in my head when working problems in class. In the first

case, I’ll say: “The interest is 0.09 · 3 = 0.27 which is about 1
4 and 1

4
of $2,600.00 is $650.00 so I should expect my answer to be a bit big-

ger than $3,250.00”. Similarly, in the second problem, I’d say, “Here
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5.3 Approximating compound interest

the interest is 0.12 · 4 = 0.48 which is about 1
2 so I expect $2,669.18

times (1+ 1
2) =

3
2 to be a bit smaller then $4,200.00; it’s easier to turn

this around 2
3 of $4,200.00 or $2,800.00 should be somewhat bigger

than $2,669.18”. The point is that since we are only approximating

anyway we can afford to ignore the difference between 0.27 and 1
4

or between 0.48 and 1
2 . I know I am much more likely to perform a

quick mental check than one where I have to get out my calculator

and a check you don’t perform is not much of a check.

Example 5.3.4: To see the limitations of the approximation, let’s

look at part iii) of Problem 5.2.17 which asked for the present

value of an amount of $100,000.00.00 due in 40 years at an inter-

est rate of 4.8% compounded monthly. My answer was $14,716.95.

The Simple Interest Approximation 5.3.3 gives B(1 + 0.01r · y) =
$14,716.95(1+ 0.048 · 40) = $42.973.49. Again this is less than the

correct future value of $100,000.00, .00 but now it is so much less—

barely two-fifths—that is not much use as a check. The period here

was just too long for the approximation to be useful.

Problem 5.3.5: Use the Simple Interest Approximation 5.3.3 to

check your answers to Problem 5.2.11, Problem 5.2.21 and Problem

5.2.23. Are there any other problems in Section 5.2, for which you’d

expect the Simple Interest Approximation 5.3.3 to be fairly accu-

rate?

The continuous approximation

We have already seen in Effect of More Frequent Compounding

5.2.19 that keeping the nominal rate and the term in years fixed, the

more often we compound the larger the amount owed at the end

of the term. Let’s go back to the Problem 5.2.2 where we borrowed

$100,000.00.00 at 8% interest and ask: What happens if the bank

compounds ever more frequently? Let’s try compounding monthly,
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5.3 Approximating compound interest

daily, hourly and once a second in the two problems above. The cor-

responding values ofm are : 12, 365, 8,760 and 31,536,000. (In other

words, there are 8,760 hours and 31,536,000 seconds in a year. So

while a million seconds might seem like forever it is actually only

about 11.57 days.) Now we can just apply the Method for finding

compound interest 5.2.15.

I have not given the details of the calculations, but it will be impor-

tant to note that I carried them out on a calculator with 10 place

accuracy. The results are shown in Table 5.3.6 below for a term of 3

years:

m 12 365 8,760 31,536,000

T 36 1,095 26,280 94,608,000

p 0.08 · 12 0.01·8
365

0.01·8
8760

0.01·8
31536000

AT $127,023.71 $127,121.56 $127,123.37 $132,819.91

Table 5.3.6: Compounding table for a 3 year term

and Table 5.3.7 for a term of 12 years.

m 12 365 8,760 31,536,000

T 144 4,380 105,120 378,432,000

p 0.01·8
12

0.01·8
365

0.01·8
8760

0.01·8
31536000

AT $260,338.92 $261,142.08 $261,156.97 $311,209.46

Table 5.3.7: Compounding table for a 12 year term

Problem 5.3.8: Make your own calculation of each of the amounts

in the tables above. You should get the answers in the table to the

penny when you compound monthly. Some of your other answers

may be somewhat different for reasons I’ll explain in a moment. If
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so, don’t worry.

There are many interesting things to note about these tables. Let’s

look at the p rows to start. First notice that these rows in the two

tables contain identical values: we should expect this since p does

not depend on the term of the loan—which is what differs between

the two tables—but only on the frequency with which we compound.

Second, notice how tiny the periodic rates have become: this is

because we are compounding many times a year with very short

compounding periods and hence we get very little interest in

each period. The values are so small that if you try to evalu-

ate p, your calculator will use scientific notation to show you as

many decimals as possible. For example, in my 10 place calculator,
0.01·8

31536000 =2.536783358e-9 which we can also write 2.536783358 ×
10−9 or 0.000000002536783358. My calculator just does not have

room for all those 0’s.

Next, let’s look at the final amount of AT rows. Does anything

strike you about these? All the amounts are getting closer and

closer together—in the three year table they seem to be settling

down around $127,120.00 or so and in the 12 year table around

$261,150.00—and then suddenly the last amount where we com-

pound in seconds is much bigger.

What’s going on? Two things. First, the final amounts are wrong! The

problem is that to find them I asked my calculator to compute

AT = $100,000.00 ·
(
1+

( 0.01·8
31536000

))94,608,000
and

AT = $100,000.00 ·
(
1+

( 0.01·8
31536000

))378,432,000
it choked. It just can’t compute that value accurately. The 10 digits

of precision it uses is just not enough to get the final amount even to

2 places!! If I use a much better calculator (which carries 20 places)

and make the same calculation, I get the amounts in Table 5.3.9.
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AT , 3 years $127,023.71 $127,121.56 $127,124.78 $127,124.92

AT , 12 years $260,338.92 $261,142.18 $261,168.50 $261,169.65

Table 5.3.9: Amounts using a 20 place calculator

Notice that it turns out it wasn’t just the final “seconds” amounts

that were wrong. They were just the only wrong answers that were

so far off that it was clear to the naked eye that something was fishy.

Both the amounts for hourly compounding were off by dollars and

the 12 year final amount with daily compounding—which is what

your bank uses—was off by 10 cents. But all these other answers

were close enough that the only way we would ever know that they

were wrong was by making a second more accurate calculation. The

moral here is:

Murphy’s Law of Calculators 5.3.10: Never trust a calculator’s

answers unless you have some other way to check them.

What went wrong? Looking as the formulae for AT above, you’d at

first guess that the calculator has trouble handling those enormous

exponents. That’s partly right. But, the main source of the error

comes inside the parentheses when we add the 1 to p!! Let’s write

out what’s involved:(
1+

( 0.01·8
31536000

))
= 1+2.536783358×10−9 = 1.00000000253678335 .

So far so good. But my calculator only works to 10 place accuracy so

this number has to get rounded to 1.000000003. That’s the number

that get raised to that huge power and this number looks like we’d

used a 1-digit value of 0.000000003 for p! The effect is to raise the

periodic rate by 20%—1.2 ·2.5 = 3—so no wonder the final answer is

a whole lot bigger.

You may be wondering how you are going to do problems like the

one where we got the wrong answer if you are not able to use your

calculator. Relax: I’m just not going to ask you to work any problem
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where the exponent in the Compound Interest Formula 5.2.4 is

dangerously large. But, in real life where daily compounding is com-

mon, you might be asked to: if you are, remember to watch out.

Did some of the amounts you computed in Problem 5.3.8 differed

from mine as I suggested in the problem that they might? Perhaps

now you can guess why I told you not to worry about this. I knew my

answers were wrong and (unless you have a very good calculator)

that yours probably would be wrong too. But there’s no chance we’d

get the same wrong answers. Why? Because every calculator is a bit

different inside. While they’ll all give the same answer when they can

get the right one, when things go wrong each calculator goes wrong

in its own way. If, like the largest number of students, you have a

TI-8x calculator and you want to check your work, you should have

obtained the correct answers in all but the last column.

So much for the bad news. Let’s get back to those amounts. The cor-

rect answers give a striking confirmation of our initial impression

that as you compound more and more frequently, the final amounts

get larger and larger but do so ever more slowly. Eventually, these

amounts appear to settle down. In fact, no matter how often you

compound—even if you compound a trillion times a second—the fi-

nal amount you’ll wind up with in these two problems will never

grow by another cent: after 3 years, you’ll have $127,124.92 and af-

ter 12 you’ll have $261,169.65. (You need a calculator that keeps 25
places to check these answers so you’ll just have to trust me on this.

If this worries you a bit, take a gold star: you’re catching on.)

What would be very nice is to have some “easy way” to get this magic

maximum amount. It’s not that we’d ever want to compound inter-

est every second in real life and so have a direct need for a way

around the limitations of our calculators. But, if we did we’d have a

good way to make a rough check of any compound interest calcula-

tion. Our answer should be close to, but somewhat smaller than this

magic amount: the more frequently we compound, the closer the two
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should be. In particular when we compound monthly or daily as in

the majority of real world loans we should see a few matching dig-

its, as in the tables above. If we do not, we’ll know right away that

something is wrong.

Well kids, life is good! Finding formulas for limits—which is fancy

way to say, for how things “settle down”—is one of the main applica-

tions of calculus. And, a standard formula from calculus computes

the magic amount which appears in the tables above. Moreover, you

don’t need to know any calculus to understand and use this formula.

Continuous Approximation 5.3.11: The quantity (1 + p)T lies

between 1 and the e(p·T) = e
(
0.01r·y

)
and is close to the latter. There-

fore, AT lies between A0 and the continuous approximation

A0 · e(p·T) = A0 · e
(
0.01r·y

)
and, if the compounding period is short, AT is close to the continuous

approximation.

The Number e 5.3.12: The base e in this formula is a very impor-

tant number: e ' 2.71828182845904523536. But you don’t ned to try

to memorize any of these decimals: e is so important it’s got its very

own key on your calculator. Moreover, exponentials with base e occur

so often in so many places that there is also a key usually called exp

for taking the exponential base e of the current value.

So to use the Continuous Approximation 5.3.11, you just calculate

the product 0.01r · y , hit 2nd LN or exp on your calculator, and mul-

tiply by the amount A and you’ve got the magic amount. In the two

problems above, it gives

A · e
(
0.01r·y

)
= $100,000.00 · e

(
0.018·3

)
= $127,124.92

and

A · e
(
0.01r·y

)
= $100,000.00 · e

(
0.018·12

)
= $261,169.65 .

Try it with your calculator! You might wonder why I preferred to cal-

culate the exponent in the form 0.01r · y rather than in the appar-

ently simpler form p ·T . First, let’s remark that they really are equal.
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Using the Interest Rate Conversion Formula 5.1.10 and Term

Conversion Formula 5.1.13 gives p · T = 0.01·r
m ·my = 0.01r · y .

Forgetting to use one of these conversion formulas is the most com-

mon error in working interest problems. Thus, the fact that I can use

the nominal interest rate and the term in years in the formula with

no need for converting to periodic rates and periods, makes the con-

tinuous approximation perfect for catching such errors. It’s one of

the nicest features of the formula that it lets us work with the real

life quantities we like to think in terms of—nominal rates and years.

But the formula has other amazing properties. First, even with a

standard calculator you can use it to find the magic number to the

penny. Using the Compound Interest Formula 5.2.4, I needed a su-

percalculator to get these numbers. You’d have no way to compute

them. Makes you think there might be something to this calculus

after all, and that it might not be as hard as it’s cracked up to be.

(Both guesses are correct and I hope this section will inspire a few

of you to take a calculus course. If you are planning to do serious

work in any of the mathematical, computational, physical, biological

or social sciences, you will have to do so eventually and the sooner

you start the easier a time you’ll have with the math and the fur-

ther ahead you’ll be in your major. If you don’t believe me, ask your

major’s undergraduate advisor.)

The final remarkable feature of the Continuous Approximation

5.3.11 is that the signs of the quantities T and y which measure time

are not mentioned anywhere. So far we have only used the formula

in future value problems where these quantities are positive but ev-

erything works just as well in present value problems when they are

negative. The future value version says that when T and y are posi-

tive that A0 < AT < A0 e
(
0.01r·y

)
or, since AT = A0 (1+ p)T that

A0 < A0 (1+ p)T < A0 e
(
0.01r·y

)
.

The present value version says that if we replace T by −T and y by
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−y we should have

A0 > A0 (1+ p)−T > A0 e
(
0.01r·(−y)

)
.

Note that, although the directions of the inequalities are reversed,

the exact value AT is still in the between A0 and the continuous ap-

proximation as claimed. I leave this to you: it is good practice in

playing with exponents and inequalities: you need no special knowl-

edge about the number e.

Problem 5.3.13: Show that if A0 < A0 (1+ p)T < A0 e
(
0.01r·y

)
, then

A0 > A0 (1+ p)−T > A0 e
(
0.01r·(−y)

)
.

If you are hoping that I will now explain where this approximation

comes from, bless you. First off, there’s not much doubt that the

Continuous Approximation 5.3.11 is correct. The fact that it com-

putes the two amounts above to the penny is pretty convincing. And,

as we’ve already noted you don’t need to understand where it comes

from to use it. So if you could care less, you can skip to Example

5.3.16.

Everything comes down to Bernoulli’s Limit for exp 1.4.56. As I

remarked when we were studying exponentials, Bernoulli stumbled

on his limit when he was trying answer exactly the same question

about compound interest that we’ve been asking in this section: How

much interest can be earned if we compound ever more frequently?

So the connection of e with the mathematics of finance is not only

an intimate, but a very early one. I’ll write down the formula again

here since we’ll use it so much.

Bernoulli’s Limit for exp 5.3.14: If n is a large positive num-

ber, then
(
1 + 1

n

)n
is slightly smaller than e. The bigger n you

take, the closer the approximation. In fancier notation, as n -∞, of(
1+ 1

n

)n -e.

Remember that this formula depends on the logarithmic version

Bernoulli’s Limit for exp 1.4.56 which was what we actually
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proved. But you can convince yourself that it’s right, without going

back there, by calculating with a few big values of n. For example,(
1+ 1

1000

)1000
= 2.716923932

and (
1+ 1

10000

)10000
= 2.718145927 .

The first less than e by about 0.013 and the second by about 0.0014.

Problem 5.3.15: You shouldn’t take n too big, however. Why? What

will happen if you do?

Moreover, it’s easy to see how it Bernoulli’s Limit for exp 5.3.14

leads to the continuous approximation. If we take the (p · T)th power

of both sides, we find that((
1+ 1

N

)N)(p·T)
=
(
1+ 1

N

)(N·p·T)
is a bit smaller than e(p·T).

The Continuous Approximation 5.3.11 just says we can always

find a value of N for which the exponential
(
1+ 1

N

)(N·p·T)
equals

the exponential (1+ p)T in the Compound Interest Formula 5.2.4.

Equating bases we need 1
N = p and equating exponents we need

N · p · T = T : there are two equations for the single unknown N
which would usually be impossible to satisfy. However, here is where

a small miracle happens. Solving the first equation tells that we must

have N = 1
p . If we plug this into the left side of the second equation

it becomes N · p · T = 1
p · p · T = T so the exponents automatically

match up too! The final point to note is that to get a good approxi-

mation we need to have N large. But

N = 1
p
= 1

0.01·r
m

= m
0.01r

.

Thus N is big when m is: in other words, we get a good approxima-

tion when we are compounding frequently.

Any way, using this approximation is a cinch. Let’s use it to check a

few problems from the last section.
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Example 5.3.16: In Problem 5.2.11, we worked out future values of

an amount of $1,255,000.00 earning nominal interest of 6.73% for

a term of 5 years. In part iii), where we compounded monthly I got

a future value of $1,755,397.74. The Continuous Approximation

5.3.11 gives $1,255,000.00e
(
0.016.73·5

)
= $1,757,048.78 which is, as

predicted, slightly higher but matches the exact answer to 3 places.

Example 5.3.17: In part ii) of Problem 5.2.18, we computed the

present value of $100,000.00.00 due in 20 years at interest of 9.6%

compounded quarterly to be $14,996.97. The Continuous Approx-

imation 5.3.11 gives $100,000.00.00e
(
0.019.6·(−20)

)
= $14,660.70.

Note that since this was a present value problem where we were mov-

ing money backwards in time, we used a negative value y = −20 and

that this time, as expected, the continuous approximation is slightly

lower than the exact answer. Because we are compounding less fre-

quently here, we get a less accurate approximation—only 2 places

match. But, the approximation is good enough that we’d be sure to

catch any silly errors like forgetting to convert from rate or term or

miskeying one of the numbers into our calculator.

Problem 5.3.18: Use the continuous approximation to check your

answers to the 4 problems Problem 5.2.20 to Problem 5.2.23.

5.4 Yields

If you’re very alert, you may have noticed that while Section 5.1

ended with an assortment of problems which asked you to find

terms and rates as well as interest and amounts, all the problems

in Section 5.2 asked about amounts. Don’t we ever want to use the

compound interest formula AT = A0 (1+ p)T to find an interest rate

r by solving for p and using the Interest Rate Conversion For-

mula 5.1.10 to find or a term in years y by solving for T and using
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the Term Conversion Formula 5.1.13? Yes and no. When money is

borrowed or loaned at fixed interest in everyday life, all the variables

which affect the calculation of interest—amount, rate, term, com-

pounding frequency—are almost invariably known by both parties.

For all consumer loans, the lender is obliged to state these in writing

to the borrower. This is the no side of the answer.

The yes side of the answer involves, paradoxically, evaluating finan-

cial transactions which do not involve fixed interest rates. There are

many situations in which we give up the use of of a sum of money

at one point in time and at a later time receive the use of a different

sum. As common simple examples, you might buy a house, live in

it for 10 years and sell it, or you might buy a stock keep it for 15

months and sell it. As a more complicated example, you might put

money into a pension plan through regular contributions through-

out your working life and then receive pension checks from the plan

after you retire.

Investment 5.4.1: We’ll use investment as a general term for any

transaction in which a sum of money is surrendered at one point in

time (we speak of making or buying the investment) and a second

sum of money is received in return at a later point in time (we speak

of liquidating or selling the investment).

How can we compare investments? If I really knew the answer to

that question, I wouldn’t be teaching math. The reason the question

is so hard is that when we make an investment we know how much

money we are surrendering but we can only guess how much we

will realize when we sell the investment. However, to the extent that

we know or can guess a selling price, we can compare investments

using the ideas of compound interest. In particular, we can compare

the past performance of investments since in this case we know both

the before and after prices.

So let’s suppose that we are given a buying price B (the present value

of the investment), a selling price S (the future value) and the term
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y in years between the date of purchase and the date of sale. What

we’d like to do is to use the Compound Interest Formula 5.2.4

AT = A0 (1 + p)T to come up with an interest rate r which is gen-

erally called the yield of the investment. When we invest money at

fixed interest, we would rather get more interest than less—(at least

if we are willing to ignore other factors like the risk of losing our in-

vestment, taxes . . .). So, with the same provisos, we can compare any

two investments by simply computing their yields and seeing which

is greater.

The first steps in computing the yield are clear: we set A0 equal to

the buying price B and AT equal to the selling price S. However, we

hit a snag when we try to evaluate the term T . It is measured in

periods and to convert to these from the term in years y we need

to know the compounding frequency m. On the one hand, we now

know that changing m can substantially affect our answer so the

choice matters. On the other, no actual compounding was going on

so there is no “right” choice for m. This dilemma is usually resolved

by picking m somewhat arbitrarily. After all, if our main interest is

in coming up with a fair way of comparing investments, then all

that matters is that we use the same m for all the investments we

compare. Changing m will affect each yield individually but won’t

affect which investments have higher and lower yields. Thus there is

not one yield but many.

Yield 5.4.2: A yield on an investment is a nominal interest rate

r which would have allowed an amount equal to the buying price

B of the investment to accrue to the selling price S over the term

of the investment assuming a specified compounding frequency or

equivalently assuming a specified compounding period.

1—
1—
2—

a ·· ·· z ? 562 Comments welcome at �̂�

mailto:morrison@fordham.edu
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Annualized yields

By far the most common choice for m is to take m = 1: in other

words, to “compound” annually.

Annualized Yield 5.4.3: A yield computed by using annual com-

pounding is called annualized yield and is denoted by ra.

In an annualized yield ra, r reminds us that we have an annual rate

of some sort and the subscript a reminds us that this rate is a yield

rather than a nominal rate. The difference between nominal rates

and yields is mainly one of viewpoint. Both play the same roles in

formulas. A nominal rate is one we know at the start of the invest-

ment while a yield is a rate we have to compute. Annualized yields

are almost the only ones seen in everyday life. In fact, if you see a

“yield” in an ad or financial report, you can pretty much assume that

it is an annualized yield. The compounding frequency will never be

mentioned.

Using annualized yields—taking m = 1—has two big advantages. It

greatly simplifies conversion: T = 1 · y = y by the Term Conver-

sion Formula 5.1.13 and p = 0.01·ra
1 = 0.01ra by the Interest Rate

Conversion Formula 5.1.10. The nominal interest rate r in this last

formula is just the annualized yield ra that we are looking for. Set-

ting A0 = B and AT = S, the Compound Interest Formula 5.2.4

AT = A0 (1+ p)T becomes

S = B (1+ 0.01ra)y

and the question is how can we solve for ra. The first step is clear:

divide both sides by B to get

S
B
= (1+ 0.01ra)y .

Next we have to eliminate the y th power so we can get at the yield

ra we are after. As always when solving equations, we have to ask

what operation will undo a y th power? There are two ways to state
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the answer. In terms of roots, a y th root undoes a y th power. Taking

the y th root of both sides, we get

y

√
S
B
= y
√
(1+ 0.01ra)y = 1+ 0.01ra .

Now we just subtract 1 from both sides and multiply by 100 to get

ra = 100 ·
 y

√
S
B
− 1

 .
The y th root operation that undoes a y th power is the same as a

power operation with fractional exponent
(
1
y

)
. Using this notation

we can make the same calculation:

(
S
B

) 1y
=
(1+ 0.01ra)y

 1
y

= 1+ 0.01ra

and hence

ra = 100 ·
(S
B

) 1y
− 1

 .
Annualized Yield Formula 5.4.4: If an investment is bought

for $B and sold after y years for $S, then the annualized yield ra on

the investment is

ra = 100 ·
 y

√
S
B
− 1

 = 100 ·
(S
B

) 1y
− 1

 .
For emphasis, I repeat that the two forms are completely equivalent:

I only give them both because some calculators have a y√ key and

some have a power key (usually marked xy ). Use whichever is more

convenient. I will use roots henceforth.

Example 5.4.5: Here’s an example of how this formula is used. Sup-

pose you are offered the choice of two investments. The first costs

$5,000 and returns $10,000 in 10 years. The second costs $4,000
and returns $5,000 in 3 years. We ask: which is better investment?

“No contest”, says the guy selling the first investment. “My way your
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double you money in 10 years. With hers you only make 25% in 3

years. It’d take you 12 years to double your money.” To check, we

simply compute both annualized yields and see which is higher. We

find that the two yields are

100 ·
 10

√
10000
5000

− 1
 = 7.18%

and

100 ·
 3

√
5000
4000

− 1
 = 7.72% .

So it is no contest: the second investment has a yield more than half a

percent higher ! What was wrong with the first salesman’s argument?

He ignored the fact that after the first three year term you continue

to make 25% every three years but it’s 25% of the new larger sum.

We can check this by hand: after 3 years you have 1.25 · $4,000 =
$5,000; after 6, 1.25 · $5,000 = $6,250—note that extra $250; after

9, 1.25 · $6,250 = $7,812.50. You have almost doubled your money

in 9 years, you’ll more than double it in 10.

Problem 5.4.6: Show that $4,000 at 7.72% interest compounded

annually for 10 years amounts to $8,414.41.

Problem 5.4.7: How much will a bank CD which costs $1,000 today

and earns 4.5% interest compounded daily be worth at the end of 5
years?

Problem 5.4.8: Which has the highest and which the lowest yield of

the following three investments: a Treasury bill which costs $24,850
today and returns $100,000 in 30 years; a CD which costs $1,000
today and earns 4.5% interest compounded daily over the next 5
years; and a house which costs $120,000 12 years ago and is worth

$205,000 today? Warning: the annualized yield on the CD is not 4.5%

as you might at first think! To find out what it is, you’ll need to use

the answer to the preceding problem.
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What’s going on the with that CD? If the nominal interest rate r is

4.5%, why is the annualized yield ra not 4.5%? We have already seen

the reason. When you compound more frequently, interest piles up

faster. You earn more at interest of 4.5% compounded daily than

you do at the same nominal rate of v compounded annually. The

annualized yield on the CD tells what higher rate—you should have

found that it’s 4.60%—we’d have to earn compounded annually to

wind up with the same amount of interest as we do at a nominal rate

of4.5% compounded daily.

We can use the annualized yield to compare any two fixed inter-

est propositions—even if the compounding frequencies are different

and neither is annual. In this special case, the annualized yield ra is

generally called an effective yield or an effective interest rate: we’ll

use ra for effective rates to emphasize that they are just particular

annualized yields. The effective rate is the actual interest we earn in

a year with the compounding frequency already factored in: it’s what

we’d like to compare. The nominal rate gets its name from the fact

that it while it names a rate it does not really say what we’ll earn

until we also specify a compounding frequency.

It’s straightforward to get a formula for computing the effective rate

ra from the nominal rate r and the compounding frequency m. We

invest an initial amount B = A0 = $1 for one year and see what

amount S = AT we have at the end of the year. The Term Conver-

sion Formula 5.1.13 says that if y = 1 then T = m · y = m and the

Interest Rate Conversion Formula 5.1.10 says that p = 0.01·r
m so

S = AT = (1+ p)T =
(
1+ 0.01 · r

m

)m
.

Then we just compute an annualized yield with y = 1. In fact, since

y = 1 there is no need to take the y th root and since B = 1 too, the

formula for ra simplifies to ra = 100 · (S − 1). Plugging in for S, we

find,

Effective yield formula 5.4.9: The effective yield or effective

rate ra corresponding to a nominal interest rate r compounded m
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times a year is the interest we’d actually earn in one year and is given

by the formula

ra = 100 ·
(1+ 0.01 · r

m

)m
− 1

 .
Example 5.4.10: Let’s check that the effective rate for that CD as

computed by the formula really is just the annualized yield of 4.60%

we found in Example 5.4.5. Plugging in r = 4.5% and m = 365 we

find that

ra = 100·
((
1+ 0.01 · 4.5

365

)365
− 1

)
= 100

(
1.046025084−1

)
= 4.60% .

Problem 5.4.11: Which offers a higher yield? A CD with a nominal

rate of 5.25% compounded quarterly or one with a nominal rate of

5.20% compounded daily?

Problem 5.4.12: Which is a better investment? A CD with a nominal

rate of 4.45% compounded daily or a bond which sells for $8,000
today and returns $10,000 in 5 years.

Problem 5.4.13: In 1972, I bought a bottle of 1967 Chateau

d’Yquem for $17.35. In 1997, a bottle of the same wine sold at auc-

tion for $625.00. What yield would I have realized had I auctioned

my bottle instead of drinking it with friends for my wife’s 50th birth-

day?

Problem 5.4.14: Loan sharks charge compound interest of 2% a

week compounded weekly: see Problem 5.2.24. What is their annu-

alized yield?

The last problem illustrates an important point. You do not actually

need to liquidate an investment to calculate its yield: it’s enough to

know what price you could get if you did want to sell. This point is

more commonly applied in evaluating investments in stock, bonds,

mutual funds and other financial instruments for which a public

market with published prices exists.
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Project 5.4.15: I collect wine as a hobby. You might be interested

in classic cars, Van Goghs, old editions of the Bible, baseball cards,

. . . . Choose some good which you are interested in and for which you

can find historical price data and investigate what the yields have

been on investments in this good over the past century (or as far

back as you can find data). How much have yields varied from time

to time? Look up the terms “risk” and “liquidity”: these are aspects

of evaluating an investment which do not simply involve its price.

Discuss the risk of investing in your chosen good and its liquidity.

Continuous yields

Recall that at the beginning of the section on yields we settled on

comparing investments on the basis of annualized compounding

withm = 1. While the annualized yield which this produces is pretty

much the only one used in daily life, there is a second choice for m
which is used in more theoretical applications:m = ∞! Of course, we

cannot really use m = ∞ in any of our formulas. What we mean by

this is that we try to understand what would happen to the yield if

we took larger and larger finite values ofm. We already know the an-

swer: when we do this the Compound Interest Formula 5.2.4 gets

replaced by the Continuous Approximation 5.3.11.

Continuous Yield 5.4.16: A yield calculated from the Continu-

ous Approximation 5.3.11 is called a continuous yield and is denoted

by rc .

The formulas for continuous yields rc are actually simpler than those

for annualized yields ra. Moreover, they lead to a classic rule-of-

thumb for estimating compound interest.

To get a formula for continuous yield, we begin as above by equating

our buying price B with the the initial amount A0 in the Continuous

Approximation 5.3.11 and our selling price S with the final amount
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AT so that

S = AT = A0 · e
(
0.01r·y

)
= B · e

(
0.01r·y

)
.

Then we just plug in the number of years y the investment was held

and solve for the rate r . The main novelty comes, after dividing both

sides of the yield equation by B when we try to solve
S
B
= e

(
0.01rc·y

)
for rc . Instead of hiding out inside the base of an exponential, the

way ra did above, the continuous yield rc is in the exponent itself.

Thus taking a root or power won’t help: it just moves the rc to a

different exponent. For example if I raise both sides to the power

(0.01rc · y), I get(
S
B

)( 1
rc
100 · y

)
=
(
e
(
0.01rc·y

))( 1
0.01rc · y

)
= e .

What we need is an operation which moves exponents down onto the

main level of our expressions. This is exactly what a logarithm does.

The key property of logarithms we’ll need is that logb(xa) =
a logb(x). There are, however, many logarithm functions—one for

each positive base so we need to choose a base before proceed-

ing. Basically, any choice will do the job but, as we saw in Sec-

tion 1.4 choosing b to be the number e has many advantages. As

I noted there, almost everyone who works with logarithms does all

their work in this base because it makes many formulas simpler—

including our formula for continuous yield. That’s why we think of

ln as God’s logarithm and call it the natural logarithm. Recall from

exp and ln are inverses 1.4.53 that the key property then becomes:

ln(ea) = loge(ea) = a loge(e) = a.

Once again, recall that your calculator has a special ln key for cal-

culating natural logarithms (which incidentally confirms how widely

used ln is). Using it, we can solve for the continuous yield. We just

take the natural logarithms of both sides of
S
B
= e

(
0.01rc·y

)
1—
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and apply the key property ln(ea) = a with a = (0.01rc · y) to find

ln
(
S
B

)
= ln

(
e
(
0.01rc·y

))
= (0.01rc · y) .

Finally, we multiply both sides by
(
100
y

)
to get

Continuous Yield Formula 5.4.17: If an investment is bought

for $B and sold after y years for $S, then the continuous yield rc on

the investment is

rc =
100
y
· ln

(
S
B

)
.

A natural question is: how do continuous and annualized yields com-

pare to each other? The answer is that continuous yields are always

slightly lower but the two are usually fairly close. You might at first

think that continuous yields should be slightly higher. After all, we

know that the more frequently you compound—the bigger m—the

more interest you earn at a fixed nominal interest rate and the Con-

tinuous Approximation 5.3.11 informally means letting m = ∞.

But, here we have turned the question around: we want to achieve

a fixed amount of growth in our investment from B to S in a fixed

time of y years. The annualized yield ra is the nominal rate which

would achieve this with annual compounding. If we used used this

rate ra in the Continuous Approximation 5.3.11 we’d wind up with

a sum larger than S because we’re compounding more frequently.

So to end up at S while compounding continuously we have to use a

rate rc a bit lower than ra. Let’s check this with some examples.

Example 5.4.18: What are the continuous yields of the two invest-

ments in Example 5.4.5—recall that the first costs $5,000, returns

$10,000 in 10 years and had an annualized yield ra1 = 7.17% while

the second costs $4,000, returns $5,000 in 3 years had an annualized

yield ra2 = 7.72%. The corresponding continuous yields are

rc1 =
100
10
· ln

(
10000
5000

)
= 6.93

and

rc2 =
100
3
· ln

(
5000
4000

)
= 7.44% .
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In both cases, the continuous yield is about a quarter of a percent

lower than the annualized yield as we predicted. Note, however, that

difference between the two remains about a half a percent.

Here are a few problems for you to try.

Problem 5.4.19: Which has the highest and which the lowest con-

tinuous yield of the following three investments: a Treasury bill

which costs $24,850 today and returns $100,000 in 30 years; a CD

which costs $1,000 today and earns 4.5% interest compounded daily

over the next 5 years; and a house which cost $120,000 12 years ago

and is worth $205,000 today?

Problem 5.4.20: Find the continuous yields on a CD with a nominal

rate of 5.25% compounded quarterly and on one with a nominal rate

of 5.20% compounded daily? Which offers a higher continuous yield?

Problem 5.4.21: Use continuous yields to decide, which is a better

investment? A CD with a nominal rate of 4.45% compounded daily or

a bond which sells for $8,000 today and returns $10,000 in 5 years.

Problem 5.4.22: In 1972, I bought a bottle of 1967 Chateau

d’Yquem for $17.35. In 1997, a bottle of the same wine sold at auc-

tion for $625.00. What continuous yield would I have realized had I

auctioned my bottle instead of drinking it with friends for my wife’s

50th birthday?

Problem 5.4.23: Loan sharks charge compound interest of 2% a

week compounded weekly: see Problem 5.2.24. What is their contin-

uous yield?

If you compare these problems with Problem 5.4.20 to Problem

5.4.22, you’ll see that all the continuous yields are indeed a bit lower

than the corresponding annualized yields. However, in all cases, the

ranking of investments by annualized yield is the same as the rank-

ing by continuous yield. This is no accident.
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Challenge 5.4.24: Show that if one investment has a higher annu-

alized yield than a second, then it also has a higher continuous yield

and vice versa.

In other words, if we only want to compare investments it does not

matter which of the two yields we use. The rates we get will be a

bit higher if we use annualized yield and a bit lower if we use con-

tinuous yield. This explains why what you see are annualized yields.

The people publishing these yields are generally trying to make their

investments look attractive. So they prefer the yield which results

in higher percentages: they’d use centennialized yields if they could

get away with it because these would appear higher still. However, as

a practical matter the difference is small and either yield is equally

good for comparing investments.

Challenge 5.4.25: Just as stating yields in terms of very short

compounding periods—in the extreme, continuous compounding—

shrinks them a bit, stating yields in terms of very long compounding

period can really make them appear to grow. Show that an invest-

ment with a 5% annualized yield has a decennialized yield of 6.2%

and a centennialized yield of 130.5% (yes, that’s 130.5%). Hint: First,

compute the amount AT to which $1 would accrue at interest of 5%

compounded annually over term of 10 and 100 years. Then, find the

interest in each amount and divide by the corresponding term. You

should get the numbers above. Finally, explain why this procedure

gives the yields asked for.

There’s one possibility we haven’t considered yet. What if your in-

vestment decreases in value? Then, you must have a negative yield.

You can still use the formulas above to compute either an annualized

yield or continuous yield with no change as the next exercise shows.

I’ve done the first part to get you started.

Problem 5.4.26: Suppose that you invest $1,000. Find the (nega-

tive) annualized and continuous yields you obtain if:
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i) After 3 years your investment returns $800.

Solution
To find the annualized yield, we just plug in for ra:
ra = 100 ·

(
y
√
S
B − 1

)
= 100 ·

(
3
√
800
1000 − 1

)
= −7.16822333 so the

annualized yield is about −7.2%.

To find the continuous yield, just plug in for rc :
rc = 100

y · ln
(
S
B

)
= 100

3 · ln
(
800
1000

)
= −7.438118376 so that the

continuous yield is about −7.4%.

ii) After 5 years your investment returns $700.

iii) After 8 years your investment returns $300.

Are you bothered by anything about the answers above? I hope so. Ig-

noring the sign, the annualized yield is also less than the continuous

yield. I just convinced you that continuous yields would be smaller—

see the comments following the Continuous Yield Formula 5.4.17.

What gives? The one difference in the problems above is that they in-

volved negative yields rather than positive ones so this must be what

gives.

Project 5.4.27: Convince yourself that when yields are negative

continuous yields will always be larger in size than annualized ones.

i) First, compare the future value of $1,000 which earns a nominal

rate of (-6)% for 5 years compounded annually with the future value

at the same rate when compounded continuously.

ii) Next, compare the present values of $3,500 due in 8 years if

the nominal rate is (−7.5)% when compounded annually and when

compounded continuously.

iii) Explain why the answers to i) and ii)) are both what we’d expect

from the italicized claim.

iv) Examples are a good first step in verifying a claim but mathe-

maticians are professional skeptics. Can you come up with an argu-

ment to convince me that the claim above is always right?
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The rules of 69.3 and 72

There is one feature of the Continuous Yield Formula 5.4.17 which

is considerably nicer than the Annualized Yield Formula 5.4.4.

The term in years y is out in the open in the Continuous Yield

Formula 5.4.17 while it is hidden in the radical or exponent in the

Annualized Yield Formula 5.4.4. This means we can easily solve

for y in the former formula:

Term equation 5.4.28: y = 100
rc · ln

(
S
B

)
.

It’s tempting to ask whether we can make any use of this formula.

The kind of “How long?” question which we’d be able to answer is

one which seldom arises in everyday financial transactions. In these,

the term of the transaction is almost always fixed. However, when we

want to think informally about investments, worrying about the big

picture rather than the last few pennies, this question can be quite

helpful. The typical example of how we’ll phrase it is the question

“How long will it take my money to double?" which we can use this

to get an idea of how long we will have to wait to achieve financial

goals without a lot of decimals.

What does “doubling my money” mean? Just that the selling price

of my investment is twice the buying price: S = 2B or S
B = 2. The

corresponding period of time is usually called a doubling time and

we’ll denote it by y2. Plugging into our equation for y , we find y2 =
100
rc · ln

(
S
B

)
= 100

rc · ln(2). For future reference, we’ll record this.

Doubling Time Formula 5.4.29: The doubling time y2 and the

continuous rate rc are related by the formula

y2 =
100
rc
· ln(2) .

However, we will not use this formula until a later section. The rea-

son is that the ln(2) is not suitable for thinking informally. We’d

at least need a calculator to use the formula. But we can get an

easy rule-of-thumb formula if we just plug in and simplify. Since
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ln(2) ' 0.6931471806 ' 0.693, we find that 100
rc · ln(2) ' 69.3

rc . This

gives the

Rule of 69.3 5.4.30: The time in years y2 which it will take money

to double at a continuous yield of rc% is roughly 69.3
rc .

The main virtue of this formula is its arithmetic simplicity. You just

divide 69.3 by the rate in percent to estimate the doubling time in

years. As a rule-of-thumb for making rough or “ballpark” estimates,

it has two defects. First, what you’ll usually have in mind when you

are making such estimates are annualized rather than continuous

yields. We certainly don’t want a rule-of-thumb that requires us to

convert between the two kinds of yields. This is easily resolved: just

use the annualized yield if that’s easier. In fact, if all you have is a

nominal rate, use that. As we’ve seen all these rates differ, but in

the practical range of 0-20% they don’t differ by very much. Since a

rule-of-thumb is only asked to give rough estimates, we can afford

to ignore these small differences.

The second problem is that decimal, 69.3. So what if we can use

the first rate we hit on. If we have to divide into 69.3, many of us

will have to get out our calculators. The point of a rule of thumb

is to avoid this. How can we do so? The first idea to simply round

to 69. Still kind of an awkward number. Why not round up to 70

which is a bit “rounder”? Making the numerator a bit bigger also

helps compensate for the fact that the nominal or annualized rates

we likely use are a bit bigger than the rc in the Rule of 69.3 5.4.30.

You sometimes see this rule (called the “rule of 70”) in books. But

having decided to play fast and loose with the numerator, there is

a much cleverer replacement: 72. This is cleverer for two reasons.

First, the increase does a better job of compensating for fact that

the rates we’ll be using are higher than the continuous yield in the

Rule of 69.3 5.4.30. Second, 72 is in some ways “rounder” than 70:

it’s evenly divisible by 2,3,4,6,8,9,12. Better still, we can just have

our cake and eat it too by using the:
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Rule of 69.3, 70 and 72 5.4.31: The time in years y2 which it

will take money to double at interest of r% is roughly equal to any

of the three fractions 69.3
r , 70

r or 72
r . So as long as we only want a

rough estimate of the doubling time, we can use whichever of the

3 numerators is easiest, and we can use any nominal rate for the

denominator r .

Amazingly, this rule was first stated in 1494(!), almost a hundred

years before the invention of logarithms, in the book Summa de

Arithmetica of Fra Luca Pacioli:

“If you want to know for every percentage interest

per year, in how many years your capital will come

back doubled, hold the rule of 72 in mind, which you

always divide by the interest, whatever the quotient,

in that many years it will be doubled. Example: When

the interest is 6 percent per year, I say that you di-

vide 72 by 6; you get 12, so in 12 years your capital

will be doubled.”

Example 5.4.32: Here’s an example of the kind of rough and ready

estimation for which this rule is suited extending Example 5.2.14.

Suppose my parents make an initial contribution of $10,000 to my

daughter’s college fund when she is born. How much can I anticipate

having in the fund when she is 18? The answer clearly depends on

what interest rate I can realize, but how. With a very conservative

investment like a CD, I can expect to earn about 4%. This means my

money will double in y2 = 72
4 = 18 years so I’ll have $20,000.

Investing in bonds, which are somewhat riskier—there’s a chance of

default—I can expect to earn 6%. Now my money will double every

y2 = 72
4 = 12 years. So, the $10,000 would double once to $20,000

when she’s 12 and a second time to $40,000 when she’s 24. When

she’s eighteen it would be somewhere in between, say about $30,000.

Actually, it’s closer to $28,000 but the whole virtue of this kind of

rough estimation is that such differences are small enough to ignore.
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If I add some stocks to the mix, increasing my risk again, maybe I

can expect to earn 8%: now my doubling time is y2 = 72
8 = 9 years. In

18 years, my money doubles twice to about $40,000.

Hmm, perhaps I should really gamble and put my money into emerg-

ing markets, hoping for a yield of 10%. Now I’ll switch to a numera-

tor of 70 (why?) to find that my doubling time is about y2 = 70
7 = 7

years. So, I’ll have $20,000 when she’s 7, $40,000 when she’s 14 and

$80,000 when she’s 21. (Note that every time I wait one doubling-

time, I double the sum at the start of the period, not my initial

$10,000. The second doubling from age 7 to 14 doubles $20,000
and the third from ages 14 to 21 doubles $40,000.) At age 18, I’d ex-

pect to be roughly halfway between $40,000 and $80,000, at around

$60,000.

What if I could figure out some way to earn 12%? Then my doubling

time would drop to y2 = 72
12 = 6 years, and by the time my daughter

is 18 my $10,000 would have doubled 3 times to $80,000.

What conclusions can I draw from this analysis? First, I am clearly

going to need to make some contributions of my own to the fund.

There’s no way the initial gift can grow to the $120,000 I think I’ll

need. In fact, with prudent investment strategies and realistic yield

assumptions, I’ll need to provide the bulk of the fund. Better start

working on this now. The right strategy is discussed in section Sec-

tion 5.6.

Here are some problems for you to try. Do them using the Rule of

69.3, 70 and 72 5.4.31.

Problem 5.4.33: How long does it take money to double at interest

of 5%? 7%? 9%? Express your answers to the nearest year.

Problem 5.4.34: About how much will $20,000 in your retirement

account at age 25 amount to by the time you are 65, if the account

has a yield of roughly: 2%, 5%, 7%, 9%, 12%? About how much will

$20,000 in your retirement account at age 45 amount to by the time
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you are 65, if the account has a yield of roughly: 3%, 6%, 7%, 10%,

14%?

Problem 5.4.35: How long does it take a debt carried on a credit

card with an 18% interest charge to double?

Finally, we should remark that we can turn the Rule of 69.3, 70
and 72 5.4.31 around. If we are given the doubling time y2 for an

investment, we can use these to determine its approximate yield r .
Since y2 ' 69.3/70/72

r , we have r ' 69.3/70/72
y2 . I emphasize the word

approximate here because we’ll usually only know the doubling time

approximately. Here are a few problems for you to try.

Problem 5.4.36: Determine the approximate annualized yield

which an investment would provide if it has a doubling time of:

i) 10 years?

Solution
Just plug in: r ' 72

y2 =
72
10 = 7.2 so the yield is about 7%. Note

that I do not expect the rule of thumb to give me the tenths of

percent so I rounded to the nearest percent.

ii) 6 years?

iii) 18 months?

What if your investment decreases in value? An investment which

decreases in value is never going to double so you might think that

the Rule of 69.3, 70 and 72 5.4.31 could never apply. Actually, only

a small change is needed to make it useful for such situations. The

key is to make the correct analogy: doubling is for an investment

which grows, as halving is for an investment which shrinks. So we

should ask for a halving time, y 1
2
: that is, ask when will SB =

1
2 . We

can answer this using formula Term equation 5.4.28 just as for the

doubling time. We find

y 1
2
= 100
rc
· ln

(
S
B

)
= 100
rc
· ln

(
1
2

)
= 100
rc
· −0.693147 ' −69.3

rc
.

The only thing that’s new is the minus sign which reflects the fact

that ln
(
1
2

)
= − ln(2). (This is a general property of logarithms—

it still holds if we replace 1
2 by 1

x and 2 by x—which we won’t go
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into.) We saw in Continuous yields that we can still talk about the

continuous yield for an investment decreasing in value: rc is simply

negative. The minus in rc will cancel the minus above and we’ll wind

up with a positive number of years for the halving time, as we’d hope.

In practice, the formula is so close to the formula for a doubling time

that there’s no point in having two. Instead, we’ll just use the existing

Rule of 69.3, 70 and 72 5.4.31 but remember that, when the yield is

negative—and hence we get a negative value for y2—we should just

drop the minus and interpret the time as a halving time. We’ll see

several applications for this in Section 5.5.

Problem 5.4.37: Find the approximate halving time of an invest-

ment whose annualized yield is −6%, −9%, −12%.

Finally, we can also turn a halving time into an approximate yield

just as for a doubling time above.

Problem 5.4.38: Find the approximate yield (which will be nega-

tive) on an investment whose value halves

i) every 6 years.

ii) every 8 years.

iii) every 10 years.

Here are a few final general practice problems.

Problem 5.4.39: We can combine yields and doubling times and

pass from buying and selling prices to doubling times. Use continu-

ous yields to find the doubling time of an investment which

i) was purchased for $1,200 and after 3 years is worth $1,500?

ii) was purchased for $800 and after 6 years is worth $1,200?

iii) was purchased for $23,000 and after 18 months is worth

$26,500?

Solution
We proceed in two steps: first find the yield and second convert

this to a doubling time. In step one, we have B = $23,000, S =
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$26,500 and y = 1.5—note that we needed to convert the time

to years because we want an annualized yield—so that

rc =
100
y
· ln

(
S
B

)
= 100
1.5

· ln
(
26500
23000

)
= 9.443367800

for a yield of about 9.4%. (Here I have hard buying and selling

prices so I can compute a fairly accurate yield. But, if I really

wanted accuracy I’d have to use the Annualized Yield For-

mula 5.4.4. Check, if you like, that the annualized yield here is

9.90%.)

Step two is even easier. I’ll use the numerator 69.3 since I am

already using decimals in my yield: y2 '= 69.3
9.4 = 7.37234042553

so the doubling time is a about 7 and a third years. Let’s check

this by computing the future value of $23,000 at 9.90% interest

compounded annually for 7.37 years. What answer should we

expect? We have p = 0.099 and T = 7.37 so we actually obtain

$23,000(1 + 0.01·9.9
1 )7.37 = $46119.1005943 or a bit more than

the expected $46,000.

Problem 5.4.40: The same steps apply to investments that shrink.

In Problem 5.4.26, we carried out the first half—finding the yields—

for three such investments. What is the halving time of each of these

investments?

Solution to i)
We just plug the yield of −7.4% into the Rule of 69.3 5.4.30 to

find: y2 = 69.3
−7.4 = −9.364864865. Since this is negative, we realize

that what we have is a halving time, and since we are using a

rule of thumb we round the answer. The halving time is about 9
years.

Problem 5.4.41: Use the Rule of 69.3 5.4.30 to find the continuous

yield on an investment whose value doubles in 18 months? We’ll use

this answer in discussing Moore’s Law 5.5.18.
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5.5 Applications of compounding

The formulas which we have developed in the last few sections can

be used to study a number of problems having nothing to do with

interest at all. It’s amazing how often this happens in mathematics.

You isolate some essential pattern in one problem and then you no-

tice the identical pattern in a completely unrelated subject. You can

then apply the techniques you developed to study the first problem

to the others without doing any additional work. It’s a kind of “some-

thing for nothing” which is one of the things which makes mathe-

matics so useful. So, in this section, we’ll pause to look at some of

these other applications before going back and looking at the more

complex topic of amortization.

Inflation

When we introduced the topic of the college fund as an example of a

Future Value 5.2.12 problem, I computed the $120,000 balance as 4
times the current $30,000 cost per year of sending a child to a good

private university. There’s a major problem with that computation.

My daughter isn’t going to college today, she’ll be going in 18 years.

So the amount I really need to provide for is the 4 times the annual

cost of sending a child to a good private university in 18 years. I don’t

(and can’t) know what that cost is going to be exactly. However, we

can estimate it using the Compound Interest Formula 5.2.4.

Inflation 5.5.1: The general term used by economists to describe

rising prices or costs is inflation. In the rare cases where prices fall,

they speak of deflation.

The metaphor is supposed to make you think of a tire or balloon—

the good or service—which can be filled with more or less air. The
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amount of air corresponds to the price so when we raise the price

we need to inflate.

The standard measure of inflation is the rate of inflation which is

most often stated in the news as a percentage—“The Department of

Commerce announced to day that in March the inflation rate stood at

3.4%”—but as the name rate suggests this is a concise way of refer-

ring to what is really a percentage-per-year. Informally, the inflation

rate is the percentage by which prices will rise in a year. In other

words,

Inflation Rate 5.5.2: The inflation rate is the annualized or nom-

inal annual rate at which prices are rising.

I’m already starting to use terminology from our study of compound

interest to describe inflation but I can hear some of you protest-

ing. “Just a minute, Dr. Morrison.” You’re thinking that prices be-

have very differently from the balance in your bank account and

you’re correct. Prices don’t rise periodically (by predictable jumps

which are timed at regular one period intervals) but sporadically (by

jumps which are unpredictable in both size and timing). Moreover,

the prices of different goods and services change somewhat indepen-

dently of each other. Milk doesn’t go up 2 cents a quart just because

gas went up 8 cents a gallon. An inflation rate is some kind of aver-

age of the changes in prices of all good and services. It’s more like an

average of a large number of individual bank accounts earning inter-

est at different rates and periods but even that’s a simplification. In

fact, just deciding how to make up this average is a subject of some

controversy amongst economists. If they can’t even agree on how to

compute it with all the prices in front of them, how can we deal with

it without the prices?

This kind of question comes up again and again when you want to

use math to study a real-life problem. Real life is complex, disorderly

and full of wrinkles and exceptions. Math is hard enough when you

try to use it to study simple problems. If you incorporate all the com-
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plexity of the real world into a mathematical problem, you generally

get a problem you can’t solve. People who use math to study the real

world generally confront such difficulties in three stages.

In step 1, they try to find ways to simplify the questions they are

interested in—by ignoring certain features or assuming that prop-

erties which are only roughly true actually hold exactly—until they

can state their questions as mathematical problems which they can

solve. You wish you could paint The Last Supper but you can’t: in-

stead of just giving up, you draw a cartoon instead. The goal is to

capture enough of the essential features of the problem that you can

still recognize it—we’d like to still be able to pick out Christ and the

Apostles in the cartoon. The polite term for this process is mathe-

matical modelling but people also speak of making a caricature and

this term captures the flavor of what goes on somewhat better.

Step 2 is to do the math. This can range from very easy to very hard

depending on the particular problem. In Math4Life, we’ll stick to the

easy range. If things work out, you now have an answer to a math

problem. But you were interested in a real-life problem.

Step 3 is to ask what the mathematical answer tells you about that

problem. This involves more than just interpreting numbers. Usually,

to check that the answer we have applies in the real world we need

to see if it makes predictions which can be checked against known

facts. The danger is that in step 1 we simplified too much and while

we were able to get an answer it no longer accurately reflects reality.

All three steps require considerable care and effort. But, there is

almost no field in which careful mathematical modelling has not

proved useful. And I do not just mean the sciences. Mathematics

has been used to determine the authorship of ancient manuscripts,

to reconstruct the migrations of stone-age peoples from the genetic

makeup of their descendants, to plan the U.S. economy in World War

Two, to understand how our mind converts the stream of photons
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hitting the retina into the images we see . . . —I could go on indefi-

nitely.

With this philosophy of trying to use mathematics to model the real

world, let’s get back to inflation. OK, we speak of inflation as a per-

centage rate. But, why does that make it have anything to do with

compound interest. When we say that the inflation rate is 5% a year,

all we mean is that something that costs $100 last year will cost

$105 today. The extra $5 is the inflation or rise in price. In general,

the new price is the old price plus the inflation rate times the old

price. Another way of putting this—the one we’ll prefer—is to say

the new price is the old price times 1 plus the inflation rate. The key

point here is that what counts is not the current price but the time

interval. If we wait a year, any price will rise 5%. A good that cost

$500 will rise 5% to $525, one that cost $20 will rise 5% to $21.

This certainly looks familiar and so we should at least ask: “Does

inflation work like either simple or compound interest?”. We can rule

out one answer: it’s not simple interest. If it were, then a year from

now that $105 item would cost $110. But, to get next year’s price

we add 5% of this year’s price of $105. That’s $5.25 and so the price

next year will be $110.25. I hope you recognize that quarter: it’s

like the interest on interest—5% of $5.00 is 25 cents—and tells us

that inflation works like compound interest. In fact, the Compound

Interest Formula 5.2.4 applies directly to inflation because the One

period principle 5.2.3 on which it is based does. Recall that this

principle says that “to get from the amount at the start of a period to

the amount at the end of that period you multiply by (1+ p) where

p is the periodic rate.” That’s exactly how the previous paragraph

says inflating prices behave. In other words, inflation is like interest

on prices and the inflation rate really is a nominalized or annualized

rate at which prices are rising.

So, can we just apply the Compound Interest Formula 5.2.4 to

some questions about inflation? Not quite; one key ingredient is
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missing. Before going on, see if you can spot what it is.

That’s right: to use Compound Interest Formula 5.2.4 we need to

know the compounding frequency m. As I noted above: “Prices don’t

rise periodically (by predictable jumps which are timed at regular

one period intervals) but sporadically (by jumps which are unpre-

dictable in both size and timing).” In other words, the One period

principle 5.2.3 seems to capture the basic mechanism of inflation

nicely except that we have no idea what a period is. What we’d like is

some way to calculate something like compound interest which does

depends only on the annualized rated—the rate of inflation—but not

on any compounding frequency. Put this way, a moment’s recollec-

tion shows that we’re in luck: this is exactly what the Continuous

Approximation 5.3.11 does

Maybe, you’re worried because the Continuous Approximation

5.3.11 is just what it says—only an approximation to compound in-

terest. How do we know that such an approximation will give sen-

sible answers when applied to a quantity like inflation which itself

is only approximately like compound interest? Good question. There

are several ways to convince yourself that we’ll get useful answers.

On a general level:

Triangle rule 5.5.3: If two quantities (like inflation and the Con-

tinuous Approximation 5.3.11) are both close to a third (compound

interest), they must be close to each other.

This idea is a very basic one which appears all over the place in

mathematics. The name triangle rule comes from drawing a picture

with the three quantities as the vertices of a triangle.

Problem 5.5.4: Draw a picture of a circle of radius 1 (and hence

diameter 2) with the center labelled C. Now put place two points A
and B anywhere you like in the circle. The points A and B are both

close to C—within 1 unit. Now ask: what’s the furthest apart that A
and B can be from each other?

Hint: In the worst case, the triangle degenerates to a line segment.
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A more direct argument for applying the Continuous Approxima-

tion 5.3.11 to inflation depends on recalling how we obtained the

Continuous Approximation 5.3.11. We simply let the compound-

ing frequency get very large, or equivalently, let the compounding

periods get very short. We can think of inflation somewhat similarly.

We already noted that the rise in the general level of prices is re-

ally made up of many independent jumps in the prices of individual

goods and services. We can think of each such jump as a tiny rise

in overall prices. When gas goes from $3.32 to $3.42 we think of

this not as a 3% rise in he price of gas but as a much smaller rise in

overall prices—smaller because only a small fraction of our money

is spent on gas. The next day when milk goes up 2 cents a quart, we

view this too as a small rise in overall prices (much smaller since we

spend less on milk than gas). The inflation rate tells us what annual-

ized increase in overall prices all these many tiny changes caused by

rises in the prices of individual goods amount to. Instead of thinking

of prices as compounding in discrete chunks, we view them as rising

smoothly and continuously like the level of a liquid in a jar.

Later in this section, we are going to consider several other quanti-

ties which, like price levels, grow in accordance with the One period

principle 5.2.3 except that there is no regular compounding period.

Instead, the overall change in the quantity is the result of an accu-

mulation of many small changes in its parts. All these quantities can

be modelled (that is, approximated and studied) using a form of the

Continuous Approximation 5.3.11. Rather than repeat the discus-

sion above several times, we now give a general statement which

applies to them all.

General Compounded Quantity 5.5.5: We will say that a quan-

tity is a general compounded quantity if it varies according to the One

period principle 5.2.3. That is, there is a period of time and a fixed

periodic rate p such that regardless of the value B of the quantity at

the start of a period, you can find its value S at end of that period by
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multiplying the starting value B by (1 + p). The crucial point which

makes for a compounded quantity is that the same magic factor of

(1 + p) works whatever starting amount B we choose or, what is the

same thing, for whatever time we choose to start the period.

In discussing inflation above, we’ve worked with years as periods so

that the periodic rate is an annualized rate (like the 5% rate of infla-

tion used above). This is purely to keep things simple for you. With

a bit more arithmetic, any period can be used to replace the year. Of

course, as with interest, if we change the period, we will change the

periodic rate p and hence the magic factor (1+p) but the same basic

principle will apply: over equal periods, any two starting amounts get

multiplied by the same magic factor. We’ll use this principle often in

the rest of section.

For discussing inflation, I chose years because that’s the period the

media commonly use. But, unlike interest calculations, where there

is a single right “to-the-penny” answer and we have to use the right

periods to get it, for a quantity like inflation, there is no such canon-

ical choice for the periods and no way to get accurate answers. Once

we accept this, we’re free to choose our periods to make is easiest

to get approximate answers. In working with yields in Section 5.4,

we have already seen that annual compounding is not best choice

if such approximate answers are our goal. Instead, we’ll choose to

compound continuously. One immediate advantage is that we can

always measure time in years.

General Continuous Approximation 5.5.6: If B and S are the

values of a General Compounded Quantity 5.5.5 at two times that

are y years apart, then Sy ' B e
(
0.01r·y

)
.

The notation reflects the fact that we’ll usually be thinking more in

terms of a starting value B to an ending value S. I hope the reason

for the name is clear: if we replace B by A0 and S by AT , the General

Continuous Approximation 5.5.6 turns into the Continuous Ap-

proximation 5.3.11. There’s one more point to note about this for-
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mula. Although we can easily use it to get lots of decimals, we are

usually only trying to get a rough approximation from it. The reason

is that, unlike an interest calculation where we know the exact con-

stant interest rate and compounding period the bank will use, quan-

tities like inflation involve fluctuating rates when we often can only

guess at and don’t compound at regular periods. They are enough

like compound interest to make it worth applying the same formu-

las but are different enough that we don’t expect the formulas to

give accurate answers.

Now some problems to warm up. I have done a few parts worked as

models.

Problem 5.5.7:
i) Suppose the rate of inflation is 5% a year. If a coat costs $120
today, about how much is it likely to cost in

a. 3 years.

Solution
Here B = $120, r = 5% and y = 3. Plugging in we find that

S ' $120e
(
0.015·3

)
= $139.42. Thus the coat is likely to cost

about $140 in 3 years. (Note how I claim only an approxi-

mate idea of the future cost.)

b. 6 years.
c. 12 years.

ii) Suppose the rate of inflation is 9% a year. If a car costs $23,000
today, how much is it likely to cost in

a. 4 years.

b. 8 years.

c. 12 years.

Solution
Here B = $23,000, r = 9% and y = 12. Plugging in we find

that S ' $23,000e
(
0.019·12

)
= $67,727.63. Thus the car is

likely to cost a bit less than $70,000 in 12 years.

There is another way to try to track inflation. Instead of focussing on

prices, we can focus on the buying power of the dollar. This shrinks
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due to inflation: as prices rise, we need more dollars to buy the same

goods, hence each dollar is worth less. Economists like to express

sums of money that will exist in the future in terms of “constant

dollars”—the dollars that exist today. How do we make the conver-

sion? Simple! Suppose I set B = $1 in General Continuous Approx-

imation 5.5.6. Then the value of S will tell me how many dollars I

need in y years to buy something which cost $1 today—like a dol-

lar. In other words, S tells me how many future dollars my present

dollar is worth. This is close to but not quite what the economists

want. They’d like to know how much I could buy today with $1 from

y years in the future. I could just set S to $1 and solve for B. How-

ever, I can avoid solving by recognizing that what the economists are

asking for is the present value (the value today) of $1 from y years in

the future and recalling that the Continuous Approximation 5.3.11

can be used to get present values by simply using negative numbers

of years. The next problem let’s you practice this.

Problem 5.5.8:

i) What will the value, in terms of today’s dollar, of a dollar 4 years

in the future be if the inflation rate is

a. 3%?

Solution
Here y = −4 (note the minus so I can get a present value),

r = 3% and B = $1. I find that S =' $1e
(
0.013·(−4)

)
=

$.8869204367 so the present value is about 89 cents. In

other words, a dollar 4 years from now will only buy what 89
cents buys today. You can check that $1 ' $.8869e

(
0.013·4

)
if you are suspicious of that negative y .

b. 5%?

c. 7%?

ii) What will the value in terms of today’s dollar of a dollar 12 years

in the future be if the inflation rate is

a. 3%?

b. 6%?
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c. 9%?

Solution
Here y = −12 , r = 9% and B = $1. I find that S ='
$1e

(
0.019·(−12)

)
= $.3395955256 so the present value is

about 34 cents. We can check this: the car from the Prob-

lem 5.5.7 which will cost $67,727.63 is worth $67,727.63 ×
0.3395955256 = $23,000 today.

The most interesting questions about inflation—what causes it? how

can we try to control it?—are not mathematical but economic in na-

ture. All the math does is help economists formulate and test mod-

els about inflation to try to come to grips with these basic questions.

I will say (oversimplifying somewhat) that the basic mechanism is

too much money chasing too few goods and services. The excess de-

mand leads to generally higher prices which is another way of saying

inflation.

Hyperinflation is an extreme case which sometimes results when gov-

ernments attempt to compensate for the falling buying power of

their currency by simply printing more. This of course means that

even more money is chasing the limited supply of goods and causes

even further inflation of prices. When inflation reaches very high lev-

els, sellers try to get a jump on it by raising prices even further. They

fear that before they can sell their goods and spend the proceeds,

prices will have risen even further. To protect against this, they add

a sort of “margin of safety” to prices. The government then has to

start printing money even faster to service its debts and so on.

Problem 5.5.9: In the 1970’s, Argentina underwent a period of hy-

perinflation in which prices were rising an average of 30% a month.

i) What annual rate of inflation does this correspond to? HINT:

This is like asking for the annualized yield of an investment given its

monthly yield. Since we view inflation as compounding continuously,

it is most appropriate to use the Continuous Yield Formula 5.4.17.
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Now ask yourself: if I bought something for B = $100, what price S
could I sell it for in 1 month?

ii) At this rate of inflation, how much will a car which costs $15,000
today sell for in 1 year? in 5 years?

Project 5.5.10: Look up the history of the hyperinflation in the

Weimar Republic in Germany in the 1920’s which is often blamed for

the rise of the Nazi Party. What was the highest daily rate of infla-

tion? To what annual rate of inflation would this correspond? Sup-

pose that a loaf of bread costs $1 and that a house costs $100,000
today. If you have enough just money to buy a house today, how long

would it have taken in the Weimar Republic before you did not have

enough money to buy a loaf of bread?

Population

Populations—of people, animals, plants . . . —are the next topic we

want to look at. If we can convince ourselves that these behave like

a General Compounded Quantity 5.5.5, then we can model them

using the General Continuous Approximation 5.5.6, something

which was first done in the 19th century by the economist Malthus

but which has important applications today in geography, biology

and other areas.

If populations are to satisfy the One period principle 5.2.3, there

should be an annual rate at which they grow. Let’s ask: what is this

rate? A moment’s thought suggests a first answer: populations grow

because of new births and the rate we want to consider is thus the

birth rate. This is half right. Can you see what’s missing? We’d be

done if we were immortal. Unfortunately, we have to account for

deaths too. The net growth of a population is the difference of these

two factors: if, for example, a population has a birth rate of 3.5%

a year and a death rate of 1.5% a year, we’ll simply say that the net

growth rate of the population is the difference, 2%, of these two rates.
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For example, if we had 10,000 people at the start of a year, we’d

expect about 350 births and 150 deaths during the year for an net

increase in population of 200 to 10,200. The growth during the year

was 200 or 2% of the original 10,000 population.

Just being able to name a rate does not automatically guarantee that

populations behave like a General Compounded Quantity 5.5.5.

We need to convince ourselves of the key fact that the percentage

change over a given period—say a year—only depends on the period

and not on the starting population. This certainly seems so be the

case for birth and death rates. We intuitively view the birth rate as

expressing a general propensity to have children (which may depend

on the percentage of the population of childbearing age, on cultural

factors like the desire to be able to provide a good education for

every child and so on) which is uniform across the whole population

and not affected by the size of the group we choose to measure.

Similarly the death rate depends on things like number of elderly

people, quality of medical care etc. but is again the same for all sizes

of groups. Hence, the net growth rate is also independent of the

size of the population we measure. The One period principle 5.2.3

applies and we can use the General Continuous Approximation

5.5.6 to model populations.

Project 5.5.11:

i) What’s wrong with what I just said even if we assume that pop-

ulations have uniform birth and death rates? More precisely, briefly

criticize the argument above. What factors which might be important

have I left out? (Hint: three you might want to consider are migration,

war and plagues). Give some examples of ways in which my assump-

tions that populations are uniform might be inaccurate. How does

that fact that birth and death rates change—both are much lower

now than they were a hundred years ago—limit the validity of my

argument?

ii) One property of any General Compounded Quantity 5.5.5 is
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that it always grows. (Or, as we’ll see is also possible when we look

at radioactivity, always shrinks). Find statistics on the population of

Europe (or of the country of your choice in Europe) over the period

from 1000 AD to 1600 AD. You’ll see both rises and declines in the

population so the model of a General Compounded Quantity 5.5.5

definitely does not apply. What factors were responsible? What is it

about these factors that makes our model invalid for these popula-

tions?

iii) Another major objection my argument that populations of peo-

ple behave like a General Compounded Quantity 5.5.5 is that they

do not have uniform birth and death rates. What kinds of factors

identify groups with higher or lower birth and death rates? Give

some examples of groups in the United States whose populations

are growing more or less rapidly due to such internal factors.

The point of this project is to let you try your hand at the hard

part of mathematical modelling, which is, remember, not usually the

math but the analysis of how far the model corresponds to reality,

what its uses and limitations are, and the work needed to overcome

these limitations. The moral of parts i) and ii) seems to be that a

population will behave like General Compounded Quantity 5.5.5

only if there are no variable external factors which affect it.

The moral of part iii) is that like inflation which is made up of

lots of different changes in the prices of individual goods, popula-

tion growth is made up of lots of different rates of growth in sub-

populations. As with inflation, this does not eliminate but merely

limits our ability to use the General Compounded Quantity 5.5.5

model. We can’t apply conclusions about general price changes to a

single good like gasoline and we can’t apply conclusions about gen-

eral populations changes to a sub-population unless we know it is

representative of a larger population.

This poses the question, “How can we tell when a group is represen-

tative?”. It’s a fascinating one but very hard to answer. The whole
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aim of statistics is to find good ways to answer questions like this

which come up almost anytime we try to model human phenomena

(and in may other contexts).

The discussion above suggests that we look for populations which

are highly uniform and whose growth is not influenced by external

factors. The classic examples are populations of small organisms

grown under controlled conditions.

Problem 5.5.12: Let’s consider the growth of bacteria in a labora-

tory. We’ll assume that the scientists who run the lab provide the

bacteria with everything they need to grow. Bacteria can reproduce

very quickly by cell division. Suppose that a bacterium can divide

every 3 hours. In other words, starting with 1 = 20 bacteria after

0 = 0 · 3 hours, we get 2 = 21 after 3 = 3 · 1 hours, then 4 = 22 after

6 = 3 · 2 hours, then 8 = 23 after 9 = 3 · 3 hours and so on.

What we’re saying is populations of this bacterium have a doubling

time of 3 hours. In this problem, we’ll investigate the consequences

of this statement in various ways.

i) How many bacteria will there be after one day ( i.e., 24 hours?)

Hint: The pattern above is that there are 2k bacteria after 3 ·k hours.

What does the pattern tell us will happen after one day?

ii) How many bacteria will there be after 4 days?

You should find that there will be over 4 billion–−4,294,967,296 !—

bacteria after 4 days. If you think, that’s a lot, after a week there will

be 72,057,594,037,927,936 bacteria. Your calculator won’t be able to

give you this figure exactly as it has too many digits but it should tell

you something like “.7205759404e17”.

To get an idea how big this is suppose that a billion bacteria weigh

a gram (about one twenty-eighth of an ounce): then after a week

you’d have over 72,000 kilograms (about 150,000 pounds!) of bac-

teria. This seems awfully big. Can we check our answers to be sure

there is no mistake? Here are two ways to do so.
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Problem 5.5.13:

i) In Problem 5.4.36 we noticed that the Rule of 69.3 5.4.30—y2 '
69.3
rc —can be turned around. Given a doubling time we can deduce a

rate of growth: rc ' 69.3
y2 . We can do this here. We just have to be a

bit careful about units. Since our doubling time is given in hours, our

continuous rate rc will be in percent-per-hour not percent-per-year.

Show that the rate rc = 21.3%-per-hour. Now that we have rc , we can

use the General Continuous Approximation 5.5.6 to check the

populations above. Once again, we need to be consistent about units

and use hours rather than years. What populations do you obtain

after 4 days and after 7 days starting with a population B = 1?

ii) Your answers in i) should have the same size as those in Prob-

lem 5.5.12 ii)): after 4 days you should have about 4,000,000,000 '
0.4e10 bacteria and after 7 days about 0.7e17. But, the two sets of

answers will not match those to many digits. Why should we not

expect them to?

iii) Here’s an exact check which also illustrates the key property of a

General Compounded Quantity 5.5.5, namely, that we can use any

period we like. In Problem 5.5.12 i)), we found that a single bacteria

grows to a population of 256 in one day. In other words, in one day

a population of 1 gets multiplied by the magic factor of 256. But the

key property of a General Compounded Quantity 5.5.5 then says

that, over a period of 1 day, any population should get multiplied by

256. A population of 256 should grow to 256·256 = 65,536 in a day.

In other words, a population of 1 should grow to 2562 in 2 days, to

2563 in 3 days and so on. Use this to check the answer to Problem

5.5.12 b) exactly.

iv) OK, so there was nothing wrong with the math in Problem 5.5.12.

But, the idea that after a week we’d have 72,057,594,037,927,936
bacteria—over 150,000 pounds—is clearly wrong. If the math is

right, why is this answer wrong?

The social economist, Malthus, mentioned above, was the first to ob-
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serve that human populations behave much like a General Com-

pounded Quantity 5.5.5 in the absence of external factors. How-

ever, his conclusions about our future—that population growth

would eventually lead to a catastrophe have so far proven false: the

world’s population has long ago passed the figure he was sure could

not be sustained. Some species do suffer such catastrophic growth

and decline cycles. Have you ever seen photos of millions of lem-

mings rushing madly off the side of cliff in Scandinavia? This hap-

pens when the lemming population grows too rapidly and exhausts

the supply of food.

Problem 5.5.14:

i) Suppose that: lemmings have litters of eight young of whom 6
are female and 2 are male; a female lemming can have her first litter

when she is 3 months old and can have another litter every three

months thereafter; no lemmings ever die. How long will it be before

a starting group of 3 females and 1 male grows to a population of a

million?

ii) How does the answer to i) change if we change the assumptions

and suppose that:

a. lemmings can reproduce every 2 months instead of every 3
months?

b. each generation of lemmings dies when the next generation is

born?

c. each litter contains 7 females and 1 male?

Problem 5.5.15:

i) Suppose that every fruit fly lays 100 eggs and then dies and that

all of these are ready to lay their eggs in a week. (I’m ignoring the

male flies to simplify). Without using any of our formulas, can you

say how many fruit flies would there be in

a. 2 weeks?

b. 3 weeks?

c. 4 weeks?
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d. a general number T of weeks? Hint: Just try to see the pattern in

the answers after 2, 3 and 4 weeks.

ii) How many weeks would it be before the offspring of a single

fruit fly cover the entire surface of the earth to a depth of 100meters

(over the length of a football field) with flies?

Hint: First estimate how many flies it would take to cover the earth

to this depth. You may assume that the area of the earth is about

1015 square meters and that fruit fly is a cube of side equal to 0.001
meters. (This means that over 300,000 would fit into a standard can

of soda.)

iii) Why can we touch ground?

Problem 5.5.16:

i) The informal numbers in Problem 5.5.15 can be obtained—with

more effort—by considering fruit fly populations as a General Com-

pounded Quantity 5.5.5. Use the Continuous Yield Formula

5.4.17—but with y standing for periods of weeks instead of years—to

find a continuous weekly yield on fruit-flies.

Hint: Over a period of 1 week, we can take B = 1 and S = 100. Why?

ii) Now confirm the number of weeks you found in Problem

5.5.15 b) by using the Term Conversion Formula 5.1.13 (with y
standing for weeks again).

Hint: For S you can use the number of flies needed to cover the earth

to a depth of 100 meters.

Problem 5.5.17: Mexico City is the world’s largest city. In 1980, the

population of the metropolitan area was 8,000,000 and in the year

2000 it is 26,000,000.
i) Assuming that the population of Mexico City grows like a Gen-

eral Compounded Quantity 5.5.5, estimate what the population

was in 1990 and what it will be in 2010.

Hint: First use the Continuous Yield Formula 5.4.17 to deduce an

annualized rate of growth from the two population figures given.

Then, use this rate in the General Continuous Approximation
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5.5.6 to produce the estimates: this is easiest if you measure time in

year from 1980.

ii) What would the predicted population be in the year 2100? What

conclusions do you draw from this answer?

Computation

Gordon Moore, one of the inventors of the integrated circuit and

a founder of microprocessor giant Intel, is also famous for a rule

which bears his name. He was trying to describe the rate at which

the number of gates (basic logic elements) and transistors on the

“latest” microprocessor grew as a function of time and he noticed

that over the early period of their development these numbers had

doubled roughly every 18months. When he first enunciated this rule,

few believed that this kind of compounded growth could continue.

But it seems to have. In fact, many people regularly apply his rule to

all kinds of computing equipment. Let’s state it in this general way.

Moore’s Law 5.5.18: The complexity of the “latest” model of any

type of computing equipment doubles every 18 months.

Maybe it’s not obvious to you that this law says that the complex-

ity of computing equipment is a General Compounded Quantity

5.5.5. There are no percent per year here at all. True, but remem-

ber that it is not the percent which make a General Compounded

Quantity 5.5.5, it’s the existence of a “magic factor” which tells us

how any initial quantity will change over some fixed period of time.

In Moore’s Law, the period just happens to be 18 months and the

magic factor is 2. Every 18 months the complexity of any piece of

equipment doubles—that is, gets multiplied by 2—no matter how

complex it was to begin with. In fact the mention of doubling should

ring a bell. In Section 5.4, we saw that continuously compounded in-

vestment have a doubling time which depends only on the interest

rate or yield of the investment, not on its size. The argument above
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amounts to saying that converse is also also true: if a quantity has a

doubling time that does not depend on its initial value, it is a Gen-

eral Compounded Quantity 5.5.5. We can even say what p is: since

the magic factor (1 + p) = 2 we see that p = 1. Put in another way,

over a period equal to the doubling time, the “interest” which gets

added to any starting amount of a compounded quantity equals the

starting amount. If you look back to Problem 5.4.41, you’ll see that

it asks for the continuous yield which corresponds to a doubling

time of 18 months. You should have found this to be 46.2% (because

r ' 69.3
y2 =

69.3
1.5 = 46.2%).

Problem 5.5.19: Let’s get an idea of what an enormously fast rate

of growth this is. How much more complex is a 1999 processor than

one which was start-of-the-art in

i) 1989?

Solution
All we need to do is use the General Continuous Approxi-

mation 5.5.6 to continuously compound an initial value of 1 at

a nominal rate of 46.2% for 10 years: we get 1 · e
(
0.0146.2·10

)
=

101.4940321. In other words, todays processors are over 100
times as complex as those from just 10 years ago.

ii) 1979?

iii) 1969?

Of course, Moore’s Law 5.5.18 does not apply to software. The best

comment on this subject is an old hacker’s joke: “If the automobile

industry could achieve the same kind of progress that the computer

industry has, then cars would cost $1,000, get a 1,000 miles to the

gallon, run for 10 years without needing repair, and, once a month,

go out of control and crash killing everyone on board.” If a computer

ever ate your homework, you’ll agree.

Problem 5.5.20: Here’s a short quote from a speech given by Gor-

don Moore about the history and future prospects for his law in

1997.
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“This results in, you know, some rather dramatic

changes in economics. The first planar transistors

we sold in about 1959, the year the planar transis-

tor was introduced, sold for several dollars. In fact,

the first ones we shipped sold for $1.50, I remember

very clearly. But a good transistor in those days sold

on the order for $5 or $6. Today, you can buy a 16
megabit DRAM for the same $6. That’s something

over 16 million transistors with all the interconnec-

tions and everything else for the price of a single

transistor, something less than 30 years ago. This is

really pretty dramatic.”

Let’s summarize this by saying that the price of a transistor has gone

from $1.50 apiece in 1959 to 16,000,000 for $6 in 1997. Use this to

calculate the “number of transistors per dollar” you could buy in

1959 and 1997. Let’s think of the value of this number in 1959 as a

sort of buying price B and that in 1997 as a selling price S.

i) What was the continuous “yield” on this number over the 28
years? Estimate the doubling time for this number and compare it

with Moore’s Law 5.5.18.

ii) How do your answers change if we use the other price Moore

mentions of $5 apiece in 1959?

Problem 5.5.21: Monitors would seem to be an exception to

Moore’s Law 5.5.18. In 1989, 12 inch monitors were common. In

1999, 21 inch monitors are the state of the art. That’s not even a

single factor of 2. However, screen size is really a poor measure of

complexity. We should really think about the amount of information

the screen carries. This depends on two factors: the number of pixels

or dots on the screen, and the number of bits of color information

associated to each dot. The pixels tell us about the resolution of the

screen. In 1989, resolutions of 640 by 480 were considered state-

of-the-art for PC’s. A high-end monitor in 1999 had a resolution of
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about 1,600 by 1,200. The number of bits b is related to the num-

ber of colors c which the monitor can show by the rule c = 2b. For

example, a black and white monitor carries just a single bit of infor-

mation and shows c = 2 = 21 colors. A monitor which displays 16
colors—the latest in 1989, when these colors were actually shades of

gray—carries 4 bits of information (16 = 24). A high-end monitor in

1999 used 32 bits of information per pixel. The “right” measure of

the complexity of a monitor is the product of the number of pixels

and the bits per pixel: that is, the total number of bits of information

the monitor can display. In this problem, we’ll figure out how closely

monitors have matched Moore’s Law 5.5.18 based on these figures.

i) First, we want to calculate an annualized “yield” or rate of

growth for monitor complexity. We can do this by viewing the com-

plexity of a 1989 monitor as a “buying price” B = 640 · 480 · 4 and

that of a 1998 monitor as a “selling price” S = 1600 · 1200 · 32 and

then applying the Continuous Yield Formula 5.4.17. Show that the

rate of growth is about 39% a year.

ii) Next, use the Rule of 69.3 5.4.30 and the answer to part a) to

determine the actual doubling time for the complexity of monitors.

How well does Moore’s Law 5.5.18 seem to hold?

iii) How do the answers to i) and i) change if we assume that a high

end monitor in 1989 could display 256 colors?

iv) How well did the rate of growth of i) hold up over the decade

from 1999 to 2009?

Problem 5.5.22: This problem looks at how Moore’s Law 5.5.18 is

reflected in the size and cost of computer memory or RAM.

i) In 1987, the author bought a state-of-the-art Macintosh II com-

puter which came with 1-2Mb (megabytes) of RAM). In 1997, he

bought a high end PowerMac which came with 128-256Mb of RAM.

Using the larger of the two RAM figures for each year, determine the

doubling time for quantity of RAM in Macintosh computers.

Hint: You will need to determine the continuous yield on RAM first,
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then use this to get the doubling time: see Problem 5.4.39 for a sim-

ilar example.

ii) Another way to try get a feel for Moore’s Law 5.5.18 is to use it

to track the decline in the cost of some piece of equipment of fixed

complexity. In this exercise, we’ll carry this out for computer mem-

ory or RAM. Our fixed unit of RAM will be the megabyte. In 1984, this

was a huge amount of memory: the first Macintosh appeared in that

year and had 128K or only one-eighth this amount. The first year

in which consumers could buy a 1Mb memory module was 1989.

In 1996, you can no longer buy a new memory module this small.

The table below shows repreentative costs per megabyte of general

purpose RAM at 6 year intervals. Use this table to estimate the con-

tinuous yield on the price of a megabyte of RAM: since the prices

have been falling, you’ll have a negative yield. Then use this yield to

estimate the halving time for RAM prices.

Year Size (mb) Cost ($) Cost/mb

1985 0.5 399 798.00

1991 4 165 41.25

1997 32 104 3.25

2003 512 99 0.19

2009 2048 40 0.02

Table 5.5.23: Sample historical RAM sizes and pricing

iii) The yield and halving time you get in b) depend on which two

years from the table you use as the starting and ending years. How

widely do these quantities vary? Try to suggest causes for this vari-

ation. Here’s one line of investigation. For mathematical reasons,

memory modules come in sizes which are powers of 2 so we’d ex-

pect each generation to be twice as large as the previous one and to

last for one of the doubling periods from part a). But, it’s a historical

fact—I know of no really good reason why—that the size of com-

mon memory modules tends to increase by factors of 4 from one

generation to the next. This is a typical example of an unexplained

1—
1—
2—

a ·· ·· z ? 602 Comments welcome at �̂�

mailto:morrison@fordham.edu
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divergence between a generally very good model and reality.

Project 5.5.24:
i) Does Moore’s Law 5.5.18 really describe how the power and

scale of computer equipment evolves? This project asks you to make

a practical test using some recent historical data from the personal

computer industry. To begin with, go to your library and get out

copies of a personal computing magazine like Computer Shopper,

PC World, MacWorld etc. at six month intervals going back ten years.

In each magazine, find a couple of ads for the “latest” model of PC

and record basic data like: processor clock speed, amount of RAM,

hard disk size in megabytes. The ask yourself: do these quantities

tend to double every 18 months as Moore’s Law 5.5.18 claims. If

not, do they grow faster or slower. How regular is the growth? Can

you suggest any explanations for the irregularities? Predict what the

hardware characteristics of the “latest” PC will be three years from

now and six years from now.

ii) How does the price of the “latest” PC vary over this ten year

period? Moore’s Law 5.5.18 seems not to apply. Why?

iii) Suppose we decide that that the correct way to measure the

“cost” of a hard disk is by the price of each megabyte of storage

(rather than by the total price of the drive). Use your magazines to

determine a figure for this cost at yearly intervals over the past 10
years. You’ll notice that it decreases quite rapidly like the cost of

RAM discussed above. Use your figures to estimate the annualized

rate of decrease of this cost and its halving time. How well do your

figures match this compounded model. Is there a Moore’s Law 5.5.18

for the price of a megabyte of hard disk storage?

iv) One quantity which definitely seems to double much less rapidly

than every 18 months is processor “clock speed”. This exercise asks

you to derive a possible explanation. Let’s assume that the transis-

tors on a processor are small squares which are laid out in a grid to

form a larger square and processor clock speed is inversely propor-

tional to the length of the side of this overall square. Although this
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is s typical modeller’s oversimplification which ignores many rele-

vant factors, it contains a nugget of truth: The speed of a computer

is roughly inversely proportional to how far the electrons which “do”

the computation have to travel. Next suppose that every 18 months

the length of the side of the small transistor square halves while the

total number of transistors doubles. In other words both scale of a

transistor and number of transistors obey Moore’s law.

a. Show that the factors by which the area of a single transistor,

the area of a processor and the length of the side of a processor

will change every 18 months are 1
4 , 12 and 1√

2 respectively.

b. Given our assumptions about processor speed, the last answer

to part iv)a says that processor clock speed increase by a factor

of
√
2 every 18months. Show—without using any formulas—that

this implies that processor clock speed has a doubling time of 3
years.

c. Confirm the answer to iv)b by using standard yield and doubling

time formulae to compute first the “yield” on a quantity which

increases by a factor of
√
2 every 18 months and then the dou-

bling time which corresponds to this yield.

d. How well do historical data on the clock speed of the “latest”

Intel processor fit this predicted doubling time? Can you detect

a point in time at which Intel began “over clocking” its proces-

sors? “Over clocking” is a innovation which allows chip makers

to raise the published clock speeds of their processors without

any essential change to the processors’ design.

Radiation

With a few exceptions, just about every General Compounded

Quantity 5.5.5 we have looked at has gotten larger as time goes

by. Put another way, the magic factor by which a starting amount

gets multiplied over any period is greater than 1 corresponding pe-

riodic rate has been positive. But, we can also consider cases where
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amounts get smaller as time passes and where correspondingly, the

periodic magic factors are less than 1 and the periodic rates are neg-

ative. In this subsection, we will look at one such example, radiation,

or the decay of radioactive matter.

Here is the setup in a very simplified form. All matter is built up from

a list of atomic elements which are characterized by the number of

protons (positively charged particles) in the nuclei of atoms of that

element. Hydrogen atoms contain one proton, helium atoms two,

and so on up the periodic table of the elements. For example, car-

bon has 6 protons in its nucleus. However, the nucleus of an atom

also contains neutrons (uncharged particles) and a single element

can have different forms called isotopes whose nuclei contain differ-

ent numbers of neutrons. Isotopes are generally named by giving the

name of the corresponding element and the total number of protons

and neutrons in the nucleus. For example, most carbon atoms have

6 neutrons; this common isotope is called carbon-12 (since 6 pro-

tons plus 6 neutrons gives 12). But a few carbon atoms have 7 or 8

neutrons; these rarer isotopes are called carbon-13 and carbon-14.

(Why?)

Certain isotopes—usually those which contain a large number of

neutrons—are unstable. Atoms of these isotopes tend to sponta-

neously undergo a process called radioactive decay or fission in

which a particle in the nucleus splits into one or more smaller

subatomic particles (releasing energy in the process). For example,

carbon-14 undergoes β− decay (essentially, a neutron is replaced by

a proton and an electron) to nitrogen-14; potassium-40 decays into a

mixture which consists of about 11% of argon-40 and 89% cadmium-

40. The argon-40 isotope is stable but the cadmium-40 itself decays

gradually.

Physicists and chemists who observed such decay found that al-

though individual atoms appear to decay very sporadically, large

groups of atoms decay in a very regular and predictable way. (We
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can make an analogy to human populations: whether a single family

(atom) will have a child is impossible to predict but the number of

children born in an entire country can be accurately predicted by a

birth rate.) The way physicists express this predictability is with a

half-life. For each isotope, they have found that there is a period y 1
2

such that no matter what amount of the isotope you have to begin

with, if you wait y 1
2

years you will end up with exactly half as much.

For example, the half life of carbon-14 is 5.73× 103 ± 40 years. This

means that if you have a a gram today, then in 5,730 years (give or

take 40 years) you will have a half a gram (the other half gram will

have decayed into carbon-12 and carbon-13); if you have 10 grams to-

day, you’ll have 5 grams in 5,730 years. Likewise, potassium-40 has

a half-life of 1.25 × 109 years so for 2 grams of potassium today to

decay to 1 gram, you’ll have to wait about one and a quarter billion

years. Bring a lunch!

I hope you’ll recognize the half-life of an isotope as the equivalent

of a doubling time for a growing quantity. (We discussed this possi-

bility earlier in the subsection on The rules of 69.3 and 72 in Sec-

tion 5.4.) And just as having a doubling time—Moore’s Law 5.5.18—

implies that the complexity of computer equipment is a General

Compounded Quantity 5.5.5, so having a half-life or halving time

implies that the quantity of a radioactive element is a General Com-

pounded Quantity 5.5.5. The only difference, as suggested above, is

that the rate of decay for an isotope will be negative. Moreover, since

we are dealing with a physical law this is one situation in which we

can hope to get accurate answers when we pass between half-lives

and continuous rates so for the first time, we want to use the ex-

act Doubling Time Formula 5.4.29 rather than one of the rules of

thumb. Other than the need for a calculator, this is no harder than

the rough conversions we have been doing, as the following example

shows.

Problem 5.5.25: If an isotope has a half-life of 29 years will it be
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radioactive for exactly 58 years? Or was James right after all?
Bond His government’s given you a bomb!

Goldfinger I prefer to call it an atomic device. It’s small, but

particularly dirty.

Bond Cobalt and iodine?

Goldfinger Precisely.

Bond Well, if you explode it in Fort Knox, the, uh, entire

gold supply of the United States will be radioactive

for... fifty-seven years!

Goldfinger Fifty-eight, to be exact.

Example 5.5.26: Let’s find the annualized rate of decay of carbon-

14. We just rewrite the Doubling Time Formula 5.4.29 y2 = 100
rc ·

ln(2) as rc = 100
y2 · ln(2) and plug in y2 = −5,730—we use the mi-

nus sign because we are dealing with a half-life and want the rate

rc to come out negative—to find: rc = −0.01209680943% or about

−0.0121% percent a year. Note that I rounded to three places because

that is the accuracy to which we know the half-life of carbon-14. Also,

I really mean about minus one-hundredth of a percent here, not the

fraction minus one-hundredth.

We can go the other way even more easily. Suppose I know that an

isotope has a decay rate of −2.831% a year. Then, I just plug in rc =
−2.831% in the Doubling Time Formula 5.4.29 and find that y2 =
−24.48418158: the negative value tells me I am dealing with a half-

life of about 24.48 years. Question: Why did I choose the roundings

above?

Problem 5.5.27:

i) Find the annualized rate of decay (expressed as a negative

percent per year) of the isotopes potassium-40 with a half-life of

1.25× 109 years—pay attention to that decimal point here—and tri-

tium with a half life of 12.5 years.

ii) Estimate the half-lives of two isotopes which decay at rates of

−0.00052% a year and −1.25% a year. Explain how you decided to

round each half-life.
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The fact that radioactive decay behaves in this predictable way has

one surprising application: by measuring the quantities of certain

isotopes which they contain, we can estimate the age of many astro-

nomical, geological and archeological objects. Let me describe one

application to archeology. The technique is based on the observation

that the carbon in our atmosphere (mainly present in the form of

carbon dioxide) contains a small and fixed percentage of the isotope

carbon-14—historically, about 1 part in 1,013. Of course, the carbon-

14 is always decaying but while it is doing so processes in the upper

atmosphere which I won’t enter into are producing new carbon-14

and the result is a steady level of carbon-14 in the air. The carbon

in living organic material (our bodies, a tree, etc) contains the same

small and fixed percentage of carbon-14 mainly because living mate-

rial is constantly exchanging carbon with the environment and most

of the inflow of carbon comes from the air. However, when some-

thing organic dies, this exchange ceases and nothing compensates

for the decay of the carbon-14 present at death. The level of carbon-

14 gradually decreases and by measuring this level we can tell how

long something has been dead. For example, if a piece of wood con-

tains half the level of carbon-14 present in living matter then the tree

it came form must have died about one carbon-14 halflife ago. But,

we can date any residual level of carbon-14 by simply applying the

Term equation 5.4.28 once we have the annualized rate of decay of

−0.0121% found in Problem 5.5.27. Here are some examples.

Problem 5.5.28:

i) Estimate the age of a leather sandal which is found to contain

.345 times the level of carbon-14 in present in living matter.

Solution
We want to use the Term equation 5.4.28 y = 100

rc · ln
(
S
B

)
to

find the term y in years for which the carbon-14 in the sandal

has been decaying. We know the rate of decay rc = −0.0121 so

the question we need to answer is: what values should we use

for the buying price B and the selling price S?
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Since we are dealing with radioactivity rather than money, we

want to use two carbon-14 levels. The level B is that at the start

of the period we are trying to measure: this is just the baseline

level of carbon-14 in living matter. The level S is that at the end

of the period we are trying to measure: this is just .345 times the

baseline level of carbon-14 in living matter.

The one missing ingredient seems to be the actual value of the

baseline level of carbon-14. We do not know this level but a mo-

ment’s thought shows that we do not need to! To use the formula,

all we really need is the ratio S
B and this we are told is 0.345. So

we just plug in to find y = 100
−0.0121 · ln(.0345) = 8,795.131091.

Note how the age came out positive as we’d like: the logarithm

was negative and this cancelled the minus sign from rc . How

should I round this? I know the ingredients in my calculation to

three places so I’d guess my answer is good to three places: the

sandal is about 8.80× 103 years old.

How can I check this answer? Well, if the sandal were one half-

life old (that is 5,730 or so years old), I would expect to find half

or .5 the baseline level of carbon-14 and it it were two half-lives

old (about 11,460 years), I’d find about a quarter or .25 time this

level. Since the calculated age comes out between these two ages,

and the given carbon-14 level is between .25 and .5, my answer

at least seems reasonable.

ii) Estimate the age of a papyrus manuscript which is found to con-

tain .822 times the level of carbon-14 in present in living matter.

iii) Estimate the age of a bone which is found to contain .006 times

the level of carbon-14 in present in living matter.

How much does our uncertainty about the exact half-life of carbon-

14 affect these answers? In the next problem, we’ll try to get a feel

for this uncertainty.

Problem 5.5.29: Recalculate the annualized rate of decay of

carbon-14 assuming that
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i) the half life is 5,690 years;

ii) the half-life is 5,770 years.

iii) Recalculate the the age of the sandal in Problem 5.5.28 b) using

each of the rates found in i) and ii). Based on these two ages, how

accurate can we say the dating of the sandal is likely to be?

A second potential source of error is the accuracy with which we can

measure carbon-14 levels. This limits how far back carbon-14 dating

can take us: the next problem indicates why.

Problem 5.5.30: Let’s suppose that our equipment for measuring

carbon-14 levels is accurate to ±0.003 of the level of carbon-14 in

present in living matter.

i) The sandal in part i) of Problem 5.5.28 might actually contain

between .342 and .348 times the level of carbon-14 in present in

living matter. Show, by reestimating the age of the sandal based on

these two levels, that the potential error in the measurement of the

carbon-14 level in the sandal introduces an uncertainty of about ±60
years in the dating of the sandal.

ii) The bone in part iii) of Problem 5.5.28, which dated to about

42,300 years old accurate to three digits, might actually contain be-

tween .003 and .009 times the level of carbon-14 in present in living

matter. Show, by reestimating the age of the bone based on these

two levels, that the bone could be anywhere from 38,900 to 48,000
years old.

The moral here is that, while carbon dating is likely quite accurate

for an object which is 10,000 years old, it becomes a very rough

estimate for an object which is 40,000 years old. It’s not hard to con-

vince yourself that, beyond this point, carbon-14 pretty much breaks

down. All we can say about objects over 50,000 years old is just that:

they are over 50,000 years old. The carbon-14 levels of all such ob-

jects will measure as .000 to three places regardless of how old they

actually are.
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How then do geologists measure the age of rocks which can be bil-

lions of years old? The answer is to measure isotopes which have

longer half-lives: potassium-40 is one favorite. The method is ac-

tually called argon dating after the stable end product. There’s no

standard baseline level of potassium-40, so instead, geologists mea-

sure the amounts of argon-40 and potassium-40 now and use a two-

stage process. In the first stage, they then assume that all the ar-

gon is a product of potassium decay and use the ratio of the two

amounts to deduce how much potassium-40 was in the rock when

it was formed. In the second stage, they compare the formation and

current potassium-40 levels to date the rock. The next exercise gives

an idea of the way this second step works at geological time scales,

leaving out the Why don’t archeologists use argon dating too? See if

you can figure out the answer before you do the exercise. I’ll discuss

it after.

Problem 5.5.31: Potassium 40 has a half life of 1.259 years. In prob-

lem Problem 5.5.27, you should have found that its decay rate is

−5.55× 10−8% a year.

i) Find the fraction of the baseline level of potassium-40 which

would remain in a rock after

a. 500,000,000 years.

Solution
We just use the General Continuous Approximation 5.5.6

Sy = Be
(
0.01r·y

)
. Since we are interested in what fraction of

the baseline level remains we can take B = 1. (Why?) Using

the value of r above and y = 500,000,000, we find that Sy =
0.758 to three places. That is, a bit more than three-quarters

of the potassium-40 remains.

b. 520,000,000 years.

ii) Find the fraction of the baseline level of potassium-40 which

would remain in a bone after

a. 5,000 years.

b. 50,000 years.
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Here what we see is that the residual potassium-40 levels of rocks

500,000,000 and 520,000,000 years old differ by many thousandths

of the baseline level (.758 versus .749) while those of a bones 5,000
and 50,000 years old are the same to 4 places (both .9999). So if our

ability to measure these levels is limited—say to 3 places—we can

useful easily distinguish the ages of the rocks but not those of the

bones.

Project 5.5.32: The explanation I have given above of how carbon-

14 dating is performed bears no resemblance to what people who

use this method actually do. One reason is that carbon-14 levels in

the atmosphere actually rise and fall somewhat due to variations

in solar activity (most of the carbon-14 in the atmosphere is pro-

duced by solar radiation). Not to mention that nuclear testing in the

1950’s and 1960’s almost doubled the levels of carbon-14 in the at-

mosphere. The variance is sufficiently great to introduce substantial

errors in dates computed by our plug-and-chug method. But scien-

tists interested in these dates don’t just give up. They go to work.

Find out how accurate dating using carbon-14 levels is still possible

even though our basic assumption (that there is a constant baseline

level in living matter) is wrong. The answer, based on sampling thou-

sands of tree rings, is an excellent illustration of a statement from

the opening discussion: “The hard part of mathematical modelling

is not usually the math but the analysis of how far the model corre-

sponds to reality and what its uses and limitations are and the work

needed to overcome these limitations”. A good starting point is the

site of the Rafter Laboratory.

Recently, a brilliant set of experiments has turned the problem cre-

ated by atmospheric nuclear testing around and used this very fact

to overcome ethical restrictions on the study of human subjects and

show how cells are renewed in the human heart. After the nuclear

test ban treaty of 1963, the flow of “extra” carbon-14 into the at-

mosphere stopped and levels began to decay back towards the long
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term baseline (due to solar irradiation). This means that there are

slight, but detectable differences in the carbon-14 levels in cells in

living bodies—like yours—depending on the year in which the body

created the cell. Cells created in 1963 have the highest levels of

carbon-14, and the level gradually decreases as the birth year of the

cell gets closer and closer to the present. By studying carbon-14 lev-

els in many cells in a single human heart, a team led by Dr Jonas

Frisén of the Karolinska Institute in Stockholm has established that,

contrary to general belief, the heart can and does regenerate cells,

as had been conjectured by Dr Piero Anversa in the late 1980s. In a

typical lifetime about half the cells in a human heart are renewed.

You can read more about this work in this excellent article.

5.6 Amortization: saving

It’s now time to get my daughter’s college fund together. I want to

have $120,000 available for her education when she turns 18. Our

earlier discussions in Example 5.2.14 and Example 5.4.32 had two

morals. The first is that the sooner I start planning for this the better.

We’ll come back to this point later. The second is that I’ll never be

able to reach this goal by investing a single lump sum: the amount I’d

need is just out of my reach even if I make the investment when she’s

born. Almost everyone faces a number of similar problems in their

life: you know you are going to need a sum of money many times

your annual salary all at once. The most universal examples are the

money you need to buy a house (or even a car) and the money you

will live on when you retire.

How do people ever assemble these sums of money? You probably

already see the answer: if the sum is too big to put together all at

once the only solution is to put it together a bit at a time. People

being creatures of habit, the only way most of us can be sure of
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continuing to put aside the small sums needed is to regularly put

aside a fixed sum. This process is called amortization. The goals of

this section are to understand what the small sums will amount to

over time and to draw some conclusions about planning for such

major needs.

The future amortization formula

First let’s define our terms.

Amortization 5.6.1: A sum of money which is assembled by mak-

ing a series of equal deposits at regular intervals into an account

which earns a fixed interest rate, or a loan at fixed interest which

is repaid by making a series of equal payments at regular intervals is

said to be amortized.

In this section, we’ll consider amortizations which involve saving: we

make regular deposits with the goal of having a lump sum of money

avaIlable after the payments are made. Loans, where we receive the

lump sum before making a series of payments will be discussed in

Section 5.8.

We’ll continue to use many terms from the preceding section to de-

scribe such series of payments. For example, the period of the amor-

tization will be the length of time between deposits or payments

and we’ll again usem to denote the number of periods in a year. The

number of years in the term of the amortization will again be de-

noted y and the number of periods (or deposits or payments) will be

T : these are still related by the Term Conversion Formula 5.1.13,

T = m · y . The fixed nominal interest rate will be r and the cor-

responding periodic rate will be p = 0.01·r
m by the Interest Rate

Conversion Formula 5.1.10.

Simplifying assumption 5.6.2: In all the problems in this sec-

tion, we will assume that the compounding frequency of the account

1—
1—
2—

a ·· ·· z ? 614 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.6 Amortization: saving

into which deposits are made or of the loan against which payments

are made is equal to the frequency with which the deposits or pay-

ments are made and that deposits or payments are always made at

the end of each compounding period.

The assumption that compounding frequency and deposit frequency

are equal is definitely not true in many everyday amortizations and

you wouldn’t even want it to be. For example, you want to have the

amount in your retirement account compounded daily (because you

get more interest this way) even if you only make deposits into it

once a month on payday. What you don’t want is to have to learn

the very complicated formulas which are needed to compute the

amounts in such an account. (Of course, in some professions, these

formulas are critical and there are entire courses devoted to them).

Our assumption will allow us to work only with very simple formu-

las. What’s more these simple formulas give answers close to, if not

quite equal to, those from the more complicated ones so we can

draw the important conclusions everyone should know about amor-

tizations from them. In a similar vein, there are lots of amortizations

in which the deposits are made at the start rather than the end of

each period. The corresponding formulas are only a touch more com-

plicated than the ones we’ll use but they are significantly harder to

remember and it’s easy to confuse the two. We’ll leave them to the

professionals too.

We will use two new terms for the regular amounts involved:

Deposit 5.6.3: The common amount of each deposit will be de-

noted D although we’ll use the term payment when a loan is being

amortized.

Sum and Balance 5.6.4: The lump sum of money being assembled

in a savings account will be denoted S and be called the sum of the

account or loan. The intermediate sum after the end of the ith period—

that is, the amount which has accumulated in the account in the first

i deposits will be denoted by Si . In particular, when a sum is being
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5.6 Amortization: saving

assembled we will have S = ST , the final intermediate sum after all T
periods.

The lump sum of money being repaid in a loan will be denoted B and

be called the balance of the loan. The intermediate balance after the

end of the ith period—that is, the balance outstanding on a loan after

the first i payments will be denoted by Bi . In particular, when a loan

is being repaid, we will have B = B0 the initial intermediate balance

before the start of the first period.

As I hope you’ll have guessed from the uses of these letters in ear-

lier sections, we use S for the intermediate sums in a savings account

because these are all basically future values and use B for the inter-

mediate balances on a loan because these are all basically present

values.

For the rest of this section, we discuss only savings. To start, let’s

get back to my daughter’s college fund. What I’d like to do is open

an account which pays a fixed rate of interest—let’s say 3.9%—and

then make a small deposit into the account at the end of every month

from my daughter’s birth until she turns 18 at which time I’d like to

have $120,000.00 in the account. Since I am making monthly pay-

ments,m = 12, and since I make them for 18 years, y = 18. Thus the

term T =m · y = 12 · 18 = 216. Further since r = 3.9%, the periodic

rate p = 0.01·r
m = 0.01··3.9

12 . The final sum S = S216 I want to reach is

$120,000.00 The only thing I don’t know is how big a deposit D to

make every month.

Let’s just leave this as an unknown for now and try to understand

how the money in the account builds up. To do so, I’ll use Si to

stand for the sum at the end of i months. Let’s compute the first few

intermediate sums Si (remember this is the amount in the account

at the end of i months) and see whether we can spot a pattern.

After one month, all that’s in the account the first deposit D which I

have just made so

S1 = D .
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5.6 Amortization: saving

That was easy. The second month isn’t much harder. The One pe-

riod principle 5.2.3 says that adding the interest earned in the sec-

ond month to the sum S1 just multiplies it by the magic factor (1+p)
to S1(1+p) to which we add the second deposit D to get the second

month’s sum

S2 = D + (1+ p)S1 = D + (1+ p)D = D (1+ (1+ p)) .

(Wondering why I factored out the D and then did not rewrite the

(1+ (1+ p)) as 2+ p? Hindsight! This helps makes the final pattern

easier to spot as you’ll see in a moment.)

The third month isn’t much harder either. Again, the One period

principle 5.2.3 says that adding the interest earned in the third

month to the sum S2 just multiplies it too by the magic factor (1+p)
to S2(1 + p) to which we add the third deposit D to get the third

month’s sum

S3 = D + (1+ p)S2
= D + (1+ p)D(1+ (1+ p))
= D

(
1+ (1+ p)+ (1+ p)2

)
.

It’s not too hard to see the pattern which is emerging here. Passing

from one month’s sum to the next is always the same. Suppose that

our sum after v months is Sv . (Why I have called the variable v will

be clear in a moment.) Then the One period principle 5.2.3 says

that adding the interest earned in the next—(v + 1)st—month to the

sum Sv just multiplies it by the magic factor (1+p) giving Sv(1+p)
to which we add the next or (v + 1)st deposit D to get the sum Sv+1
at the end of v + 1 months:

Sv+1 = D + Sv (1+ p) .

Moreover, it’s easy to see that the final expanded formula for Sv to

which this leads is

Sv = D
(
1+ (1+ p)+ (1+ p)2 + · · · + (1+ p)v−1

)
.
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All the formulas begin with a common factor of D which multiplies

a sum in which all but the first two terms are powers of the magic

factor (1+ p) and the highest exponent which appears is 1 less than

the number i of months we are working with. We can actually think

of all the terms as powers of (1 + p) by remembering that for any

positive base x, we have x0 = 1 and x1 = x. Taking x = (1 + p), this

lets us write the last formula as:

First Sum Formula 5.6.5:

Sv = D
(
(1+ p)0 + (1+ p)1 + (1+ p)2 + · · · + (1+ p)v−1

)
.

We can check our guesses for both patterns by plugging the First

Sum Formula 5.6.5 into the equation relating Sv and Sv+1 above:

Sv+1 = D +(1+ p)Sv
= D · 1 +(1+ p)D

(
(1+ p)0 + (1+ p)1 + · · · + (1+ p)v−1

)
= D(1+ p)0 +D

(
(1+ p)1 + (1+ p)2 + · · · + (1+ p)v

)
= D

(
(1+ p)0 + (1+ p)1 + (1+ p)2 + · · · + (1+ p)v

)
.

Here the highest power of (1 + p) is v which is again one less than

the number of months in Sv+1 so we have verified the prediction of

the First Sum Formula 5.6.5.

Second Approach 5.6.6: There’s another way to think about the

First Sum Formula 5.6.5 which sometimes comes in handy. Having a

second way to think about any problem is never a bad thing because

often something which looks difficult or messy from one point of

view becomes very simple when we use the other.

If we track that very first deposit through the calculation it shows

up in the sum for Sv as the term D (1+ p)v−1. This term is what the

Compound Interest Formula 5.2.4 would give for the future value

after v − 1 periods of an amount A0 = D at a periodic interest rate

of p. A moment’s thought reveals that this is not an accident: that

first payment was made at the end of the first month so at the end
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5.6 Amortization: saving

of the vth month it’s been earning interest for v − 1 months and has

accrued to D (1+ p)v−1.

The same is true for all the other terms in the sum: the term

D (1 + p)v−2 corresponds to the future value of the second deposit

which has earned v − 2 months of interest, and so on down to the

terms D (1+p)1 and D (1+p)0 which correspond to the last two de-

posits which have earned 1 month and 0 months of interest respec-

tively. In other words, we can reach the formula either by computing

successive sums as we did above or by tracking deposits individually

to the end of some period and then adding.

Great! I have two ways to reach a formula for the final sum S in my

daughter’s college fund because S = S216, the intermediate sum after

216months. There’s just one problem with this formula as it stands.

The sum of powers of (1+p) in the formula for Sv has v terms. This

means that to use it to figure out what will my sum will be after 216
months, I’d need to compute and sum 216 powers of (1 + p). No

thanks. I might not finish before my daughter’s 18th birthday.

What we have here is a classic, messy summation like those dis-

cussed in Section 1.3. What we need, therefore, to eliminate the need

to compute and total all 216 powers is a closed form formula for

this kind of sum. Although, at first glance, it doesn’t look like it,

we already have such a formula in hand. The First Sum Formula

5.6.5 is a geometric summation—each term is the constant D times a

power of the magic factor (1 + p)—so we can apply the Geometric

Summation Formula 1.3.3.

All we need to do is match up the elements in the First Sum For-

mula 5.6.5 to those in the the Geometric Summation Formula

1.3.3. if we substitute r = (1 + p), u = v − 1. (See why I used the

v? I knew that the months variable in our formula was not quite go-

ing to match up with the Geometric Summation Formula 1.3.3 and

wanted to avoid any confusion.) Therefore, we can replace the sum

in the First Sum Formula 5.6.5 by what we get on the right hand
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5.6 Amortization: saving

side of the Geometric Summation Formula 1.3.3 when we make

the same substitutions. Of course, if u = v − 1 then u + 1 = v .

With r = (1 + p), we find that (1 − ru+1) = (1 − (1 + p)v) and

(1− r) = (1− (1+ p)) = −p. Combining all this, we get

Second Sum Formula 5.6.7: Sv = D
(
1−(1+p)v
−p

)
= D

(
(1+p)v−1

p

)
.

By setting S = S216, this gives me a formula relating the final sum S
in my daughter’s college fund to the deposit D that I make and the

periodic interest rate p. But there’s really nothing special about this

example except that we fixed the term T to be 216 periods. So, let’s

write down the general formula before seeing what it implies for my

daughter’s college fund.

Future Amortization Formula 5.6.8: If a deposit is made at

the end of each of T periods into an account which earns compound

interest at a periodic rate p, then the final sum S in the account at the

end of the T th period and the amount D of each deposit are related

by

S = D
(
(1+ p)T − 1

p

)
and D = S

(
p

(1+ p)T − 1

)
.

Working with the future amortization formula

The Future Amortization Formula 5.6.8 is amazingly simple once

we’ve put the geometric series formula to work. This means that,

although we had to huff and puff a fair bit to get to them, applying

it is a piece of cake.

Example 5.6.9: We did all the work above: if my account earns 3.9%

for 18 years compounded monthly, then p = 0.01·r
m = 0.01·3.9

12 and

T = 216. If I want to have a final sum S of $120,000, .00 then the

equation for D tells me I need to deposit D = S
(

p
(1+p)T−1

)
. Plugging

in we find

D = $120,000.00


(
0.01·3.9
12

)
(
1+

(
0.01·3.9
12

))216
− 1

 = $384.05
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5.6 Amortization: saving

every month. That’s a big expense but it is still a sum I can think

about including in my monthly budget (especially as such deposits

generally are not taxed).

We’ll come back to consider other ways to use the Future Amor-

tization Formula 5.6.8 in a moment but first let’s formalize what

we did above with a method. As always, the first two steps are the

same (find m and use it to get p and T ) and the third just involves

plugging values into the formula.

We’ll come back to consider other ways to use the Future Amor-

tization Formula 5.6.8 in a moment but first let’s formalize what

we did above with a method. As always, the first two steps are the

same (find m and use it to get p and T ) and the third just involves

plugging values into the formula.

Method for Future/Savings amortizations 5.6.10:

Step 1: Determine the periods in the problem (that is, the units in

which the term is measured) and the value ofm, the number

of periods per year.

Step 2: Use the Interest Rate Conversion Formula 5.1.10 to find

the periodic interest rate p from the nominal interest rate r
and the Term Conversion Formula 5.1.13 to find the term

T in periods from the term in years y .

Step 3: Apply the appropriate Future Amortization Formula

5.6.8 to find whichever of the the deposit D and the sum

S is to be determined.

Here are a few exercises for you to try which involve what are gener-

ally called sinking funds. These are accounts into which businesses

make regular deposits which accumulate towards the purchase of

some high-ticket item. The purpose, as with my daughter’s college

fund, is to spread out the corresponding expense over the term of

the fund and avoid having a large charge on the books in any ac-

counting period. I have worked a few of the examples.
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Problem 5.6.11: An insurance company wants to make monthly de-

posits into an account which interest compounded monthly to fund

the purchase of a computer which will cost $135,000.00 How much

should each deposit be if:

i) the account has a nominal rate of 5% and the payments are made

over 5 years?

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·5

12 and T =my = 12 · 5 = 60.

Step 3: We know the sum S = $135,000.00 so using the formula

D = S
(

p
(1+p)T−1

)
we find the deposit is

D = $135,000.00


(
0.01·5
12

)
(
1+

(
0.01·5
12

))60
− 1

 = $1,985.12 .

ii) the account has a nominal rate of 8% and the payments are made

over 3 years?

iii) the account has a nominal rate of 3% and the payments are made

over 5 years?

Problem 5.6.12: A University is planning to make annual deposits

of $10,000.00 into a sinking fund on which interest is compounded

annually to fund the purchase of a statue to commemorate a distin-

guished faculty member. How much can they afford to pay for the

statue if:

i) the account has a nominal rate of 4.8% and the payments are

made over 4 years?

Solution

Step 1: The periods are years so m = 1.

Step 2: p = 0.01·r
m = 0.01·4.8

1 and T =my = 1 · 4 = 4.

Step 3: Here we know the deposit amount D = $10,000.00 so we

plug into the formula S = D
(
(1+p)T−1

p

)
to find that the final
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sum is

S = 10,000.00


(
1+

(
0.01·4.8

1

))4
− 1(

0.01·4.8
1

)
 = $42,973.27

ii) the account has a nominal rate of 3.2% and the payments are

made over 3 years?

iii) the account has a nominal rate of 6.6% and the payments are

made over 7 years?

How can we check such amortization calculations? Basically, both

the Simple Interest Approximation 5.3.3 and the Continuous Ap-

proximation 5.3.11 can be souped up for use in checking amortiza-

tions. The latter is actually more straightforward. We simply approx-

imate the exponential (1 + p)T in the Future Amortization For-

mula 5.6.8 by the slightly larger exponential e(p·T) = e
(
0.01r·y

)
from

Continuous Approximation 5.3.11. In the formula for D where this

appears in the denominator and we are now dividing by a larger

quantity, we get an approximation slightly smaller than the exact

value.

Future Amortization–Continuous Approximation 5.6.13:

The final savings S is a bit less than D
(
e
(
0.01r·y

)
−1

p

)
.

This check lacks one feature of the Continuous Approximation

5.3.11: there’s still a periodic rate p in each formula. If you forgot

to convert the nominal rate when using the Future Amortization

Formula 5.6.8, you’ll probably use r for p here too. Fortunately,

the different numerator will lead to a different answer and let you

catch your mistake. You may also notice that I haven’t colored it:

this is one formula which you don’t really need to learn. You can

make the necessary approximations if you just remember to use the

Continuous Approximation 5.3.11 to replace the (1+ p)T .

Example 5.6.14: Let’s check the calculation in Example 5.6.9. Here

we had r = 3.9% and y = 18 years and since we were compounding
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monthlym = 12 and p = 0.01·3.9
12 . Our D was $384.05 so the sum S of

$120,000.00 should be a bit smaller than

D

e(0.01r·y) − 1
p

 . = 384.05
e(0.013.9·18) − 1(

0.01·3.9
12

)
 = $120,270.78 .

and it is. You can check a sum calculation the same way.

Problem 5.6.15: Use the continuous approximation to check your

answers to problems Problem 5.6.11 and Problem 5.6.12.

As with Simple Interest Approximation 5.3.3, the simple inter-

est approximation to an amortization calculation is both better and

worse. It’s better because the calculation is easier—you can often do

it in your head—and experience shows that we’re much likelier to

make an easy check than a hard one—but worse because it’s less

accurate. (It’s like the difference between a cheap point-and-shoot

camera you can put in your pocket and reflex camera with lots of

lenses. The reflex camera takes much better pictures but that’s not

an advantage if you leave it in the hotel room because the case is so

heavy.)

The idea is very simple. First add up all the deposits getting an

amount A = T · D, then add some simple interest to this. The only

question is how much simple interest to add. All the deposits earn

simple interest for differing numbers of periods so we really ought

to add a different amount of interest to each. The problem with do-

ing so is that you get a formula more complicated than the one you

are trying to check. The solution is to group pairs of deposits moving

inwards from the start and end of the term. The first deposit earns

T − 1 periods interest and the last 0 periods. Together the two earn

a total if T − 1 periods interest and an average of T−1
2 periods. The

second deposit earns T − 2 periods interest and the second last 1
period of interest. Again, the total is T −1 periods and the average is
T−1
2 periods. The third deposit earns T − 3 periods interest and the

third last 2 periods of interest. Again, the total is T − 1 periods and

the average is T−1
2 periods.
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So the pattern is that an average deposit earns T−1
2 periods of inter-

est. To keep things simply, we replace this with T
2 periods which is

an average term of y2 years. Now using years as periods, the periodic

rate is 0.01r so the Simple Interest Formula 5.1.6 says the interest

earned should be roughly 0.01r · A · y2 . If we then add the amount

A, we should get a total A + A0.01r y2 = A(1 + 0.01r
y
2 ) somewhat

smaller than the actual final sum S—smaller because we are ignor-

ing the effect of compounding. Note that I didn’t collect the two frac-

tions because I think it’s easier to remember the formula when we

think of them separately. In fact, this is another formula where it’s

better to remember the idea—an average deposit earns interest for

half the term—than the formula. The example following the formula

illustrates this.

As with the Simple Interest Approximation 5.3.3, this approxima-

tion only gives reasonable accuracy for short terms. When the term

is longer, use the Future Amortization–Continuous Approxima-

tion 5.6.13 instead.

Future Amortization–Simple Interest Approximation 5.6.16:

S is larger—possibly quite a bit larger—than T ·D
(
1+ 0.01r y2

)
.

Example 5.6.17: Let’s recheck the deposit D = $384.05 I calculated

in Example 5.6.9. Here we had T = 216, r = 3.9% and y = 18 years

so so 0.01r = 0.039 and y
2 = 9. Our final sum S should be somewhat

greater than

T ·D
(
1+ 0.01r y

2

)
= 216 · 384.05(1+ 0.039 · 9) = $112,071.93

and it is. As we learned to expect in Section 5.3, this approximation

is cruder than the previous one. However, by making it a bit cruder

still, we could use it without getting our calculator out. In a class,

I’d say something like this. "Well, 216 times 384.05 is about 200
times 400 or 80,000. And, 3.9% times half of 18 is about 4 times 9
or about 36%—lets say 40%. So add 40% of $80,000 which is $32,000
to get $112,000. That’s a bit less than the sum of $120,000.00 so
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I’m happy." The point to notice is that I was happy to replace 216 by

200 or 3.9 by 4 or 36 by 40 to simplify the arithmetic. I know this

approximation isn’t going to give me a lot of decimals of accuracy

anyway. I just want to make sure that I didn’t do something stupid—

which I do all the time, just a bit less often than most of you, I hope.

If I did, my approximation and my answer would probably be off by

a factor of 2 or 200, I’d be worried and I’d go look for my mistake;

here they’re within 10% of each other which is reasonable agreement.

Problem 5.6.18: Use the simple interest approximation to check

your answers to Problem 5.6.11 and Problem 5.6.12.

Problem 5.6.19: You make monthly deposits of $200.00 into a re-

tirement account.

i) How much will you have in the account at the end of 3 years if

the account earns interest of

a. 2%?

b. 6%?

c. 10%?

ii) How much will you have in the account at the end of 30 years if

the account earns interest of

a. 2%?

b. 6%?

c. 10%?

iii) Use the Future Amortization–Simple Interest Approxima-

tion 5.6.16 and Future Amortization–Continuous Approxima-

tion 5.6.13 to check your answers to i)b and ii)b and compare the

accuracy they give. Why is the agreement so much better in i)b than

in ii)b?

Any smokers out there? Like to quit? Here’s some motivation.

Problem 5.6.20: Let’s suppose that cigarettes cost $6.00 a pack

and that you smoke a pack a day. We’ll call this a monthly expense

of $180.00 on cigarettes. Suppose you are 21 now and that you quit
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smoking and put that $180.00 a month into a retirement account

which invests in stocks and which yields 8% every month. If you con-

tinue investing your cigarette money until you are 65, show that you

will have over $870,000.00 in the account! Exactly how much will

you have?

5.7 Planning for future needs

Let’s look at other options for my daughter’s college fund. Since I

have an 18 year period over which to build up the account, I can af-

ford to consider investments which have higher risks of short term

losses but offer higher average returns over the long term. Suppose

I want to test the possibility of investing in bonds and I think these

will give me an annualized yield of 6%. Since my formula only ap-

plies when my deposit period and compounding period match, I’ll

consider making 18 annual deposits. (I could consider monthly de-

posits too but why do the extra arithmetic when I’m only trying to

test possibilities.) In this case, m = 1 so p = 0.01·r
m = 0.01·6

1 and

T =m · y = 1 · 18 = 18 and I find that

D = S
(

p
(1+ p)T − 1

)
= $120,000.00


(
0.01·6
1

)
(
1+

(
0.01·6
1

))18
− 1

 = $3,882.78

or about $325 a month. If I thought that by investing in stocks, I

could earn an 8% yield, I could calculate that I’d need to contribute

D = S
(

p
(1+ p)T − 1

)
= $120,000.00


(
0.01·6
1

)
(
1+

(
0.01·6
1

))18
− 1

 = $3,204.25

or about $265 a month.

There are several things “wrong” with the last two calculations but

the conclusions they lead to itself are still basically correct. Let’s
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discuss the bond calculation. First, even if the bonds I bought were

compounded annually, I’d probably want to make monthly deposits

rather than trying to come up with a sum close to $4,000 once a year.

This takes us outside our assumption of equal deposit and com-

pounding periods. On the other hand, the difference is small and if I

did make monthly deposits in a bank account to make up the annual

sum, they’d earn a bit of interest during the year so I’d be that small

amount further ahead.

Problem 5.7.1:

i) Suppose you wish to save $120,0000.00 by making monthly de-

posits into an account which earns 6% compounded monthly for 18
years. How much must you deposit each month? Show that your

total deposits over a one year period will be slightly less than the

$3,882.78 computed above.

ii) Suppose you wish to save $120,0000.00 by making monthly de-

posits into an account which earns 8% compounded monthly for 18
years. How much must you deposit each month? Show that your

total deposits over a one year period will be slightly less than the

$3,204.25 computed above.

iii) What approximation would give the best check of your two pre-

ceding answers? Perform this check.

Second, and more importantly, I would not be able to purchase

bonds in such uneven amounts and I would probably not want to

even if I could. Instead, I’d probably want to make regular deposits

to a bond mutual fund: this would not only let me deposit whatever

sum I chose each month, but would allow me to own shares of a

range of bonds. Having small amounts of many assets is called di-

versification and makes your investments somewhat less prone to

disaster: if I own one kind of bond and the issuer goes bankrupt, I

suddenly earn no interest and possibly lose all my principal. If I hold

many different bonds, as I do though shares in a bond mutual fund,
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then the impact of any given issuer going bankrupt would be limited

to a fraction of my daughter’s college fund.

On the other hand, bond mutual funds do not promise fixed yields.

They are continually buying and selling bonds with different yields

for one thing. For another, the prices of bonds themselves are not

fixed but go up and down in response to various demand factors.

So a yield figure like 6% is at best an estimate based on historical

yields of such investments. The bottom line is that the assumption

which runs through this entire chapter—that interest rates or yields

are constant—does not apply. Once again, however, as long as I feel

that the actual rates I am likely to earn are close to the 6% figure,

then my calculation gives me a good estimate of what I need to be

putting into the college fund each month.

Both the same objections apply even more forcefully to the stock

purchase scenario. Stocks do not really compound at all. Their prices

fluctuate in response to market forces in ways which are very violent

in the short term—often the value changes by 1 or 2 percent in a

single day and the fall of 2008 swings of 6 − −10% in a day were

not uncommon. If that does not seem like much to you, the problem

below will give you some idea how wild such swings are.

Problem 5.7.2: Show that the annualized yield of an investment

that increases in value by 1% a day is about 3,678%. Show that a

$1,000.00 investment which decreases in value by 1% a day will be

worth $25.52 at the end of 1 year.

However, over longer terms the ups and downs of stock prices

largely cancel. It’s rare that prices rise or fall by more than 25% in

a year. In most years, average prices rise but there are many years

when they fall. When we speak of expecting an 8% return on stocks,

we need to have in mind a very long term—at least a decade and

better two. My daughter’s college fund with its 18 year term is a rea-

sonable example. Even so the assumptions that underlie the Future

Amortization Formula 5.6.8 only apply very roughly to investing
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in stocks. The calculation provides a useful estimate of what I am

likely to have in the fund when my daughter is 18 but it’s far from

the the accurate estimate I get for a bank account.

However, even with a bank the same basic objection applies. I can

lock in a fixed rate over a future term with my bank for a CD that I

purchase today. However, next month when I go to purchase another

I will almost certainly be offered a different rate—slightly higher or

lower. Over longer periods, the changes in these rates can be large:

in 1982, savings bank CD rates peaked at close to 14% while in 2008

they were down below 2%. That’s why the S.E.C. makes them say “Past

history is no guarantee of future performance” in the small print at

the bottom of the ads.

Moral 5.7.3: When discussing the future performance of invest-

ments, you can only estimate and even the wisest estimates can only

reveal what is likely to happen not what is going to happen.

Project 5.7.4: Look up the year-end levels of the Dow Jones Stock

Index over the past century and calculate the annualized yields of

this index over various the 18 periods. What 18 year period had the

lowest yield? What 18 year period had the highest yield? What has

the annualized yield been over the past century? What conclusions

do you draw from your calculations?

Is there any point in trying to make mathematical calculations in the

face of this kind of uncertainly? Absolutely. The estimates we get

from a formula like the Future Amortization Formula 5.6.8 with

all its limitations are much better than no estimates at all. After all, I

do need to decide somehow what to do about my daughter’s college

fund, how to plan for my retirement, whether I can afford that new

home . . . . Our formulas give us a good handle on these problems:

they tell us what’s likely to happen. It’s just a handle we should use

with caution aware that it might come unstuck. One prudent strategy

is to ask “What’s the worst that can happen?”, and to try to devise a

fall-back strategy to handle such worst cases.
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Suppose I decide that I am willing to put my daughter’s college fund

in the stock market and to assume an 8% average yield which will let

me get away with putting away about $265.00 a month or $3,180.00
a year. Suppose the worst average yield I can imagine over the 18
years is only 2%. What will the final sum be then?

S = D
(
(1+ p)T − 1

p

)
= $3,180.00


(
1+

(
0.01·2
1

))18
− 1(

0.01·2
1

)
 = $68,091.15 .

I’ll have just over half what I’ll need. If that happens, she’ll have to

contribute too. Maybe she’ll get a scholarship. If not she’ll have to

work part-time. If worst comes to worst, I might have to take out

a second mortgage on my house to help with her junior and senior

years.

Suppose I can imagine a negative average yield of −2%?

S = D
(
(1+ p)T − 1

p

)
= $3,180.00


(
1+

(
0.01·−2

1

))18
− 1(

0.01·−2
1

)
 = $48,473.48 .

Now I am $70,000.00 short: if this happens, she’ll have to live at

home and go to a state school. If that’s a thought I just can’t live with

then I better make larger monthly deposits. Either the worst case will

come to pass and then I’ll be very unhappy that my investment has

turned out so poorly but very glad because my daughter can still go

to the school of her choice, or, I’ll do better than I feared and then I’ll

have a lot more than $120,000.00 in my daughter’s college fund and

I can use the extra to buy that boat (or fulfill whatever other dream I

might have).

Here are some problems dealing with retirement funds that will let

you play around with using the Future Amortization Formula

5.6.8 in this way and with the Future Amortization–Simple Inter-

est Approximation 5.6.16 and Future Amortization–Continuous

Approximation 5.6.13.
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Problem 5.7.5: Suppose that you are self-employed and wish to

have a fund of $500,000.00 available when you retire at age 65. To

reach this goal, you plan to make a series of equal monthly deposits

into a Self-Employed Pension or SEP.

i) First, let’s suppose that you are now 25 years old. Determine how

much you need to deposit each month for the next 40 years to reach

your goal if the SEP account earns interest at

a. 3%.

b. 6%.

c. 9%.

ii) Next, let’s suppose that you are now 45 years old. Determine

how much you need to deposit each month for the next 20 years to

reach your goal if the SEP account earns interest at

a. 3%.

b. 6%.

c. 9%.

iii) Check your answers to part i) using the Future Amortization–

Continuous Approximation 5.6.13.

iv) Check your answers to part ii) using the Future Amortization–

Simple Interest Approximation 5.6.16.

The answers to this problem deserve some examination as they con-

tain an important message: The first commandment of saving for

retirement is: “Start young!”. Suppose that, instead of asking you to

work this problem, I had just asked you, “How much more do you

have to deposit each month if you save for retirement for 20 years

instead of 40?”. Your first guess would probably be, “Twice as much

since you are saving for only half as long.” The problem shows that

this is wrong: the real figures are from 3 to 7 times as much! The

discrepancy is due to the effect of compounding and the answers

illustrate two basic facts we have already seen. The longer you save

for retirement the more compounding helps your deposits mount

up: that’s why no matter what the interest rate the deposits you
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make starting at age 45 need to be substantially more than twice

those you make starting at 25. And, the higher the interest rate, the

more pronounced the effects of compounding become. At 3%, you

need to put in $1,520.46 a month starting at 45 but only a third as

much—$538.77—-starting at 25. At 9%, both deposits are smaller.

But the deposit starting at age 45 has only decreased by about half

to $742.63 while the deposit starting at age 25 have gone down by a

factor of five to $105.34 (less than a seventh of $742.63).

I wish someone had made me work this problem when I was your

age. The same principle applies to any kind of goal oriented saving.

For example, I can kick in much less each month for my daughter’s

college fund if I start when she is born than if I wait until she is 9 or

10.

First Rule of Saving 5.7.6: Start now!

Yes, the rate of interest you earn also effects how your savings grow

but the effect is less dramatic. Note that a 45 year old whose deposits

earn 9% interest still has to deposit one and a half times as much as a

25 year old whose deposits earn only 3%. What’s more the 25 year old

is actually a better candidate for investments combining high yields

with high risk. A few down years have much less of an effect on

the final sum when the saving occurs over a long period. In the next

problems, you can check this for yourself (with a little help from me

if you want).

Suppose that instead the SEP account into which the retirement

funds are going has a fluctuating yield. We’ll imagine that there are

good decades in which the annualized yield is 12% and bad decades

in which the yield is 0%. If there are three good decades for every

bad one then this is roughly like getting a 9% yield.

Problem 5.7.7: Explain why the assumption above is only very

roughly like getting a 9% yield. Illustrate your answer with a couple

of example scenarios.
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Problem 5.7.8: A 25 year old puts $105.34 a month each month for

40 years into a SEP account which he hopes will have a 9% yield while

a 45 year old puts $742.63 a month each month for 20 years into a

SEP account which she hopes will have a 9% yield. If they are right,

each will have a final sum of $500,000.00 in the account. Instead the

account follows the pattern above with good and bad decades.

i) Suppose that for each account the first decade is a bad one and

the rest are good. How much will each final sum be?

Solution
We do not have a formula to fit this scenario but we can track it

by combining two formulas. I’ll work things out for the 25 year

old and leave the 45 year old to you. The first step is to ask what

the sum is at the end of the 10 years of zero yield. That’s easy:

there have been 120 payments of $105.34 which has earned no

interest and so amount to $12,640.80.

The second and key step is to separate this sum from the rest

of the payments. It will now earn 12% interest compounded

monthly (so p = 0.01) for 30 years (so T = 360) amounting

to $12,640.80 · (1+ 0.01)360 = $454,432.23. The rest of the pay-

ments form, in essence, a retirement fund with monthly deposits

of $105.34 made for 30 years and earning a yield of 12%. These

have a final sum B of

S = D
(
(1+ p)T − 1

p

)
= $105.34


(
1+

(
0.01·1
1

))360
− 1(

0.01·1
1

)
 = $368,159.52 .

The two give a combined final sum of $822,591.75 not very close

to $500,000.00: this certainly confirms the previous problem.

It also confirms the First Rule of Saving 5.7.6. After the bad

decade the 25 year old had barely 2% of his goal saved, but be-

cause he had those 3 good decades left before retiring that sum

had time to grow to over 90% of his final target—and to more

than his savings over the all three of the good decades.
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ii) Suppose that for each account all the decades are good except

the last. How much will each final sum be?

Hint: You will need a different (and slightly simpler) two part ap-

proach to handle this part.

If you followed the steps in the solution correctly, you should get

a combined final sum of $464,949.59 for the 45 year old’s sum af-

ter a decade of 0% yield and then one of 12% yield. In other words,

the swings in yields worked out well for the 25 year old—who had

more time to recover from the bad decade and benefit from the good

ones—while leaving the 45 year old 10% short of the goal. When the

bad decade comes at the end of the term, the effects are more pro-

nounced. Now there is no time for either person to recover and the

calculation shows both wind up short of their goals. The 25 year old

has $380,800.32 and the 45 year old has $259,949.23.

This confirms the principle that you can tolerate risk better when

you have a longer time horizon than when you have a shorter one

in two ways. The 45 year old falls twice as far short of the goal as

the 25 year old: the down decade had more of an effect because it

represented a greater fraction of the term. But after the three good

decades, with only 10 years to go in his pension contributions, the

25 year old really only had a short 10 year horizon. The fact that the

final bad decade leaves him almost 25% short of his goal shows this.

He would have been wise to have begun moving his money to some

less risky investment at about this time since he goal was too close

to allow him to recover from a bad period.

Rule of Thumb for Risk versus Term 5.7.9: Risky, up-and-

down investments with higher average yields are better choices for

savers or investors with long term goals. As our goals approach, ve-

hicles with lower but more certain yields become better choices. When

you are retired or close to it, your savings become blood money.

Problem 5.7.10: Perhaps, you are wondering what happens if the

45 year old lucks out and hits two good decades with a 12% yield. If
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he deposits $742.63 a month each month for 20 years, what will his

final sum be in this case?

A few final comments about this example. Note the spread between

the worst case here (12% yield in the first 10 years and 0% yield in

the last 10 years and a final sum of $259,949.23) and the best (12%

yield through the entire 20 years and a final sum of $734,650.71):

almost a factor of three, from half of the goal of $500,000.00 to one

and half times the goal. When we speak of risk we basically mean the

possibility of that our actual final sum will differ greatly from our

expectation or goal. Since the possibility of surpassing your goal is

a pleasant one and that of failing to reach it unpleasant, you might

think that this simply adds a mild element of spice to saving. It sel-

dom works out that way.

The reason is that what we can buy with money beyond what we

need for our goals is generally much less valuable to us. The 45 year

old who lucks out may be able to take a cruise every year with the

extra money in his retirement fund. Or, if my daughter’s college find

hits $150,000 instead of just $120,000.00, then I can buy her a car

for a graduation present. But the 45 year old who only has half of

what he needs in his retirement fund may wind up having to eat

cat food when he is 75, and if my daughter’s college fund falls to

far short, she’ll have to settle for an inferior college with possible

lifelong consequences for her career. That’s why when assessing risk,

the question we ask is not “What’s the best that can happen?”, but

“What’s the worst that can happen?”.

Have you noticed a huge gap in these discussions of long term sav-

ing? We haven’t said a word about inflation. The $120,000.00 sum

we have been using is 4 times the current $30,000.00 cost per year

of sending a child to a good private university. There’s a major prob-

lem with that computation. My daughter isn’t going to college today,

she’ll be going in 18 years. So the amount I really need to provide for

is the 4 times the annual cost of sending a child to a good private
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university in 18 years. The project for this section tries to fill in this

gap a bit.

Project 5.7.11: The question for this project is: How might infla-

tion and risk combine to affect a saving’s goal like my daughter’s

college find? You’ll get to practice pretty much everything we have

done in this section. For simplicity, let’s assume annual compound-

ing throughout the problem. Assume that a college education today

costs $120,000.00
i) What will the cost of a college education be in 18 years if, during

the interim, inflation averages

a. 3%.

b. 6%.

c. 9%.

Check your answers using the Continuous Approximation 5.3.11.

The first rate, 3%, is close to what has been the general rate of in-

flation for the past few years. However, the cost of a college educa-

tion has been rising faster than the general inflation rate for over a

decade. The rate is closer to 6%. Right now the third rate, 9% is well

beyond anything we see. But, when we ask “What’s the worst that

can happen?” we should always allow for possibilities worse than

the worst possibilities that are happening.

ii) Next make a table showing how much I will have to contribute

every year to my daughter’s college fund (as usual, from birth to age

18) to reach each of these sums if the college fund has a yield of

a. 4%.

b. 8%.

c. 12%.

This table will have 9 entries: check each using either the Future

Amortization–Simple Interest Approximation 5.6.16 or Future

Amortization–Continuous Approximation 5.6.13.

iii) Generally speaking, higher yields are offered to compensate for

higher risk. If I could get 8% guaranteed every year, I wouldn’t be

interested in an investment that offered me 4% some years and 12%
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others. Although in the long run they might appear roughly equal,

over shorter periods, the second has a much worse “worst case” than

the first. Let’s suppose that the fund which yields 8% has periods of

6 years in which the annualized yield is 5% alternating with periods

of 6 years in which the yield is 11%. What are the best and worst

outcomes for the college fund? To keep the arithmetic from getting

out of hand, let’s assume the 6% inflation rate in college costs.

Partial Solution
I am going to work out one scenario to guide you. Once again we

can’t just apply a formula but so what? The formulas we have

let us work out what happens in each 6 year period so all that

is needed is a bit of calculator grease. The only difference from

Problem 5.7.8 is that now there are three periods instead of two.

Here there are two possibilities: 5% yield for the first 6 years,

then 11% for the second 6 and 5% for the last 6, or 11%, then 5%,

then 11%. I’ll work things out for the first and you can imitate

what I do for the second. You should have found that at 6% in-

flation I’ll need $342,520.70 in 18 years to pay for my daughter’s

college and that the annual payment will need to be $8,507.99
(a bit more than $700 a month) if the fund earns an 8% yield.

(Of course, since we’re estimating the future, the to-the-penny

precision of these amounts is misleading. Nonetheless, I’ll keep

using it just so you can tell whether you have duplicated my

calculations correctly when you try them yourself.)

The first six year period is just like a six year amortization with

annual payments of D = $8,507.99 earning 5% a year (so p =
0.01·5
1 and T = 6). At the end of 6 years, the sum is

S = D
(
(1+ p)T − 1

p

)
= $8,507.99


(
1+

(
0.01·5
1

))6
− 1(

0.01·5
1

)
 = $57,870.62 .

Again, the key idea for handling the second 6 years is to keep

this lump sum separate from the annual payments. It just earns

compound interest of 11% (compounded annually, of course) for
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6 years amount to: $108,242.05. The second six years of pay-

ments are just like the first six except that the rate of 5% is now

11%. Making this change in the calculation of S above we see that

these payments will amount to $67,322.55. So after 12 years the

account holds a total of $175,564.60.

Over the last 6 years, this lump sum compounds at 5% to

become $235,273.36. Meanwhile the last 6 annual payments

earn 5% too so the formula above applies exactly and these

amount to $57,870.62. The final sum is the sum of these last

two amounts, or $293,143.98. The fund ends up about $50,000
short—remember at 6$ inflation we decided we needed to save

$342,520.70—but since this is only about 15% of the goal we’d

probably feel we could cross this bridge if we came to it.

iv) Finally suppose that the fund which yields 12% has 6 year peri-

ods with annualized yields of 0%, 12% and 24% and that the 18 year

term is made up of one of each. What are the best and worst cases?

Again, let’s assume that inflation is 6%.

Hint: There are six possible orders for the 0%, 12% and 24% periods.

v) What would you do if you wanted to save for your daughter’s

college fund? There is, of course, no “right” answer here. Different

people have different resources for such savings, different tolerances

for risk and soon. Explain why the plan you chose appeals to you,

what alternative strategies you rejected and why. What is the worst

you outcome you can imagine for your plan?

By the way, parts iii) and iv) of this project start to give you a feel for

how quickly things get complicated when you do not assume that

yields are constant.

Let’s sum up. I’ve put a lot of thought into coming up with the finan-

cial planning equivalent of Michael Pollan’s brilliant 7 word summary

of sound dietary principles: “Eat food, mostly plants, not too much".

Here it is:
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5.8 Amortization: borrowing

Dr I’s Advice to Savers 5.7.12: Start now, diversify, allocate by

horizon, invest don’t speculate.

We’ve already discussed most of these points. Time is your greatest

ally as a saver and you’ll never get back any you lose by not starting

now. Diversification is the best way to reduce risk with a single as-

set class. Allocating your savings across multiple asset classes is the

best way to tune your risk. In general, it’s smart to concentrate on

riskier assets with higher yields when your investment goal or hori-

zon is far off and you can booth profit most from those higher yields

and recover best from downward swings. You should move towards

safer assets when your horizon nears and you have less to gain from

higher yields and more to lose from higher risks.

Only the last point is new. It’s also the least universally accepted.

The main idea is that smart savers buy assets and hold them for

long periods, selling only to make the sort of adjustments to their

allocations needed to match their approach of their horizon. This

keeps fees and taxes low. The alternative is to try “Buy low and sell

high.” This sounds much better but a lot of studies have shown that

such market timers do not achieve better yields in practice: after

factoring in the higher costs and taxes they incur, they fare worse.

The classic account is Burtin Malkiel’s A Random Walk down Wall

Street. But the injunction against speculation also contains a warning

against greed. If it sounds too good to be true, it probably is. Ask any

of Bernie Madoff’s clients.

5.8 Amortization: borrowing

In this section, we want to look at the second kind of Amortization

5.6.1, loans, where we receive the lump sum before making a series

of equal payments at regular intervals.
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Here our model example will be a home mortgage. Suppose that, in

addition to my down payment, I need $100,000.00 to purchase a

house. The bank will lend me this money as a lump sum mortgage—

say at a nominal rate of 7.5% a year—and in return I agree to make

payments at the end of every month for a term of 30 years. The basic

question here is, “What should my monthly payment be?”. Closely

related is the question I might ask myself before starting to look for

a home: “If I can afford to budget about $800.00 a month for my

mortgage, how big a mortgage will the bank give me?”.

Why did I separate the savings and loan amortizations? The answer

is not that they are mathematically very different. In fact, we’ll be

able to apply the formula derived for savings accounts with very

little change. What’s different about loans is that, in most cases, they

do not involve the uncertainty of savings accounts. When we take out

a loan, we general know going in what the interest rate will be and

hence exactly each payment must be to amortize the loan. This kind

of predictability is rare for savings and investments, as we have seen.

The result is that we can answer precisely questions about loans in

which for an investment, we’d have to use a guess or estimate.

The Present amortization formula

To begin with, we are going to figure out a formula for relating the

balance B and payment D of a loan with no calculation! Before read-

ing on, go back and look at the derivation of the Future Amorti-

zation Formula 5.6.8. We had to work hard to get that formula

even if it turned out to be very simple at the end. So you should be

impressed that we can figure out the analogous formula for loans

with no work. I’m lying, of course: what we’ll really do is shake the

Future Amortization Formula 5.6.8 until the Present Amorti-

zation Formula 5.8.1 drops out, making the work we have already

done pay double dividends. But to a mathematician, that’s always
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5.8 Amortization: borrowing

like getting something for nothing, the charm of the subject. This is

also where introducing the sum and balance notation (S and B) will

pay off.

So, how are the payment and the balance of a loan related? The easi-

est way to see the answer is to ask: “What’s the difference between an

investment and a loan if the interest rate, period, term and deposit

of each are the same?”. In other words, suppose we make equal pay-

ments or deposits of $D at equal periods—saym times a year—for a

term of T periods into an account that earns a periodic interest rate

p. So far, we could either be describing what we do to accumulating

money in a savings or investment account or what we do to repay a

loan.

What’s the difference? Not a whole lot. In both cases, what we want

to calculate is a single lump sum of money which represents the

combined value of all the deposits. The only difference is the point

in time at which that lump sum exists. In a savings account, the lump

sum is the final sum S = ST in the account at the end of the term of

the amortization. In a loan repayment, the lump sum is the initial

balance B = B0 of the loan at the start of the term of the amor-

tization. To repeat, both these lump sums represent the combined

value of the series of T deposits of $D. Lets call this A to be neutral.

The only difference is the moment in time at which this combined

value is computed. The initial balance B of a loan is the value of the

amount A at the start of the term of the amortization, after 0 pe-

riods have passed: in other words, B = A0. The final sum S in a a

savings account is the value of the amount A at the end of the term

of the amortization, after all T periods have passed: in other words,

S = AT .

But the Compound Interest Formula 5.2.4 tells us how A0 and AT
are related: AT = A0·(1+p)T . Thus, we conclude that S = B·(1+p)T ,

or multiplying both sides by (1+ p)−T , that B = S · (1+ p)−T . Bingo!

Now all we have to do is plug in the value of S given by the Future
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5.8 Amortization: borrowing

Amortization Formula 5.6.8, munge a few exponents and we find

that

B = S ·(1+p)−T = D
(
(1+ p)T − 1

p

)
·(1+p)−T = D

(
1− (1+ p)−T

p

)
Present Amortization Formula 5.8.1: If a loan which earns

compound interest at a periodic rate p is repaid by a series of

payments made at the end of each of T periods, then the initial

balance B of the loan and the amount D of each payment are related

by

B = D
(
1− (1+ p)−T

p

)
and D = B

(
p

1− (1+ p)−T

)
.

Before we use this, a warning is in order. The key observation that

let us derive this formula with no calculation was that B0 = A0 and

that ST = AT . What about all the intermediate balances Bi and sums

Si after i deposits or payments are made? Can we relate these to the

value Ai of the amount A after i periods? No! The point is that A and

hence any Ai involves all the payments and this is only true of the

initial balance B0 and final sum ST . But not to worry. In a moment,

we’ll see that the Present Amortization Formula 5.8.1 actually

can tell us about all the intermediate balances too.

Working with the present amortization formula

Once again, the formula is beautifully simple to use. Here are the

answers to the mortgage questions at the start of this section.

Example 5.8.2: I am going to borrow $100,000.00 from the bank

at 7.5% interest and make monthly payments for thirty years. Since

the payments are monthly, m = 12 and p = 0.01·7.5
12 . Since the term is

y = 30 years, we have T =m ·y = 12 ·30 = 360. Thus, plugging into

D = B
(

p
1−(1+p)−T

)
, we find that

D = 100,000.00


(
0.01·7.5
12

)
1−

(
1+

(
0.01·7.5
12

))−360
 = $699.2145093
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5.8 Amortization: borrowing

and my monthly payment will be $699.21.

If I think I can budget $800.00 a month for my mortgage payment,

then using B = D
(
1−(1+p)−T

p

)
, we find that we can repay a mortgage

with a balance of

B = $800.00

1−
(
1+

(
0.01·7.5
12

))−360(
0.01·7.5
12

)
 = $114,414.1017

or about $114,000 dollars.

We’ll come back to consider other ways to use the Present Amorti-

zation Formula 5.8.1 in a moment but first let’s formalize what we

did above with a method.

As always, the first two steps are the same (findm and use it to get p
and T ) and the third just involves plugging values into the formula.

Method for solving present/loan amortizations 5.8.3:

Step 1: Determine the periods in the problem (that is, the units in

which the term is measured) and the value ofm, the number

of periods per year.

Step 2: Use the Interest Rate Conversion Formula 5.1.10 to find

the periodic interest rate p from the nominal interest rate r
and the Term Conversion Formula 5.1.13 to find the term

T in periods from the term in years y .

Step 3: Apply the appropriate Present Amortization Formula

5.8.1 to find whichever of the the deposit D and the balance

B is to be determined.

Here are a few exercises for you to try which involve mortgages and

other consumer loans. Since such loans are almost invariably paid on

a monthly basis, I have not explicitly stated the payment frequency

unless it is other than monthly. As usual, we want to work to the

nearest cent. In loans, the rounding error of a fraction of a cent
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5.8 Amortization: borrowing

per payment gets multiplied by a number of payments which can

be large—in the hundreds—and this can cause an discrepancy of a

few dollars between the exact value of all the rounded payments

and the balance of the loan. We’ll just ignore this but—surprise,

surprise—the bank doesn’t. The final payment is usually adjusted

to make things balance exactly. I have worked a few of the exercises

as further examples.

Problem 5.8.4: What is the monthly payment on a mortgage with

a a balance of $100,000.00 if

i) the nominal interest rate is 7.5% and the term of the mortgage is

a. 25 years?

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·7.5

12 and

T =my = 12 · 25 = 300.

Step 3: Here we know the loan balance B = $100,000.00 so

we plug into find the payment D = B
(

p
1−(1+p)−T

)
getting

D = 100,000.00


(
0.01·7.5
12

)
1−

(
1+

(
0.01·7.5
12

))−300
 = $738.99 .

b. 20 years?

c. 15 years?

ii) the nominal interest rate is 9% and the term of the mortgage is

a. 30 years?

b. 20 years?

c. 15 years?

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·9

12 and T =my = 12 · 15 = 180.

Step 3: Here we know the loan balance B = $100,000.00 so
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5.8 Amortization: borrowing

we plug into D = B
(

p
1−(1+p)−T

)
to find the payment

D = 100,000.00


(
0.01·9
12

)
1−

(
1+

(
0.01·9
12

))−180
 = $1,014.27 .

Problem 5.8.5: A car dealer offers to sell you a new car, “No money

down and easy monthly payments”. You calculate that you can afford

to make car payments of $250.00 a month. How much can you afford

to pay for the car if

i) the nominal interest rate on the loan is 4.5% and the term is

a. 2 years?

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·4.5

12 and T =my = 12 · 2 = 24.

Step 3: Here we know the payment D = $250.00 so we plug

into B = D
(
1−(1+p)−T

p

)
to find the loan balance B

B = $250.00

1−
(
1+

(
0.01·4.5
12

))−24(
0.01·4.5
12

)
 = $5,727.66 .

b. 3 years?

c. 4 years?

ii) the nominal interest rate is 12% and the term is

a. 2 years?

b. 3 years?

c. 4 years?

Solution

Step 1: The periods are months so m = 12.

Step 2: p = 0.01·r
m = 0.01·12

12 and T =my = 12 · 4 = 48.

Step 3: Here we know the payment D = $250.00 so we plug

into B = D
(
1−(1+p)−T

p

)
to find the loan balance B

B = $250.00

1−
(
1+

(
0.01·12
12

))−48(
0.01·12
12

)
 = $9,493.49 .
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5.8 Amortization: borrowing

I hope you can guess what’s coming next. Yes, I’m going to ask how

we can check such calculations. This time there will be a version of

the Continuous Approximation 5.3.11 and of the Simple Interest

Approximation 5.3.3 and something new.

To use the Continuous Approximation 5.3.11, we simply approxi-

mate the exponential (1+ p)−T in the Present Amortization For-

mula 5.8.1 by the slightly smaller exponential e−(p·T) = e
(
0.01r·(−y)

)
getting a slightly larger numerator. In the formula for D where this

appears in the denominator and we are now dividing by a larger

quantity, we get an approximation slightly smaller than the exact

value.

Present Amortization–Continuous Approximation 5.8.6: B

is a bit less than D
(
1−e
(
0.01r·(−y)

)
p

)
.

There’s still a periodic rate p in the formula as in the Future

Amortization–Continuous Approximation 5.6.13. If you forgot

to convert the nominal rate when using the Present Amortization

Formula 5.8.1, you’ll probably use r for p here too. Fortunately, the

different numerator will lead to a different answer and let you catch

your mistake. This is another formula which you don’t really need

to learn. You can make the necessary approximations if you just re-

member to use the Continuous Approximation 5.3.11 to replace

the (1+ p)−T .

Example 5.8.7: Let’s check the calculation in Example 5.8.2. Here

we had r = 7.5% and y = 30 years and since we were compounding

monthly m = 12 and p = 0.01·7.5
12 . Our D was $699.21 so the balance

B of $100,000.00 should be a bit less than

D

1− e(0.01r·(−y))
p

 = 699.21
1− e(0.017.5·(−30))(

0.01·7.5
12

)
 = $100,082.2093

and it is. You can check a loan balance calculation the same way.
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Problem 5.8.8: Use the Present Amortization–Continuous Ap-

proximation 5.8.6 to check your answers to part b) of each of Prob-

lem 5.8.4 and Problem 5.8.5.

To apply the Simple Interest Approximation 5.3.3 to loans, we use

the same basic idea as we did for future amortizations. However,

we apply it to the balance rather than the deposits because the arith-

metic is then easier. We ask, “What’s the average outstanding balance

on the loan over its term?” and we answer “About half the initial

balance”. So the simple interest on the balance should be roughly

0.01r · y · B2 . (In the next section, we’ll see that this underestimates

the average balance, but not by an amount we need to worry about

here).

The total of all the T payments of $D each should match the original

balance plus this interest. In fact, they should amount to somewhat

more as the actual compound interest on the outstanding balance

will be greater than the simple interest approximation we have used.

Present Amortization–Simple Interest Approximation 5.8.9:
T ·D is larger—possibly quite a bit larger—than B

(
1+ 0.01r · y2

)
.

Once again, the best feature of this check is that you can do it

roughly in your head. Here are a couple of examples.

Example 5.8.10: Let’s check the calculation in Example 5.8.2. Here

we had r = 7.5% and y = 30 years and since we were com-

pounding monthly m = 12 and T = 360. Our D was $699.21 so

T ·D = $251,715.60. This should be somewhat larger than

B
(
1+ 0.01r · y

2

)
= $100,000.00

(
1+ 0.01 · 7.5 · 30

2

)
= $212,500.00

and it is. As usual, the agreement is not very good here because the

term was fairly long.

We’ll get better agreement if we check a problem with a shorter term

like i) of Problem 5.8.5. Here we had r = 4.5%, y = 2,m = 12,T = 24,

D = $250 and B = $5,727.66. So we expect T ·D = $6,000.00 to be a

bit larger than
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B
(
1+ 0.01r · y

2

)
= $5,727.66

(
1+ 0.01 · 4.5 · 2

2

)
= $5,985.40 .

Since the term was short we get excellent agreement.

Problem 5.8.11: Use the Present Amortization–Simple Interest

Approximation 5.8.9 to check your answers to part b) of each of

Problem 5.8.4 and Problem 5.8.5.

One nice feature of loan amortizations is that when the term is

long—exactly when Present Amortization–Simple Interest Ap-

proximation 5.8.9 is way off—there is another and even easier way

to check your answer. The idea is that when T is big the negative

exponential (1 + p)−T will be small. For example in Example 5.8.2.

we have T = 360 and p = 0.01·7.5
12 so (1 + p)−T = 0.1061398302. So

we don’t lose too much by ignoring this.

We call this the Present Amortization–Interest Approximation

5.8.12 because the estimate it give for the payment D simply equals

one periods interest on the initial balance of the loan. If you made

this payment every month, your outstanding balance would never

change: each month you’d pay off the preceding month’s interest but

you’d never reduce the outstanding balance on the loan. So you’d be

paying the loan forever. One consequence is that this approximation

would be exactly correct if the term were infinite and is accurate

only when the term is fairly long. We get an estimate for B which is

bit large and one for D which is a bit small and both are stunningly

simple.

Present Amortization–Interest Approximation 5.8.12: If

an amortized loan has a long term, the the balance B is slightly

smaller than D
p and the payment D is slightly larger than B · p.

Example 5.8.13: Let’s check the calculation in Example 5.8.2. Here

we had p = 0.01·7.5
12 and B = 100,000.00 so we’d expect D which

turned out to be $699.21 to be a bit larger than 100,000.00 ·(
0.01·7.5
12

)
= $625.00. Note how simple the check is.
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The downside here is that for loans with short terms the approxima-

tion is very poor. For part i) of Problem 5.8.5, where p = 0.01·4.5
12 and

B = $5,727.66 we get the estimateD ' $5,727.66·
(
0.01·4.5
12

)
= $21.48

which is much smaller than the exact payment of $250.00.

Problem 5.8.14: Compute the monthly payment on a $80,000.00
mortgage at a rate of 8.4% and compare it with approximation given

by the Present Amortization–Interest Approximation 5.8.12 for

terms of

i) 20 years.

ii) 30 years.

iii) 40 years.

5.9 Things everyone should know

This section is a short introduction to issues that you’ll almost

certainly confront in managing your personal finances. You’ll learn

some handy tricks—like how to compute the balance on a mortgage

or any other amortizing loan—but, more important, I hope you’ll

learn how to maximize your spending power and how to avoid com-

mon traps in managing your personal credit.

Equity

“Why rent when you can own? Paying rent is just throwing money

away. If you buy a house, you’ll be building equity.” This is a classic

real estate agent’s argument to convince renters to become home-

owners. Does it make sense? For the real estate agents, definitely.

When a property changes hands, the agents for both the buyer and

the seller collect several percent of the the selling price. That’s their

business so they are interested in generating the greatest number of
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sales possible both by convincing new buyers to enter the market

and by convincing existing owners to “trade up”. The first question

I want to look at in this section is what your position as a potential

buyer should be.

Let’s begin by trying to understand what “building equity” means.

The idea is simple. In discussing the Present Amortization–

Interest Approximation 5.8.12, we saw that the actual periodic

payment D you make on a loan is somewhat greater than the pe-

riodic interest B0 · p on the initial loan balance B0. (By the Simple

Interest Formula 5.1.6, the interest in one period is I = p ·A · T =
p · B0 · 1 = pB0.) For example on a loan of B0 = $100,000.00 at 7.5%

interest which is paid monthly (so p = 0.01·7.5
12 ), we’d owe interest of

B0 ·p = $625.00 after one month. The difference D−B0 ·p is the part

of the first payment which is used to reduce the outstanding balance

on the loan.

Note that while the interest owed is the same whatever the term of

the loan—in our example, $625.00—this difference will depend on

the term. We saw in Problem 5.8.4 that a loan with a 30 year term

the payment D = $699.21 and hence the difference D − B0 · p =
$74.21 while for a loan with a 15 year term we have a payment of

D = $927.01 and a difference D − B0 · p = $302.01.

In any case, at the end of the first period, your outstanding bal-

ance B1 has decreased a bit. Let’s track this in the case of the 30
year mortgage. The reduction in balance is (D − B0 · p) = $74.21 so

B1 = B0 − (D − B0 · p) = $99,925.79. In the second month you in-

cur periodic interest of B1 · p = $99,925.79 0.01·7.512 = $624.54. Since

B1 is a bit smaller then B0, this interest is a bit smaller (46¢ smaller

to be precise) than the periodic interest due in the first month, so

the difference D − B1 · p between what you pay and the interest you

owe is a bit bigger (46¢ bigger). This difference is also the reduc-

tion in your outstanding balance in the second month so B1 − B2 is

a bit bigger than B0 − B1. I’ll leave you to check that B2 comes out to
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be $99,851.14. This process continues. We won’t go any further with

our example because it’s already pretty clear both that we could com-

pute more balances if we wanted to, and that we don’t much want

to unless we can find a better approach. Imagine finding the balance

after 5 years—-or 60 months. We have to make 60 calculations like

those above. No thanks!

Let’s just summarize what we’ve seen from the first two calculations.

Each payment you make reduces your outstanding balance and each

reduction is a bit bigger than the preceding one. That is, the amount

of the reduction gets bigger and bigger every payment. Equity is the

name for these reductions.

Equity 5.9.1: The difference Ei = B0 − Bi between the initial bal-

ance B0 of a loan and the intermediate balance Bi after i payments

is called your equity after i months. The equity increases with each

payment made and the size of the increase also grows from payment

to payment.

We tend to think of equity as a form of savings or investment particu-

larly with respect to mortgage loans against real estate. Let’s assume

that the value of the property on which the mortgage is held is equal

to the initial balance of the mortgage at all times: this is wildly unre-

alistic but we’ll ignore this for now. Assuming this, then the equity Ei
is the amount of extra cash you could realize if you sold the property

and paid out the outstanding balance after i periods. You’d get back

the initial balance B0 as the sale price, pay the bank the outstanding

balance Bi and be left with the equity Ei = B0 − Bi in your hot little

hand. In particular, at the end of the term of the mortgage, when the

outstanding balance BT = 0, your equity equals the value B0 of the

property.

Mortgage based equity was traditionally an important component of

overall savings in the United States, particularly for households ap-

proaching retirement age. You’d buy a house in your 20’s or early

30’s, pay off the 30 year mortgage at roughly age 60 and the equity
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in the house would be your “nest egg” for retirement. Two things

have altered this fact. The first is the increased role of targeted re-

tirement funds and pensions. The second is the increased mobility

of American families. It is this second effect which I’d like you to

understand.

To do so, we’ll need a formula for the equity Ei after i periods in

terms of the basic quantities B and D. We can unwind the calcu-

lations we did above in the case of the 30 year mortgage to get

such formulae. Indeed, we already found a formula for E1 above:

E1 = B0 − B1 = (D − B0 · p). We could also have found a formula

for E2: the reduction in balance in the second month was D − B1 · p
so E2 = E1 + (D − B1 · p) and since B1 = B0 − (D − B0 · p) and

E1 = (D − B0 · p),

E2 = (D − B0 · p)+
(
D − (B0 −

(
D − B0 · p)

)
· p
)
.

Did that go by a bit quick? Not to worry because it is pretty clear

that even if we understand E2 in this way, things are going to be too

complicated to get a general formula. We can see that each payment

reduces the balance a bit more but the exact amount of the reduction

in the ith payment depends on the values of the reductions in all the

preceding payments. It looks hopeless.

What we need is another way to think about Ei . The basic formula

Ei = B0 − Bi provides just this. We know B0 just equals B. So, if we

can find a simple formula for the outstanding balance Bi we can use

it to get a simple formula for Ei . We have just such a formula: the

Present Amortization Formula 5.8.1! The trick making this do

the work is to ask, “What would the bank be willing to accept as a

substitute for the lump sum balance Bi at the end of the ith period?”

We know one answer: the remaining (T − i) periodic payments of $D
which we would have to make if we did not pay of the balance after i
periods. In other words, the balance Bi is the answer to the question,

“How big a loan can I take out at a periodic interest p if I am willing
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to make T − i periodic payments of $D?” Thus, we can think of Bi
as the initial balance of a loan with payment $D, periodic rate p
and shortened term of T − i periods. The Present Amortization

Formula 5.8.1 tells that this initial balance is

Bi = D
(
1− (1+ p)−(T−i)

)
p

and hence that

Ei = B0 − Bi = B −D
(
1− (1+ p)−(T−i)

)
p

.

This is another of those cases where it is much easier to remember

the idea than to learn a new formula. After all, we really just used

the Present Amortization Formula 5.8.1.

Balance and Equity Principle 5.9.2: The intermediate balance

Bi outstanding after exactly i payments have been made on a loan

with initial balance B, payment D, periodic rate p and term T periods

equals the initial balance of a loan with payment D, periodic rate p
and shortened term T − i periods. The equity Ei after i payments is

just the difference between the initial balance B and the ith interme-

diate balance Bi .

We can put this more informally: to get the balance after i payments,

just shorten the term by i periods. Because we’re using a formula

we already understand, we can jump right in and work equity and

balance problems. Here’s the method.

Method for finding balance and equity 5.9.3:

Step 1: We start by using the Method for solving present/loan

amortizations 5.8.3 to find the payment amount D on the

loan as usual—often, we will already know this and so can

skip this step.

Step 2: Use the Present Amortization Formula 5.8.1 with this

payment and the same periodic rate to compute the inter-

mediate balance Bi remembering to replace the original term

T with the number of payments T − i not yet made on the
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loan. In other words, we just subtract the number i of pay-

ments made from T : remember that i is in units of payments

or periods not units of years. If we’re asked for a balance

after z years we’ll have to convert the term of z years to an

equivalent number i of periods or payments.

Step 3: Compute the intermediate equity Ei by subtracting the inter-

mediate balance Bi from the initial balance B.

Example 5.9.4: Here’s a typical example of how we use this. Let’s

find the outstanding balance and equity on a $100,000.00 mortgage

at interest of 7.5% with a term of 30 years at the end of 5 years.

Solution

Step 1: Finding the payment for this mortgage was part i) of

Problem 5.8.4 so we can just borrow the values from solu-

tion given there. As usualm = 12 and we saw that p = 0.01·7.5
12 ,

T = 360 and D = $699.21.

Step 2: Over the first 5 years of the mortgage we will make i =
5·m = 60 payments, leaving T−i = 360−60 = 300 payments

to go, so using the formula Bi = D
(
1−(1+p)−(T−i)

p

)
we find that

B60 = $699.21

1−
(
1+

(
0.01·7.5
12

))−300(
0.01·7.5
12

)
 = $94,616.83 .

Step 3: The desired equity E60 is given by E60 = B − B60 =
$100,000.00− $94,616.83 = $5,383.17.

Here are some exercises for you to try.

Problem 5.9.5: Find the outstanding balance and equity on a mort-

gage with an amount of $100,000.00 at interest of 7.5% with a term

of 15 years at the end of:

i) 5 years.

ii) 10 years.

Solution
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Step 1: Here we need to figure out the payment first. We again

have B = $100,000.00, m = 12 and p = 0.01·7.5
12 but now T =

15 · 12 = 180 so D = B
(

p
1−(1+p)−T

)
gives

D = 100,000.00


(
0.01·7.5
12

)
1−

(
1+

(
0.01·7.5
12

))−180
 = $927.01 .

Step 2: Over the first 10 years of the mortgage we will make i =
10 · 12 = 120 payments, leaving T − i = 180 − 120 = 60
payments to go, so the intermediate balance we want is

B120 = $927.01

1−
(
1+

(
0.01·7.5
12

))−60(
0.01·7.5
12

)
 = $46,262.72 .

Step 3: The desired equity is E120 = B − B120 = $100,000.00 −
$46,262.72 = $53,737.28.

iii) 15 years. (No calculator allowed!)

Problem 5.9.6: Find the outstanding balance and equity on a mort-

gage with an amount of $100,000.00 at interest of 7.5% with a term

of 30 years at the end of

i) 10 years.

ii) 15 years.

iii) 20 years.

iv) 25 years.

Stop for a moment and stare at your answers to these problems be-

fore going on. They are striking in several ways.

The first worked example describes a scenario which the author has

seen played out many times by friends. A young family buys a house

with a 30 year mortgage (usually they cannot afford the higher pay-

ment which would go with a shorter term) and then moves after 5
years (because of a job change or a divorce, to buy a bigger house

etc.). Note that the equity such a family accumulates over the first 5
years they pay the mortgage before reselling the house is only about
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$5,000.00. Closing costs on the purchase of a house of this value—

closing costs are the commissions and fees you pay to the real estate

agent, banks, title search agency, and lawyers, are likely to be at least

this large. In other words, such a family will not build up enough eq-

uity to recover its initial closing costs in buying the house—not to

speak of what the yield on this outlay might have amounted to over

the 5 years period nor of the closing costs involved in selling the

house at the end of the term.

The second worked example might describe a family who can afford

to take out a mortgage with a term of 15 years and then stay in the

house for 10 years before moving. This is different in two ways. The

first difference is that the term is only half as long (15 years instead

of 30). This means a higher payment but the extra amount is sur-

prisingly small. If we ignored interest, we’d need a payment twice as

big to pay off a loan in half the time. The effect of compounding is

to compress this gap strikingly: the actual difference of about $228
a month is less than 25% of the 15 year payment. The second dif-

ference in this example is that the family stays twice as long. We’d

expect both factors to lead to a larger equity. One guess might be to

double the equity from about $5,000 to about $10,000 to account for

doubling the payments made and then add 25% to account for the

higher payment: this would give equity of $12,500 or so. The actual

equity is more than four times this guess and close to ten times what

the first family would accumulate!

What are we missing? The answer is that we are making a simple

mistake in two ways. Instead of comparing the payments for the two

mortgages we should be comparing the amount of each payment

which remains after deducting interest owed. These are the amounts

that yield equity. We saw above that for the first payment the remain-

der was $74.21 for the 30 year mortgage and $302.01 for the 15 year

mortgage. The remainder after we remove the interest in the 15 year

mortgage is four times the remainder in the 30 year mortgage. So we
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can improve our guess and say that the second family should have

8 times the equity of the first—a factor of two from the number of

payments and a factor of 4 for the size of the remainder.

So, why is the actual multiple closer to 10 than 8? For the same

reason in another guise. Another way to say that the equity on the

15 year mortgage is growing faster is to say that the outstanding

balance is shrinking faster. Therefore, the interest due each month

on the outstanding balance is also dropping faster making the dif-

ference between the two remainders at the ends of the respective

periods is even bigger. After 5 years the balance outstanding on the

30 year mortgage will be $94,616.83 so the interest owed in the 61st

month will be $591.36 and the remainder in this payment will be

$699.21− $591.36 = $107.85. The balance after 120 months on the

15 year mortgage is $46,262.72 so the interest owed in the 121st

month will be $289.14 and hence the remainders in this month will

be $927.01 − $289.14 = $637.87. The ratio of the two remainders

thus ends up at 6 not 4. On the average this ratio should be about 5
which with the factor of 2 for the term gives us the factor of 10 we

see in the equities.

To really get a feel for how equity build up, a picture is worth a

thousand words. Each of the graphs in Figure 5.9.7 plots the num-

ber of payments made on the x-axis against the equity built up af-

ter that many payments on the y-axis. In both graphs, the interest

rate is 7.5% but on the left I have used a term of 30 years while on

the right the term is 15 years. Actually, I have plotted the equity

as a fraction of a initial loan balance B which is why the ticks on

the y-axis go from 0 (no equity) to 1 (no outstanding balance). For

example, after 60 payments on the 30 year mortgage the graph is

at height about 0.05: on a balance of $100,000.00 I would have eq-

uity of about 0.05 · $100,000.00 = $5,000.00. Likewise, after 120
payments on the 15 year mortgage the graph is at height about

0.54: on a balance of $100,000.00 I would have equity of about
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0.54 · $100,000.00 = $54,000.00. Remember that you can use the

magnifier tool in Acrobat to zoom in on the graph.
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Figure 5.9.7: Relative equity by number of payments made

Problem 5.9.8: Check your answers to Problem 5.9.6 and Problem

5.9.5 against the graphs.

Challenge 5.9.9: Is it really OK to ignore the loan balance? More

precisely, the way I drew the graph above implicitly claims that the

equity accrued as a fraction of initial balance only depends on the

rate r and term T of the loan and the number i of payments made,

not on the initial balance B.

i) First, check this by computing a few such fractions for a loan

of $200,000.00 at 7.5% interest and comparing with known answers

for a loan of $100,000.00 (You can save half the work if you use as

examples a loan with a 30 year term after i = 60 payments are made

and one with a 15 year term after i = 120 payments are made.)

ii) Next, use Present Amortization Formula 5.8.1 to show that

the fractions are the same for any two balances B and B′ if r , T and

i are the same.

iii) Finally, explain why the principle of Equality of dollars 5.1.4

implies that the fractions in the graph are independent of the initial

loan balance.
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Let me make a point about these checks. The check in i) looks

easiest—it’s just a standard concrete balance problem—but is the

most work. The check in ii) is a bit scary—you’ve got to write down

the quotient of two medium sized formulas—but when you do the

B’s just cancel. But the conceptual argument in iii) is the easiest of

all. Moral: an ounce of inspiration is worth a pound of perspiration.

What conclusions can we draw from these graphs? First, staying 10
years won’t help the family with the 30 year mortgage much. Their

equity will be just over a tenth of the value of their mortgage after

10 years—actually about 0.13—so on a balance of $100,000.00 they

will only have accumulated about $13,000 in equity. They will need

to keep their house for over 20 years before they build up equity of

more than $50,000.

Problem 5.9.10: Use the Method for finding balance and eq-

uity 5.9.3 to check that after 22 years this family still owes a touch

more than $50,000 on their mortgage.

Not many people stay in the same house this long today. So, we

conclude that if you need to take out a 30 year mortgage to finance

a home purchase, you should probably not expect to build up much

equity before moving. Of course, you might stay put for 30 years and

build up $100,000.00 in equity but while this was common thirty or

forty years ago, you’d be a rare exception if you did this today.

A second conclusion we can draw is that even if you can afford to

take out a 15 year mortgage, you need to stay for most of the term

to build substantial equity. After 5 years, your equity fraction will

be about 0.22 and after 10 (as we’ve seen) it’s about 0.53. In other

words, you create roughly 4 times as much equity in the last 10 years

as the first 5 and almost as much in the last 5 years as you do in the

first 10.

Don’t get me wrong. I have nothing against buying a home per se. It

is sometimes cheaper than buy than to rent even when you include

1—
1—
2—

a ·· ·· z ? 660 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.9 Things everyone should know

closing costs, insurance, maintenance, taxes and so on and even if

you are not planning to stay in the place you are buying “forever”.

One important factor that I haven’t mentioned is that mortgage in-

terest is often deductible from your income for federal tax purposes.

But, if you are concerned about money, this is the calculation you

should be making: which is cheaper all costs included.

Buying does not turn out to be cheaper all that often. It’s true that

there are intangible values to owning your home—no landlord, you

can fix it up any way you want, . . . —the whole “It’s our very own

place” factor; or, the kind of home you want may be impossible to

rent. But these work both ways: if the roof starts leaking, you have

to fix it; if you want to move, you have to find a buyer. You have

to decide how much these intangibles matter to you. My advice is

simply to have a clear idea of relative costs to balance these other

factors against. And, unless you can afford a mortgage with a short

term and expect stay put for most of that term, don’t make “building

equity” one of those intangibles.

Project 5.9.11: This project involves a lot of calculation so you

might want to work with some friends and divide up the grunt work.

i) Another common term for mortgages is 20 years. Compute the

equity built up in a $100,000.00mortgage at 7.5% at 2 year intervals.

Plot these on a graph like those above. How do the three graphs

compare?

ii) Interest rates also affect how equity grows. Make plots like those

above assuming terms of 15 and 30 years but changing the interest

rate to 6% and to 9%. Discuss how higher or lower rates seem to affect

the growth of equity.

Major Project 5.9.12: Which is cheaper in your area, renting or

owning? Imagine that you have an income of $45,000.00 a year and

that mortgage interest rates are 7.5%.

i) Most banks have a rule that your mortgage payment can not be

greater than 28% of your income. How much can you afford to spend
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on a house if you do not have any money for a down payment? (In

real life, you are usually required to include costs like taxes in the

28% figure. Moreover, if you do not have a down payment of 20% of

the purchase price, this percentage would be reduced somewhat and

the interest rate raised. We’ll ignore such facts.)

ii) Write down specifications for a home you’d “like” to buy (num-

ber of beds and baths, amenities etc.). Then find current ads for

several homes of this type in your area which are for rent and for

sale. Compute the total cost renting or of owning each property for

3 years, for 5 years and for 10 years. Be sure to include costs like

closing costs, maintenance, insurance, utilities and taxes in your cal-

culations in addition to rent or mortgage costs. In budgeting like this,

the federal mortgage interest deduction is significant so be sure to

include it in your calculation. Remember you must stay within the

mortgage budget from i). You may need to research some of these

costs with a realtor and or a bank in your area.

iii) Wait, I used to hear many students saying a few years ago (circa

2004-2006): “Real estate is booming”. For some reason they stopped

in 2007 and 2008. But it’s true. I have so far completely ignored the

possibility that the value of your home will increase while you own

it. When you sell, this increased value is like “extra” equity you have

accumulated. But prices may also drop and then you may wind up

with less or even “negative” equity—upside down as it’s known in

the trade.

Repeat the calculation of part i) (including the same costs) but incor-

porating changing rents and real estate values in your area. To do

this you will need to find data for homes in your area which are for

sale today and were for rent or sale 3, 5 and 10 years ago so you

can calculate these changes. To make it easier to find examples, we’ll

remove the ceiling on your mortgage budget. To be fully fair to rent-

ing, you should also include a down payment. For simplicity, sup-

pose that the buyer was required to make a 20% down-payment on

each house when you purchased it while the renter had this money

1—
1—
2—

a ·· ·· z ? 662 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.9 Things everyone should know

to invest in the stock market over the same period. Use the S&P 500

index to measure the renter’s yield. Who comes out ahead now over

each of the three terms?

A Final Tip 5.9.13: We’ve seen how much more effective a way to

save paying a 15 year mortgage is than paying a 30 year one. What

if your bank will only approve you for a 30 mortgage (with its lower

payment of $699.21), but you think you can come up with the 15 year

payment of $927.01? Just make the $927.01 payment every month

and you’ll clear the mortgage in 15 years! That’s because there are no

penalties for prepaying mortgages (unlike many other loans). More

generally, if you want to use a mortgage to save, then you’re smart to

increase your payments by as much as you can afford to shorten the

term. The only downside to be aware of is that mortgage interest—

but not reduction of principal—can be deducted from your Federal

income tax. Since the interest is already covered by the 30 payment

amount, any extra you pay off will not get any tax break.

“Money talks, nobody walks”

The title of this subsection is an old used car dealer’s slogan. “I’ll do

anything to sell this car”. If you think the salesman wants the money

in your pocket, you’re wrong. You don’t have to have any money in

your pocket now because “I’ll finance your car with no money down”.

The money the dealer wants is the money that is going to be in your

pocket in the next few years. If he can get you to take out a loan to

pay for the car, he’ll make a sale and that is what he really wants.

Of course, there is a substantial risk. You have his car and he has

only your word that you’ll make all the payments. What if you de-

fault? That’s easy: buyers are charged such a high interest rate that

the even after figuring in the losses involved in repossessing from

those who do not pay up the loans offer an excellent yield. In fact, in
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most cases, the car dealer will immediately sell your loan to a collec-

tion agency. He receives less than the face value of the loan but has

that loquacious money in his hand. In other words, he has achieved

his goal and sold a car—that’s his job. The collection agency has the

difference between the face value and the sale price of the loan as an

extra margin to compensate it for delinquent borrowers as it collects

the payments—-that’s its job. You have the car—that was your goal.

It seems like everyone comes out ahead. What’s the catch?

The catch comes over the next few years when you make also those

easy monthly payments. (Ever noticed how all monthly payments

are easy?) In this section, I’d like to compare what the costs of such

a loan are to those of saving to buy the car. The principles we’ll

discover apply to many other kinds of consumer credit loans: for

furniture, electronics, appliances and so on.

Example 5.9.14: Let’s say you want a car that sells for $4,800.00.
The salesman is likely to ask whether you can afford to pay $150.00 a

month. “I think so”, you say. “Fine”, he answers, “We can arrange for

you to make 48 easy monthly payments of just $149.93 a month”.

What interest rate are you being charged? If you are like most people,

you have no idea. There are two ways to find out. The easy one is

to look at the finance contract. Down in the small print somewhere

you’ll find the interest rate because it’s a legal requirement to put it

there: it’s 21.5%. In the next section, Section 5.10, we’ll learn how to

find find the interest rate given the balance, payment and term.

Now let’s ask what you’d need to do to save for the car and pay cash.

I claim that if you put away $90.00 a month for 48 months you’ll

have the same $4,800.00 Before we check this, let’s note the main

point. If we use the loan payment as a reference, then this means

that by saving the money to borrow the car instead of borrowing it,

I can reduce my monthly payment by about 40%. If I use the savings

deposit as a reference the difference is even more striking: I have to

pay fully two-thirds again as much to borrow for the car as to save.
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Another way to get a feel for the difference between saving and bor-

rowing is to ask how long you’d have to make monthly deposits of

$150.00 a month into a savings account to accrue $4,800.00 I claim

that it would take about 30 months. In other words, you have to

make the same payments for an extra year and a half if you bor-

row the money. For short term investing of this type, safety is more

important than yield. The last problem shows that even a very high

yield shortens the term by only a couple of months. But to get a high

yield you’ll have to risk substantial losses and if these occur during

such a short term they will delay reaching the goal considerably.

Before we go on, let’s check the numbers in Example 5.9.14.

Problem 5.9.15: Show that the monthly payment on a loan with a

48 month term at interest of 21.5% is $149.93.

Problem 5.9.16: Check the savings deposit amount given above. Of

course, one ingredient is missing: the interest rate.

i) Show that at a rate of 5.3% the monthly deposit needed to accu-

mulate $4,800.00 in 48 months is $89.99.

ii) Paradoxically, here the rate is not critical because the term of the

amortization is so short. Show that at rates of 2% or 10% the monthly

deposit you will need to make is within 10% of $90.00

iii) Compare the potential plusses and minuses of various kinds of

investments for this kind of a short-term savings goal. What would

you choose?

Problem 5.9.17:

i) Show that at a rate of 5.3% a monthly deposit of $150.00 for 30
months accumulates to $4,800.00 to the nearest dollar.

ii) Here the rate you get on your savings matters even less because

the term of the amortization is even short. Show that at rates of

1% to 12%, the number of months you need to deposit $150.00 to

accumulate $4,800.00 changes by no more than 2.
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Did I hear an objection? I hope so. I have slurred over two issues in

Example 5.9.14. Perhaps, I should have been a used car salesman.

Let’s discuss them in turn. The basic moral of the example is that

you pay a very heavy penalty for borrowing to make a consumer

goods purchase like that new car—one amortized over a term of a

few years at a high interest rate—instead of saving for the purchase.

The main source of this penalty is that high interest rate.

On the other hand, in Problem 5.9.16 and Problem 5.9.17 we checked

that the amount and/or term for which you’d have to save are rela-

tively little affected by the rate your savings earn. Why does the rate

matter for the loan but not for the savings? It’s not that there is some

basic difference between savings and loans as the following problem

lets you check.

Problem 5.9.18:

i) Check that the monthly payment needed to amortize a loan of

$4,800.00 over 48 months at an interest rate of 6% is $112.73.
ii) Show that at rates of 2% or 10% the monthly deposit you will

need to make is within 10% of this amount.

What these problems illustrate is that for both savings and loan

amortizations, when the term is short and the interest rate is fairly

low (say less that 10%), then the deposit D is relatively insensitive to

the the interest rate. It’s basically the final sum (if you’re saving) or

the initial balance (if you’re borrowing) divided by the number T of

payments.

This is exactly correct if the interest rate is 0%. If you make T pay-

ments of $D and no interest is involved they amount to a sum of

$S = T · $D or pay off a loan of $B = T · $D. In Example 5.9.14,

this zero interest deposit D is just $100.00 = 4800.00
48 . For each extra

percent of interest paid, $D changes by a few dollars. i) and ii) sug-

gest that D changes about $2 for each percent change in the nominal

rate. When we save D goes down because we’re being paid the inter-

est: at 5.3%, D went down about $10 to about $90 Likewise, D goes
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up when we borrow and pay the interest: it went up about $12 to

about $112 when we were charged 6% interest. But in both cases we

stay close to the zero-interest deposit of $100.00.
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Figure 5.9.19: Payment D versus rate r in Example 5.9.14

Pictorially what I am claiming is that if we plot D against the nominal

rate r we’ll see something that looks a lot like a straight line with

slope 2. Figure 5.9.19 is the proof. The graph curves up a bit—the

slope is closer to 3 than to 2 at the right side—but at a glance looks

straight. Saying the rate is low means we’re on the left side of the

graph where the deposit is close to $100.00.

But this is not true if either of the italicized assumptions fails to

hold. We have already seen lots of examples of how sensitive to in-

terest rates the final sums of long term amortizations can be: the
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answers to part ii) of Problem 5.6.19 are excellent ones. (By the way,

the answers to part i) of this problem give another example of how

over a short term this need not be so). In the example of the used car

loan, the term is short but the interest rate on the loan is no longer

“fairly low”. It’s big enough to make a substantial difference even

over a short term. We have moved out to the right side of Figure

5.9.19 where the deposit is no longer close to $100.00.

Consumer loan rates—rates on credit card balances, loans for con-

sumer goods like furniture, home electronics etc, and in general

loans made by people in order to sell you something generally have

rates in the range 18%−24%. Such rates are high enough to substan-

tially affect the deposit D need to amortize a given balance or sum

even over short terms. This applies whether saving or borrowing. The

following problem shows, for example, that if you could earn 20% on

your savings you could reduce the $90.00 deposit in Problem 5.9.16

by more than 25% to about $66 a month.

Problem 5.9.20: Suppose you could find a savings account that

earned 20% interest. Check that the monthly payment needed to

amortize a loan of $4,800.00 over 48 months would be $66.07 and

that depositing $149.93 a month into this account you would accrue

slightly over $4,800.00 in 26 months.

So the first clarification that needs to be made about Example 5.9.14

is that it’s borrowing at high consumer loan interest rates which is

pernicious not the act of borrowing per se. A good thing too, since

we wouldn’t want to have to save to save for 25 years—meanwhile

paying rent—to buy a house. (Note, however, that there are countries

in which this is more or less what you have to do to buy a house).

The difference in a mortgage is the substantially lower rate as you

can confirm in the following problem which asks what would happen

if mortgages had rates like consumer loans.

Problem 5.9.21: What is the monthly payment on a mortgage with

a balance of $100,000.00 and an interest rate of 20% if the term is
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i) 30 years?

ii) 15 years?

What’s the second clarification? Suppose we ignore the high interest

rate charged on consumer loans and imagine they are available at,

say, 6%. Look at the answers to Problem 5.9.16 and Problem 5.9.15:

for the same amount and term and for our hypothetical interest rate

of 6%, the savings payment is about 20% less than the loan payment.

Is this a second factor—besides the high rate on consumer loans—

which argues for saving to buy rather than borrowing to buy? No!

The reason is a key fact which I ignored all through Example 5.9.14.

You’ve probably spotted it long ago. The borrower has that car now

and through the four years of the loan. The saver has to wait until

the end of the 4 year period to buy the car. The use of the car during

those intervening 4 years, like the use of money over a period of

time has a value and the higher loan payment reflects the fact that

the borrower acquires this use while the saver does not.

As a consequence, all my statements as to how much more it was

costing the borrower than the saver are exaggerated: they all failed

to take account of the fact that what the borrower is buying—a car

today—is worth somewhat more than what the saver is buying—a

car four years from now—and he should expect to pay somewhat

more. My basic point, however, stands. The lion’s share of the pre-

mium that the borrower pays is attributable to the high interest rate

charged and not to the greater value of what is purchased.

Here’s final striking way to view this difference. Suppose that both

the borrower and the saver buy a $4,800.00 car every 4 years. The

borrower gets his first car today, pays off the loan at $150.00 a

month over 4 years, and repeats this cycle. The saver takes the bus

for 4 years and puts away $90.00 a month for a car and $60.00 a

month for his retirement (both at 6% interest). He then pays cash

for his car but continues to deposit $90.00 a month so he can pay

cash for his next car in 4 years and to save $60.00 a month for his
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retirement. What are the plusses and minuses? Both are out $150.00
a month. For the first 4 years, the borrower has a car but the saver

does not. Thereafter, they both drive the same car. Eight cars later

the saver has a retirement account with over $90,000.00 in it. The

borrower has nothing

Problem 5.9.22: Show that after 36 years of making monthly pay-

ments of $60 a month into a retirement account which earns 6%

interest, you’ll have a sum of $91,495.13.

Here are a few more problems to illustrate the principles in this dis-

cussion.

“No interest and no payments until 2010!” This, or something like

it, is a come-on often used in selling electronics, furniture etc. In

the next problem, we analyze how such offers work and what their

effect is. Payments on these loans generally come at the start of each

period but we’ll pretend they come at the end to avoid having to

introduce more formulas.

Problem 5.9.23: Let’s suppose that what you want is to buy that

big-screen TV for the 2009 Superbowl. Scanning the newspaper on

January 15, 2009, you see an ad for that big screen TV you been han-

kering for, “This weekend only: $2,499.99 or just 36 easy payments

of $99.99 a month. Plus no interest and no payments until 2010!”. In

Problem 5.10.22, we’ll see that the hidden interest rate in this offer

is 25.45%.

i) Check that this is the correct rate. Then check that at 5.3% inter-

est, you’d have to put away about $64.22 a month for the same 36
month period.

ii) What does “No interest and no payments until 2010!” mean. If

you think it means that you can make the first of your 36 $99.99
payments on January 1, 2010 go to the back of the class. If you look

at the small print in the loan contract, you’ll see something like the

following language, taken verbatim from the fine print of a promo-

tion of this type.
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“FINANCE CHARGES accrue on a promotional pur-

chase from the date of purchase and all accrued FI-

NANCE CHARGES for the entire promotional period

will be added to your account if the purchase is not

paid in full by the end of the promotional period or

if you default under your card agreement.”

What that means, in plain English, is that you are not obliged to pay

anything until January 1, 2010. Second, you may, if you can and wish,

pay off the entire $2,499.00 before January 1, 2010 and you will not

owe the store anything. But, on January 1, 2010, you’re not obliged

to do anything but make that first $99.99 payment. So far so good.

Third—and here’s the kicker—on January 1, 2010, the store will add

11.5 months interest (from January 15, 2009 to January 1, 2010) on

whatever part of the balance you have not paid off to that balance.

Suppose that you’re like most people and pay off nothing before

January 1, 2010. Show that your outstanding balance on January 1,

2010 will be $3,183.88.
iii) Show that it will take you not 36 but 54 easy monthly payments

of $99.99 to pay off this debt at 25.45%. You’ll still be paying for that

TV during the NBA Finals of 2014!

iv) How much would you have to save each month in an account

which earned 5.3% interest to accumulate $2,499.99 in 54 months?

In fact, if you just put $99.99 under your mattress for 54 months,

you’d have enough cash to but that TV and another just like it for

the bedroom, with enough left over to host a major Superbowl party!

Problem 5.9.24: You lose your job and to cover your expenses

while looking for a new one use a credit card which charges a nomi-

nal rate of 23.65% on outstanding balances to pay most of your bills.

By the time you find a new job get your financial life sufficiently

organized to confront your outstanding balance, it has run up to

$17,500.00 You cut up the card and go to work to pay this off.

i) Show that when you start the additional interest you owe each

month on the debt is $344.89.
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ii) Show that if you pay off this debt at $500.00 a month it will take

you about 60 months to amortize it, if you can only afford $400.00
a month it will take 102 months (that’s almost 9 years).

iii) The minimum payment on a credit card is usually 2% of the

outstanding balance. That’s $350.00 a month for your balance of

$17,500.00. Making the minimum payment, show that it will take

you more than 18 years (!) to pay off your card.

iv) If you can’t afford to pay more than $350.00 a month, how much

more debt could you assume before you’d never be able to repay?

5.10 The hunt-and-peck method

A lengthy example

If you are trying to evaluate a consumer loan—say in a newspaper

ad, you will probably not have the contract and the rate in front of

you. Is there some way to estimate the interest rate? At first, it seems

not. If we write down what we know about the car loan in Example

5.9.14 the Present Amortization Formula 5.8.1 B = D
(
1−(1+p)−T

p

)
becomes

(5.10.1) $4,800.00 = $149.93
(
1− (1+ p)−48

p

)
.

There is a problem here: the periodic rate occurs in two places in the

equation and there is no obvious way to isolate it and solve. Fine, as

mathematicians we should look for some non-obvious way to get a

formula for p and hence r in terms of B, D and T .

The bad news is that no one has found one. This is actually pretty

typical. Most equations are impossible to solve exactly, that is, by

giving a formula for the desired quantity in terms of the others in the
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equation. This may come as news to many of you. Your math texts

over the years have probably given you a lot of equations to solve

exactly. What the authors of your texts probably did not emphasize

was that these equations were carefully selected from the very few

which can be solved exactly.

The good news is that, in a problem like finding the interest rate

where we do not really want a formula or exact solution for p but an

approximate value or approximate solution, we can often substitute

a bit of perspiration for a lack of inspiration to solve problems of

this type. The basic idea is pretty simple. Make a reasonable guess

for p, plug it into the Present Amortization Formula 5.8.1 and by

comparing the two sides decide whether the guess is too big or too

small. This lets us make a better guess for p and we then repeat the

process until we know p as accurately as we wish.

I call this the Hunt and Peck Method 5.10.18. The fancy word

for what we are doing is iterating (which just means repeating). Of

course, all this guessing, plugging in and comparing is a fair bit of

work. But by thinking a bit about what we see, we can greatly reduce

the number of guesses we need. In effect, we substitute thought for

calculation and that means we are still being mathematicians. Since

most equations can only be solved by hunting and pecking, mathe-

maticians have thought about better ways to hunt and peck quite a

bit. The idea behind the particular method we’ll use goes back to the

great Isaac Newton.

Before we formalize the Hunt and Peck Method 5.10.18, let’s look

at how we can use it to solve equation (5.10.1) for p. This discussion

is going to be a rather long one because we’ll eventually come up

with 3 separate methods, each with its own plusses and minusses.

So get comfortable before we start, and just try to follow the flow of

the main ideas. When we’ve completely discussed, the examples I’ll

lay out a detailed but concise method for attacking this and other

similar equations in Hunt and Peck Method 5.10.18.
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Let’s say our goal is to know the nominal rate r on the loan to the

nearest tenth of a percent. This is more accuracy than you’d need in

real life to evaluate the loan but it will illustrate the principle that

with enough work we can get pretty much whatever accuracy we

need. Since p = 0.01·r
12 = 0.01r

12 , to know r to a within a tenth, it seems

like we need to know p to about 4 places. This is sometimes a lie as

the next problem below shows: so for safety I will guess p to 5 places

and then compute r as 1,200 · p rounded to the nearest tenth.

Problem 5.10.2: If r = 12.3%, then p = r
1200 = 0.01025. Show that

no rounding of p to 4 places gives the correct value of r . How likely

is this problem to occur?

OK, let’s review the plan. Make a first guess. Then, keep making bet-

ter guesses until one of them is so good that it’s the answer we’re af-

ter. The details will take some time because repeated guessing means

repeated calculation. But the ideas are very simple. The only trick is

in making sure we improve our current best guess. As long we do

this, we’ll get a good answer eventually.

How do we come up with a first guess? Often information we al-

ready have about the problem tells us a good first guess. If not, we

have two options. The first is to use an approximation, for exam-

ple, the Present Amortization–Simple Interest Approximation

5.8.9. Remember that this is not so much a formula as an idea: the

average balance of an amortized loan over its term is about half the

initial balance (we saw in the preceding subsection how far for accu-

rate this idea is but it still gives a useful first approximation). Multi-

plying this average balance by the term of the loan and the periodic

interest rate— B
2 ·T ·p =

B
2 · y ·

r
100—should give us a simple interest

estimate of all the interest in the loan. Another way to estimate this

total interest is to subtract the starting loan balance from the total

value of all payments getting T · D − B (this time ignoring the fact

that these amounts live at different times and so cannot properly be

merged like this). That is, we should have an approximate equality
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1
2B · T · p ' T ·D − B.

Problem 5.10.3: The actual Present Amortization–Simple Inter-

est Approximation 5.8.9 was T ·D ' B
(
1+ 0.01r · y2

)
. Check that

substituting r = 100 ·m · p and y = T
m in this approximation gives

the approximation 1
2B · T · p ' T ·D − B above.

This may be pretty crude but it is better than nothing and gives us

an equation we can solve for p to get started. First, we can isolate p
by dividing by B · T to find

p ' 2T ·D − B
B · T = 2

(
D
B
− 1
T

)
Then, we just plus in to obtain the starting guess

p '
(
149.93
4,800

− 1
48

)
= 0.02080416667 = 0.02080 .

This is one situation in which we need to work with a periodic rate p
that is not given by the Interest Rate Conversion Formula 5.1.10

P = 0.01·r
m . In addition, we’re trying to guess p approximately. This

means that, for once, there’s no harm in rounding p and above I

have rounded it to 5 places since that’s the accuracy I am going to

work with.

Let’s note that p = 0.02080 corresponds to r = 25.0% (I have

rounded r to the nearest tenth of a percent) so my first guess is not

too bad since in Example 5.9.14 we used a rate of 21.5%. I am off by

3.5%. Of course, in real life, if we knew r we wouldn’t be wasting time

trying to find p. My point is that the simple interest approximation

gives us a decent first guess.

The bad news is that I had to come with a new version of the Present

Amortization–Simple Interest Approximation 5.8.9 to get this

guess. The good news is that you won’t need to learn this variant. A

good initial guess is a nice thing to have—the better our first guess

for p is, the less work we’ll have to do to arrive at an accurate final

value of p—but we’ll soon see that with a bit more elbow grease we

can make do with just about any first guess.

1—
1—
2—

a ·· ·· z ? 675 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.10 The hunt-and-peck method

This brings us to option two for making a first guess for p: Wing

it! That is, use whatever you intuition or knowledge you have about

the problem and make the best first guess you can based on it. In

many of the problems, I’ll actually supply you with a first guess, not

because you couldn’t find p without it, but just to save you some

work and keep the focus on the main idea of the Hunt and Peck

Method 5.10.18 which is to keep improving your latest guess. So

let’s just take the starting point of r = 25.0% or p = 0.02080 as

given.

Now the real work begins. I plug this guess into the Present Amor-

tization Formula 5.8.1 and compare the two sides. We find

$4,800.00 ' 149.93
(
1− (1+ 0.02080)−48

0.02080

)
= $4,524.85 .

Let me emphasize again that, because we are trying to guess p,

we have no alternative to plugging in the approximation 0.02080
above—and Periodic rate rule 5.1.11 does not apply. I rounded the

trial balance to the penny to avoid a sea of decimals and I’ll keep

doing so in this section to keep it readable.

We can note with satisfaction that we are not too far off: the two

sides differ by a few hundred dollars which confirms that our

guess for p is in the ballpark. Now comes the first key question?

Is p = 0.02080 too big or too small? Looking at the quantity

149.93
(
1−(1+p)−48

p

)
, it is not obvious whether it gets bigger or smaller

as p gets bigger.

Problem 5.10.4:

i) Show, by plugging in the values p = 0.1, p = 0.2 and p = 0.3, that

both the numerator and denominator get bigger as p gets bigger.

ii) Consider the fractions 1+p
1+p4 and 1+p3

1+p2 . Show, by plugging in the

same values that all the numerators and denominators individually

grow when p grows but that first ratio decreases while the second

increases. In other words, part i) tells us nothing about how the ratio
1−(1+p)−48

p changes as p increases
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Fortunately, if we think for a moment about the loans which the

Present Amortization Formula 5.8.1 describes, rather than about

the formula itself, the answer becomes clear. For a fixed loan bal-

ance B and term T , the higher the interest rate the larger the pay-

ment D. Turning this around, for a fixed loan payment D and term

T , the higher the interest rate the smaller the balance B which can

be amortized. This is the key idea which lets us keep making better

guesses.

Problem 5.10.5:

i) Confirm the first statement above by computing the payment on

a $100,000.00 mortgage with a 20 year term at interest rates of

a. 6%.

b. 7.5%.

c. 9%.

ii) Confirm the second statement above by computing the balance

on a mortgage with a payment D = $600.00 and a 15 year term at

interest rates of

a. 6%.

b. 7.5%.

c. 9%.

OK! We are looking for the periodic interest rate which lets a pay-

ment of $149.93 amortize a loan of $4,800.00 over 48months. Since

with p = 0.02080, we can only amortize $4,524.85 we need a smaller

rate p. How much smaller? It looks a like a few percent should do it

but exactly how many percent is not clear. If it was, we wouldn’t

be hunting-and-pecking. But the beauty of the method, is that at

this stage any reasonable second guess will do. Let’s try r = 20%

or p = 0.016̇ ' 0.01667. Then we recompute

149.93
(
1− (1+ 0.01667)−48

0.01667

)
= $4,926.64 .

Now we are almost home. First, the new balance of $4,926.64 is high

which means our second guess for p is low. The first key point to
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note is that we now know that p is definitely bigger than 0.01667
and smaller than 0.02080. The fancy way to say this is that our two

guesses bracket the true value of p. I’ll call the smallest range or

interval in which we know the rate we’re looking for lies the interval

of uncertainty: here it’s the interval [.01667,0.02080] in terms of p,

or the interval [20%,25%] in terms of r .

I should warn you that, in working later problems, your second guess

may not bracket the solution as mine did. This is not a serious prob-

lem. I’ll explain how to handle it at the end of this example.

The second key point is that to 2 decimal places both guesses give

p = 0.02. If we can just keep improving our guesses—that is, if we

can shrink the interval of uncertainty one more place—we’ll eventu-

ally find two guesses for p which both correspond, after rounding,

to the desired value r = 21.5% and we’ll be done.

I’m going to provide three methods which achieve our goal of shrink-

ing the interval of uncertainty, or buffing a solution. They provide a

trade-off between the number of extra guesses we’ll need to make to

get the accuracy we’re after (wear and tear on your calculator) and

the thought required to come up with each guess (wear and tear on

your brain).

Let’s take the simplest method first. The average of two guesses

which bracket the value we’re provides a new guess which cuts the

interval of uncertainty in half. Here the average of 0.01667 and

0.02080 is 0.018735. To keep our guesses for p to 5 places, I’ll have

to round to 0.01874. Plugging in this guess for p, we recompute

149.93
(
1− (1+ 0.01874)−48

0.01874

)
= $4,718.99 .

Since this amount is less than $4,800.00 we know that the guess

p = 0.01874 is more than the true value so our new interval of un-

certainty for p is now [.01667, .01874] which is half as big as our old

one and gives us an interval of uncertainty for r of [20.0%,22.5%] (to

the nearest tenth of a percent).
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A moment’s thought shows that this will always be the case. Our two

best guesses are the endpoints of the interval of uncertainty so their

average is the midpoint or bisector of this interval. Our guess has

bisected the interval of uncertainty—cut into two equal parts each

half as big as the original—and the value we are after must lie either

in the lower or in the upper of the two halves. For this reason, the

method of guessing the average of our two best guesses so far is

usually called the bisection method.

The bisection method is the tortoise of our trio of methods: slow

but steady. Each extra guess shrinks the interval of uncertainty by a

factor 2, 2 guesses shrink it by a factor 4 = 2·2, 3 guesses shrink it by

a factor 8 = 2·2·2, 4 guesses shrink it by a factor 16 = 2·2·2·2 and

so on. To get one extra decimal place of accuracy, we need to shrink

the interval of uncertainty by a factor 10 which will take either 3 and

4 guesses since 10 is between 8 and 16.

To get 2 more places we need to shrink the interval of uncertainly

by a factor of 100 which will take either 6 or 7 guesses since 100
is between 26 = 64 and 27 = 128. I could continue but, fortunately,

we do not need to know exactly how many guesses will be needed.

We just keep guessing until our interval of uncertainty for r is small

enough that we know r to the nearest 0.1%. Then we’re done. Table

5.10.6 summarizes what happens when carry this out.

low high high low average new new intervals of uncertainty for

guess p B p B p B p r

1 .01667 4,926.64 .02080 4,524.85 .01874 4,718.99 [.01667, .01874] [20.0%,22.5%]

2 .01667 4,926.64 .01874 4,718.99 .01771 4,820.68 [.01771, .01874] [21.3%,22.5%]

3 .01771 4,820.68 .01874 4,718.99 .01823 4,768.95 [.01771, .01823] [21.3%,21.9%]

4 .01771 4,820.68 .01823 4,768.95 .01797 4,794.71 [.01771, .01797] [21.3%,21.6%]

5 .01784 4,820.68 .01797 4,794.71 .01791 4,800.69 [.01791, .01797] [21.5%,21.6%]

6 .01791 4,800.69 .01797 4,794.71 .01794 4,797.70 [.01791, .01794] [21.5%,21.5%]

Table 5.10.6: Finding p by the bisection method
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A few remarks are in order. We stop after the sixth bisection because,

after it, we know the value of r to the desired accuracy of 0.1%: we

have “discovered” the rate 21.5% which we knew all along. Note, also,

that before we started we knew p to 2 places and Problem 5.10.2 says

that we’ll probably need to know p to 4 places before we quit. Thus,

the 6 bisections it took is just what I predicted before the table would

be required. Let me repeat, for emphasis, however, that knowing this

was an unneeded luxury. The reason we can stop after 6 bisections

is that by then we know r to the nearest 0.1%.

Finally, we could have eliminated much of the table and still have

carried out the calculations. There was no real need to repeatedly

list the “old” p’s and B’s. I did this just to make it clearer how the

method was working. The only new values in each line of the ta-

ble are the new p which is the average of our two best guesses so

far, and the corresponding r and B given by plugging this into the

Term Conversion Formula 5.1.13 and the Present Amortization–

Simple Interest Approximation 5.8.9.

Now let’s ask a mathematician’s question. Is there any way we to

get our answer with fewer guesses (saving work) by making better

guesses (being cleverer)? I hope you’ll realize by now that if I ask

this, the answer must be yes. Moreover, only a modest amount of

cleverness is called for. To see what the extra idea is, let’s go back

and look a bit more carefully at what we knew before we started bi-

section. We knew that the first guess p = 0.02080 produces a trial

balance B = $4,524.85, the second guess p = 0.01667 produces a

trial balance B = $4,926.64 and hence that the value of p we’re

after—which would produce a balance B = $4,800.00—is between

these two guesses.

The key observation to make is that the second balance $4,926.64
is a lot closer to $4,800.00 than the first balance $4,524.85. They

are off by $126.64 and $275.15 respectively. So we should expect

that the second guess 0.01667 is a lot closer to the actual p than the
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first guess 0.02080. Instead of blindly taking as our third guess the

average of the first two (i.e., bisecting), we can try to eyeball a better

guess. I call this the eyeball method of improving our guesses.

How do we eyeball? Well, the first balance is off by a bit more than

twice as much as the second. I’ll try to make a third guess for p guess

that’s about twice as close to the second guess as to the first. A nice

round guess that seems to do this is p = 0.01800. Why did I come up

with that number? By eyeball! I guessed! By this I mean that I have

no formula in my mind-I’m not doing anything definite like taking an

average as I do when bisecting. I just picked a simple decimal that

looks like it’s about right.

I almost certainly won’t nail down the right p with this guess but I

don’t really need to. All that really matters is that my guess generally

turns out better than guessing the average. If it does, I’ll find p with

fewer guesses, hence correspondingly less work. Table 5.10.7 below

shows what happens if I carry this out.

low high high low eyeball new new intervals of uncertainty for

guess p B p B p B p r

1 .01667 4,926.64 .02080 4,524.85 .01800 4,791.73 [.01667, .01800] [20.0%,21.6%]

2 .01667 4,926.64 .01800 4,791.73 .01790 4,801.69 [.01790, .01800] [21.5%,21.6%]

3 .01790 4,801.69 .01800 4,791.73 .01792 4,799.69 [.01790, .01792] [21.5%,21.5%]

Table 5.10.7: Finding p by the eyeball method

First point: I saved half the work as I’d hoped. Second point. There’s

nothing up my sleeve. I used no magic recipe to make those guesses

of p = 0.01790 and p = 0.01792. I eyeballed a best guess but in both

cases I really did just guess. For the first, I just noticed that the trial

balance for my eyeball guess of p = 0.01800 was only off by about

$8 so I figured p had to be a lot closer to 0.01800 than to 0.01667
and I picked 0.01790 as a “round” guess that did this. This p gives

a balance in error by only about $2 and so I guessed p = 0.01792
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because it differs from 0.01790 and 0.01800 by 0.00002 and 0.00008
respectively, which is roughly proportional to the errors of $2 and

$8 in the balances.

But, if I’d been a bit less clever, I’d still have saved steps. Once again,

all I have to do to show a profit is be able to make a guess that’s

better than the average of my 2 best guesses so far. Indeed, in some

ways these guesses are easier to make because I do not need to find

an average in the calculator, I just look at the errors in the balances

and try to spilt the differences in the p’s correspondingly.

However, in teaching this method over the years, I have learned that

the idea of just guessing causes many students to freeze up. They’d

prefer to use a method like the bisection method in which you have

a plug-and-chug formula—-the average—for each guess even if it

means doing a lot more work.

Linear Interpolation

This subsection is optional. It describes a third method of making

improved guesses that lets us have our cake and eat it too—it com-

bines the benefits of both our existing ones. But you can skip to

the next section and just ignore references to the Linear Inter-

polation Formula 5.10.9 if you just want to get started working

problems. This turns out to be a formula for eyeballing the next p!

Choosing successive p’s by using the interpolation formula lets us

enjoy the speed of the eyeball method—in fact, it’s even faster—with

no guesswork.

The idea is very simple. What was I trying to do when I eyeballed?

My goal was to have the differences between by new guess for p
and my prior low and high guesses be roughly proportional to the

differences between the correct balance B and the prior high and

low balances. (Why did I reverse high and low here?) To hell with

roughly, then. The Linear Interpolation Formula 5.10.9 is just a
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formula which makes the differences between new p and my prior

low and high guesses exactly proportional to the differences between

the correct balance B and the prior high and low balances.

The formula really has nothing to do with rates and balances. Since

we’ll want to use interpolation to solve other kinds of equations later

on, I’m going to digress for a moment to explain the simple but gen-

eral idea before showing how to use the formula to solve our exam-

ple yet again. The word linear in the name is the key and the picture

below shows why.

(p′, B′)

(p, B)

(p′′, B′′)

B

p

Figure 5.10.8: Linear interpolation

In general we’ll be trying to find the unknown value of some quantity

like p which solves an equation, that is, produces a known value of

some other quantity B. What we’ll know are two prior guesses for

p (which I’ve called p′ and p′′ in the picture) and the corresponding

trial values of B (which I’ve called B′ and B′′). I’ve plotted these as two

points (p′, B′) and (p′′, B′′) on the picture. I’ve deliberately drawn a

picture where the right B is much closer to B′′ than to B′ and where

B decreases as p increases but the calculation which follows works

in all cases.

Another way to express the goal of finding the guess for p which

makes the differences between my two prior guesses exactly pro-

portional to the differences between the known balance B and the

prior balances is to say that the point (p, B) lies on the line join-

ing the points (p′, B′) and (p′′, B′′). Yet another way to state this is:
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the slopes of the line segment joining (p, B) and (p′, B′) equals the

slope if the line segment joining (p, B) and (p′′, B′′). Using the fact

that slope equals rise over run, this gives the slope equation

p − p′
B − B′ =

p − p′′
B − B′′ .

This is an equation we can solve with a bit of algebra. Clearing de-

nominators gives

(p − p′)(B − B′′) = (p − p′′)(B − B′)

and then expanding gives

pB − pB′′ − p′B + p′B′′ = pB − pB′ − p′′B + p′′B′ .

Isolating all the p terms to the left side gives

p(B′′ − B′) = p′(B − B′′)− p′′(B − B′)

and dividing by (B′′ − B′) finally yields the first equality below:

Linear Interpolation Formula 5.10.9: If we are trying to find

a rate p which corresponds to a balance B and we have two guesses p′

and p′′ which produce respective trial balances B′ and B′′, the guess

p which makes the differences from p−p′ and p−p′′ proportional to

the differences B − B′ and B − B′′ is given by the linear interpolation

formula

p = p
′(B − B′′)− p′′(B − B′)

B′′ − B′ or p = p
′′(B − B′)− p′(B − B′′)

B′ − B′′ .

I’ve given two versions of the formula but they are equivalent as the

problem below shows. The upshot is that we don’t need to worry

which of our two previous guesses to take for p′ and which for p′′;
we get the same new guess either way. (We do, however, have to

match each balance with the corresponding periodic rate.)

Problem 5.10.10: Obtain the second formula above by isolating all

the p terms to the right side after expanding the slope equation.
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Now let’s see how to use the formula in practice. In our example,

(p′, B′) = (0.02080,$4,524.85) and (p′′, B′′) = (0.01667,$4,926.64).
So the Linear Interpolation Formula 5.10.9 says we should try

p = p
′(B − B′′)− p′′(B − B′)

B′′ − B′

= 0.02080(4,800.00.00− 4,926.64)− 0.01667(4,800.00− 4,524.85)
4,926.64− 4,524.85

= 0.01797173275 .

Problem 5.10.11: Confirm that plugging into the second version

of the Linear Interpolation Formula 5.10.9 also yields the value

p = 0.01797173275.

As usual, we’ll round this guess to p = 0.01797. From here on, every-

thing proceeds just as with the other two methods. We calculate the

trial balance B corresponding to our new guess for p and repeat. I’ve

called this method the linear interpolation method after the formula

it uses. Table 5.10.12 summarizes the next two repetitions.

low high high low new new new intervals of uncertainty for

guess p B p B p B p r

1 .01667 4,926.64 .02080 4,524.85 .01797 4,794.71 [.01667, .01797] [20.0%,21.6%]

2 .01667 4,926.64 .01797 4,794.54 .01792 4,799.69 [.01667, .01792] [20.0%,21.6%]

3 .01667 4,926.64 .01792 4,799.69 .01792 4,799.69 [.01667, .01792] [20.0%,21.6%]

Table 5.10.12: Finding p by the linear interpolation

method

What happened in that third line? We apparently made no progress

so there’s not much point in repeating any more. The problem comes

when we round p to 5 places in the third line. An unrounded value

for the p given by the Linear Interpolation Formula 5.10.9 in

the third line is p = 0.01791694762 and this value produces a

trial balance B = 4,799.996521 which is $4,800.00 to the nearest

penny allowing us to conclude that the corresponding r which is
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21.50033714% or 21.5% to the nearest 0.1% is what we’re after. Once

again, the moral is never round anything except a final answer.

In fact, if we look a bit more closely at the second line we can see

that blindly following our procedure was not very smart. The two

guesses 0.01797 and 0.01792 give balances off by less than $6 and

less than $1 respectively.

Why not use these values even though they both give balances on the

low side of $4,800.00. This was something we couldn’t permit when

using the bisection method because bisecting an interval that does

not contain the answer will only give us a smaller interval that also

does not contain the answer. But this objection does not apply when

using linear interpolation to make guesses. Of course, the picture in

this case is a bit different from that shown in Figure 5.10.8. Here

the point we’re looking for no longer lies between the two points we

have already found.

But, so what? We can still equate slopes and once we do so we’ll still

get the Linear Interpolation Formula 5.10.9 (because the alge-

bra we did never used the fact that the “answer” was between the

guesses). So rejecting these two p’s because both balances are a bit

low and instead using the rate 0.01667 which gives a balance which

is high but off by a whole $126 wasn’t very clever. Here the moral is

that it never hurts and often helps to think a bit when making a calcu-

lation. If we’re willing to do so, we can give up the security of having

the solution bracketed and, as a bonus, get an accurate answer much

more quickly.

Just to confirm these ideas let’s redo the calculation in the third line

without rounding and using the guesses 0.01797 and 0.01792.

p = p
′(B − B′′)− p′′(B − B′)

B′′ − B′

= 0.01797(4,800.00− 4,794.71)− 0.01792(4,800.00− 4,799.69)
4,794.54− 4,799.69

= 0.01791688755 .
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and the corresponding trial balance is $4,800.002520, correct to the

penny.

Problem 5.10.13: OK, but we were off by a quarter penny. Why?

Again, mainly due to rounding error, this time the error caused by

rounding our trial balances to the nearest penny! This problem asks

you to confirm this.

i) Show that the unrounded balance which can be amortized at

a periodic rate of p = 0.01797 is $4,794.714028 and at a rate of

p = 0.01792 is $4,799.692301.

ii) Show that the interpolation formula applies to these values pre-

dicts a value of p = 0.01791690958 and that the trial balance corre-

sponding to this p is B = 4,800.000314, which is accurate to three-

hundredths of a penny!

When good guess go bad

Hang on, we’re almost done. That’s pretty much everything we’ll

need to know about making improved guesses. But before, I write

down a detailed procedure for solving equations by hunting and

pecking, I need to go back and address two problems which might

arise when making your initial guesses. I ignored these at the time

because I wanted to show you that we really could come up with ac-

curate values of p by guessing. I hope you’re convinced. However,

all three of our methods for improving guesses require us to come

up with the first two guesses and I need to say a few words about

problems that might arise with these.

Maybe you think, I was lucky in making that second guess r = 20%

or p = 0.01667 which I did pretty much blind. But when I said any

reasonable second guess will do, I meant it. Suppose I had decided

to drop down only from r = 25% to r = 24% or p = 0.0200. Then, I’d

find a trial balance

B = 149.93
(
1− (1+ 0.0200−48

0.0200

)
= $4,598.82 .
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Now I have two guesses for p which are both too high, i.e., give trial

balances which are too low. One thing I definitely can not do with

these guesses is start bisecting. The average of two guesses which

are both high (or both low) will be worse than the best current guess.

We don’t need to carry out a detailed calculation to see this. The

average of 24% and 25% is 24.5% which is farther from the right r of

21.5% than 24%.

There are two ways to handle this problem. The simplest approach

is just to making blind guesses until we find one on the “other” (here

the low) side of the solution—which we’ll recognize by the fact that

it gives a trial balance on the “other” side of the known balance (here

a balance greater than $4,800).

As usual, we can save work by thinking a bit. Instead of guessing,

next an r of 23%, then 22% and finally 21% before reaching the

“other” side, we could notice that when we dropped our guess 1%,

we raised the balance by about $75. So we’d expect that to raise the

balance another $200 or so, we’d need to drop r about 3% or so. That

is, we should jump to 21% right away. While not strictly necessary,

this would save 2 of the 3 extra guesses—and 2 of the 3 extra trips

through the Present Amortization–Simple Interest Approxima-

tion 5.8.9.

But doesn’t this speedup seem a bit familiar? What I really did to

decide I should drop my guess for r by 3% was make an eyeball

best guess. In applying the eyeball method, we only used it to make

improved guesses between guesses which already bracketed the cor-

rect value but it can work equally well to improve any two guesses.

We already used linear interpolation approach to do the same thing

above. There, we were improving two very good guesses (0.01797
and 0.01792) but the method generally works just as well on not-

so-good guesses. Let’s try it. Our two guesses for r—25% and 24%—

correspond to p’s and B’s of 0.02080 and $4,524.85 and 0.02000
and $4,598.82 respectively. Plugging the p’s into the Linear Inter-
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polation Formula 5.10.9, gives an new guess of p = 0.017824 and

a new trial balance of $4,809.25. Ka-ching!

Problem 5.10.14: Confirm these figures above by carrying out the

interpolation and amortization calculations involved yourself.

Why is that ominous word generally in bold type above? Well, the

bad news about the Linear Interpolation Formula 5.10.9 is that

there are cases where it gives you an guess which is worse than the

two you started with. Moreover, there’s no easy way to predict in ad-

vance whether this will happen. The good news is that such problems

are very rare and I have chosen the examples in this course to avoid

such difficulties. Still, if you ever decide to try this formula on a real-

life problem—and, as we’ll soon see, it is very widely applicable—you

should just keep the possibility that things will go wrong in the back

of your mind. In the method, outlined below I ask you, as a safety

measure, to always bracket the solution with guesses before trying

to make really accurate guesses. If interpolation ever takes you “out-

side the brackets”, something has gone wrong. If so, just fall back on

a less efficient but more sure method like bisection.

One last point. You’re taking the final exam in the course and you’ve

been asked to solve for an interest rate by the Hunt and Peck

Method 5.10.18. You make a first guess for r and p. So far so good.

But when you go to make the second guess you find you’ve forgot-

ten whether raising the rate lowers the balance or vice-versa. (This

is not uncommon, in my experience, because later in this section

we’ll work with savings amortizations where the rule is that rates

and amounts go up together and it’s easy to confuse the two cases).

Should you panic? Never! Knowing in advance whether you need to

raise or lower a guess is another timesaving plus in using the Hunt

and Peck Method 5.10.18 but it’s basically a luxury you can do with-

out in a pinch.

Suppose that after guessing r = 25% and getting a trial balance of

$4,524.85, I went the wrong way and next guessed r = 27%. Then,
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I’d compute a trial balance of $4,373.39. “Whoops!”, you say, “I’m

further from the desired balance of $4,800.00 than I was the first

time.” No problem. If your balance went the “wrong way”, that just

means your guess did too. You should have guessed a rate less than

25% not greater. Just do so and you’re back on track.

The method

Finally, we are ready to summarize what we have learned from our

example. First a few pieces of terminology.

Bracketing a Solution 5.10.15: We say that two guesses bracket

the solution to an equation if plugging one guess into the equation

gives a left hand side greater than the right hand side and plugging

the other in gives a left hand side less than the right hand side.

Better and Worse Guesses 5.10.16: If the two sides of an equa-

tion are closer to being equal when the one guess is plugged in than

they are when a second guess is plugged in, we say that the first guess

better guess than a second and the second is a worse guess than the

first.

Buffing a solution 5.10.17: Given two guesses which bracket a

solution, any method for repeatedly making improved guesses until a

solution is found to the desired accuracy is called a method for buffing

the solution.

Hunt and Peck Method 5.10.18:

Step 1: Make a first guess. Try to use any information you are given,

or any ideas suggested by the problem to make the best

guess you can. Plug in your guess and compute both sides

of the equation you are trying to solve.

Step 2: Make a second guess. If you can use your knowledge of

the problem to predict whether your first guess was high or
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low, use this information to head in the “right” direction—

towards the solution. If not, do not worry. Plug in your guess

and compute both sides of the equation you are trying to

solve. If your second guess went the “wrong” way (you’re fur-

ther from agreement than you were the first time), repeat this

step making a new guess in the “right” direction.

Step 3: Bracket the solution. If you’re lucky, your first two guesses

will already bracket the solution. If not, you can look for

bracketing guesses in three ways:

i) Brute force: make any new guess which lies on oppo-

site side of your better guess to your worse guess. Repeat,

if necessary, until your new guess and your better guess do

bracket the solution.

ii) Eyeball: compare how much closer to equality the two

sides of the equation are when you plug in the better guess

than the worse guess. Use this to predict “by eye” how far

from the better guess (on the side away from the worse

guess) your new guess needs to be to bracket the solution.

Repeat, if necessary, until your new guess and your better

guess do bracket the solution.

iii) Interpolate: plug your two guesses into the Linear

Interpolation Formula 5.10.9 to get a new guess. If you

do not find a bracketing guess the first time you try this, fall

back on one of the two other methods.

Usually, you’ll be able to bracket the solution by third

guess at worst. If you do need to make more than two

guesses, you can discard all but the best guess on each side

of the solution before proceeding to step 4.

Step 4: Buff the solution Use one of the three methods below as of-

ten as is necessary to produce a new and improved guess

for the solution. After each new guess, discard the old guess

which lies on the same side of the solution as the new guess.
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Repeat until you have bracketed the solution to within the

accuracy you are seeking.

i) Bisection: Use the average of the two solutions as the

new guess. opposite to your worse guess. Repeat, if neces-

sary, until your new guess and your better guess do bracket

the solution.

ii) Eyeball: compare how close to equality the two sides

of the equation are when you plug in the two bracketing

guesses. Use this to predict “by eye” a new guess close to

the solution and between the brackets.

iii) Interpolating: plug your two guesses into the Linear

Interpolation Formula 5.10.9 to get a new guess.

I expect that many of you are a bit uncomfortable with the idea of a

method which has so many variants. Please try to view this as a good

rather than a bad thing: you can pick the method that’s easiest for

you. In the next few problem, I will ask you to solve for few interest

rates using each of the three basic approaches: bisection, eyeball and

interpolation.

My goal in doing so is mainly to give you a feel for how each of these

methods goes in practice. You’ll probably develop a preference for

one of the three approaches in doing these three problems. Good!

After you get through them, you can do the other problems which

ask you to solve equations by hunting and pecking whichever way

you like best.

Here are a few comments you might find helpful to keep in mind. The

bisection method is the easiest-once you have brackets you just keep

averaging your two best guesses—but it takes a lot of repetitions.

The interpolation method is very fast (the solutions to Problem

5.10.19 are good examples) but it has one big drawback: if you can’t

remember the relatively messy Linear Interpolation Formula

5.10.9, you’re toast.
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Eyeballing is in the middle. It can be almost as fast as interpolating

if you have a good eye and there’s no need to remember any formula

at all. It’s my preference but I should say that if you don’t find it easy

in the examples which follow you should probably choose one of the

other two.

Let’s get to it! I have done the first problem below (without rounding)

to give you a second model for each method. To save a few trees (or

LEDs for those of you reading this online), I have not repeated any of

the calculations using the Present Amortization Formula 5.8.1.

Once I have a guess for p, I simply state what value of B comes out

by plugging into the formula Also, for each method, I have made

different initial guesses to try to convince you that these don’t really

matter that much.

You’ll probably have guessed that doing these problems is a fair bit

of work. Don’t worry, I’m not going to ask you to do very many. But

I would like you to try out all three methods with care a few times.

Problem 5.10.19: Use each of the three basic methods (bisection,

eyeballing and interpolation) to find the nominal interest rate, to the

nearest tenth of a per-cent, which is being charged on a loan with an

initial balance of $3,000.00

i) if the term is 2 years and

a. the monthly payment is $147.18.
Bisection Solution

Step 1: This time I’ll just dive in and guess that r = 18% or

p = 0.015 and I find B = $2,948.075058.

Step 2: Our first guess is high since the balance is low. Lets

try r = 12% or p = 0.01. This gives B = $3,126.601737.

Step 3: We already have the solution bracketed since so

there’s nothing to do here.

Step 4: Now I’ll start bisecting. I’ll just make a table of my

new guesses for p and the corresponding r and B then

make a few comments below it.
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p r B

0.00125000000 15.00000000% $3,035.474833

0.01375000000 16.50000000% $2,991.320447

0.01312500000 15.75000000% $3,013.282627

0.01343750000 16.12500000% $3,002.272962

0.01359375000 16.31250000% $2,996.789592

0.01351562500 16.21875000% $2,999.529491

0.01347656250 16.17187500% $3,000.900874

Table 5.10.20: Problem 5.10.19 by bisection

I started with p = 0.125 the average of my guess 0.01
and 0.015. Since this gave a B of 3,035.474833 which was

too high, I discarded the low guess and averaged 0.125
and 0.15. And so on.

I stopped when my last two values if r both rounded

to 16.2% since I then know that this must be the rate in

the loan to the nearest 0.1%. This time I needed 7 repeti-

tions, again fairly typical.

Eyeball Solution

Step 1: This time I’ll guess that r = 20% or p = 0.016666667
and I find B = $2,891.790568

Step 2: Our first guess is high since the balance is low.

Lets try r = 10% or p = 0.0833333333. This gives

B = $3,189.516306.

Step 3: We already have the solution bracketed since so

there’s nothing to do here.

Step 4: Now I’ll start eyeballing. My first guess here is quite

a bit better: the first B is off by about $108, the second

by about $190 almost twice as much. Let’s try guessing

twice as close to 20% as to 10%, i.e., 16 23% = 16.66666667.

In doing this problem, I kept guessing a new r and de-
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rived the corresponding p. From here on, I’ll just give a

table of my new guesses for r and the corresponding p
and B and again make a few comments below it.

r p B

16.66666667% 0.01388888889 $2,986.470943

16.0% 0.01333333333 $3,005.936413

16.2% 0.01350000000 $3,000.077896

16.24% .0135333,333 $2,998.908061

Table 5.10.21: Problem 5.10.19 by eyeballing

I was pretty sure that my third guess would be on to

the nearest tenth from eyeballing the first two rows in

the table. Since the trial balance was only off by 7 cents, I

could reasonably have stopped there but just to be sure,

I checked 16.24% gave a low balance (so bracketing the

exact value with two r ’s both rounding to 16.2%). Note

that even though my first two guesses were much worse

I did far fewer repetitions with this method and I avoided

taking all those averages.

I’ll interpolate twice since this method has the messiest formula

in it.

First Interpolation Solution

Step 1: This time I’ll guess that r = 15% or p = 0.0125 and I

find B = $3,035.474833
Step 2: Our first guess is low since the balance is high but

not too low. Lets try r = 17% or p = 0.01416666667 This

gives B = $2,976.805484, low but also quite close.

Step 3: Once again, my first two guesses bracket the solu-

tion.

Step 4: Now, let’s use the Linear Interpolation Formula

5.10.9 to buff these guesses. Plugging my first two
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guesses in, I get
0.0125(3,000.00− 2,976.805484)− 0.01416666667(3,000.00− 3,035.474833)

2,976.805484− 3,035.474833

which gives p = 0.01350776166, then r = 16.20931399%

and finally B = $2,999.805516. One more round should

do it. I discard my second guess to keep the solution

bracketed and using my first and third I interpolate to

find p = 0.01350226692, r = 16.20272030% and B =
$2,999.998337. The trial balance is off by a fraction of a

penny and common sense says I’ve found r to the near-

est 0.1% as 16.2%.

Second Interpolation Solution

Step 1: This time I’ll guess that r = 15% or p = 0.0125 and I

find B = $3,035.474833
Step 2: Our first guess is low since the balance is high but

not too low. Lets try r = 16% or p = 0.01333333333 This

gives B = $3,005.936413: we’re almost there.

Step 3: However, we do not have the solution bracketed yet.

Since I am going to interpolate anyway, let’s use the Lin-

ear Interpolation Formula 5.10.9 to try to get a brack-

eting guess. Plugging my first two guesses this time, I get

0.0125(3,000.00− 3,005.936413)− 0.01333333333(3,000.00− 3,035.474833)
3,005.936413− 3,035.474833 .

This time p = 0.01350081049 so r = 16.20097259% and

I recompute B = $3,000.049361.

I still don’t have the solution bracketed but since I’m

off by less than a nickel in the trial balance, common

sense tells me I’ve nailed down r to within 0.1%. How-

ever, just to see how powerful this method really is you

should interpolate one more time. When you do, you

should obtain p = 0.01350221473, r = 16.20265768%

and B = $3,000.000209, off by two-hundredths of a cent.

b. the monthly payment is $154.16. (A good starting guess here

would be 16%. Why?)
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5.10 The hunt-and-peck method

ii) if the term is 4 years and

a. the monthly payment is $89.07.
b. the monthly payment is $83.49.

Try to come up with your own starting guesses for these parts.

Here are a few more practice examples. We will also apply the

method further in the following subsections.

Problem 5.10.22: In Problem 5.9.23 we discussed an ad for a big

screen TV offering it “This weekend only: $2,499.99 or just 36 easy

payments of $99.99 a month”. What is the hidden interest rate on

the loan option? Here you might start with a nominal rate of 24%.

Problem 5.10.23: A home equity loan is essentially a second mort-

gage on your home. If you default the home equity lender will get

paid after the holder of your primary mortgage but, if you have suf-

ficient equity in your home, the lender may feel confident of being

able to recover his money eventually. For this reason such loans are

easier to get than general consumer loans and usually have a some-

what lower rate. You get a letter in the mail from a home equity

lender telling you that “You’re pre-qualified for a home equity loan

$10,000.00 with easy monthly payments of just $140.00 a month

for 10 years”. What interest rate will you be paying if you accept this

offer? These loans tend to have rates a bit higher than mortgages so

try starting at 10% here.

More About Linear Interpolation

Time for a brief break for some optional enrichment material. The

rest of you can skip to the next subsection.

I hope though that you have been asking, “Where does the Linear

Interpolation Formula 5.10.9 come from?”. The idea, remember,

which can get lost in the complexity of the formula is simple. Given

two guesses and their trial balances, we get a better guess by joining
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5.10 The hunt-and-peck method

the corresponding points by a line segment and solving for the p
value on the line whose B equals the desired balance. You might want

to go back and stare at Figure 5.10.8 again. Essentially, the formula

amounts to assuming that: if we graph rate versus balance what

we’ll see is a straight line.

On the other hand, you can also go back and look at an actual graph

of rate versus balance in Figure 5.9.19. What you see is somewhat

straight—that was my point in showing it there—but still visibly

curved. Another example is shown in Figure 5.10.24 below.

→ p

B
↑

Figure 5.10.24: Graph of Balance versus Rate

Once again: The graph is not straight!. How can the Linear Inter-

polation Formula 5.10.9 give us such amazingly accurate answers

if it is based on an assumption that is only very roughly true? The

answer is one of the few really key ideas in calculus.

If we zoom in on a portion of the graph, what we see becomes

straighter. This point is illustrated by the circle on the right showing

a blownup image of a small part of the graph. Moreover, the more we

zoom in the straighter what we see becomes. You can test this out

by using the Acrobat magnifier tool to zoom in on any part of the

graph. In effect, once we are interpolating two guesses which both

fairly close to the solution the part of the graph we are “looking at”

is very small and hence “very straight”.
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5.10 The hunt-and-peck method

Understanding what “approximately” or “very” straight means and

how to “zoom in” with a calculator instead of a picture is the subject

of most of the first semester of calculus and I won’t try to say any

more here. I just wanted to sneak another snippet of calculus by you

so that you could see that it’s really not so hard and you can do some

surprising things with it.

Finding yields using the hunt-and-peck method

So far we have focussed on finding unknown interest rates on amor-

tized loans. The value of being able to do so might seem question-

able given that when we take out a loan we almost always know the

rate—the lender is obliged to spell it out in the contract. However,

in the next subsection Points, we’ll see how being able to solve for

unknown interest rates can provide helpful information even when

we “know” the nominal rate of a loan.

This said, the hunt-and-peck method shows its value more clearly

when when we apply it to amortized savings accounts, things like

college funds, retirement accounts and so on. Two factors contribute

to this. First, most real-life savings accounts do not have a single

interest rate. Even a bank savings account or money market account

has a rate which changes periodically. Vehicles like mutual funds

have values whose variation cannot be predicted even from moment

to moment.

Yet we’d often like to make a retrospective assessment of the growth

of such an account producing a single yield or nominal interest rate

which summarizes how well it has performed and allowing us to

compare it to other investments. Second, we often want to plan sav-

ings well into the future. Here we do not even have a history of val-

ues to work with. However, we’ll see how we can use the hunt-and-

peck method to correlate goals and yields. This can help us decide
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5.10 The hunt-and-peck method

whether the goals are realistic and what kind of investments may be

needed to realize them.

The method is basically the same. Try to make as good a first guess

as you can for the rate. Once again, the problem will often suggest

a good first guess. Then try to make a second guess which brackets

the desired yield. This involves understand which way to jump from

comparing the trial savings from your first guess with the known

amount in the problem. Use the information from these guesses to

produce a third guess by one of the same three methods—bisection,

eyeball, or interpolation and repeat this step if necessary.

The only real difference is that relation of rates and balances for

savings is reversed from that for loans. In a savings account, the

higher the rate of interest the higher the final balance will be. (It’s

as if interest were the current in a stream. In paying a loan, we are

swimming upstream a faster current slows us down. In saving, we

are swimming downstream and a faster current speeds us up.) So, if

the trial balance is low, we need to guess a higher rate; if the balance

is high, a lower rate. To convince you that there’s nothing really new,

let’s jump right in and solve an example.

Example 5.10.25: Here’s a typical application. Suppose you are cur-

rently 35 and have been contributing $150.00 a month in to a retire-

ment account which is invested in a mixture of stocks and bonds for

the past 8 years and the amount in the account is now $20,523.00.
You’d like to estimate how much you are likely to have in the account

when you retire in 30 years. If you knew what yield you had been get-

ting on the account for the past 8 years, you could make such an es-

timate by assuming that you’d continue to get this yield for the next

30 years and applying the Future Amortization Formula 5.6.8—

we’ll do this in a moment. We can find the yield to date by applying

the Hunt and Peck Method 5.10.18 to the Future Amortization

Formula 5.6.8.

Your account to date has a sum of S = $20,523.00, a term of 8 years
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5.10 The hunt-and-peck method

or T = 8 · 12 = 96 months and a monthly payment of D = $150.00.

Since we have no guidance, we’ll use our general knowledge about

yields—bonds historically yield around 6% and stocks 8− 10%—and

make a conservative first guess of r = 7.2% or p = 0.006. (I added

the 0.2% to the r so I’d have a simple guess for p: I might as well

keep things as simple as I can to start). Using this p, the Future

Amortization Formula 5.6.8 gives a trial sum S of

S = $150.00
(
(1+ 0.006)96 − 1

0.006

)
= $19,396.23665 .

This is low—but not wildly so—so our first guess p is also a bit low.

As a second guess, let’s try p = 0.00800 (or r = 9.6%). This guess is

at the high end of the historical range so I expect it will bracket the

true value. Since this second guess need not be too careful, I again

felt free to choose a “round” p. Now we find a trial sum of

S = $150.00
(
(1+ 0.008)96 − 1

0.008

)
= $21,541.39970 .

which is high as expected.

We’re ready to buff our guess. I’ll use this example to illustrate all

three methods. To avoid a long string of calculations, I’ll mix all three

up in this problem. (You probably won’t want to imitate this in work-

ing the problems which follow. Just pick your favorite method and

stick with it.) Also, I won’t show the Future Amortization For-

mula 5.6.8 anymore, just the trial savings S which come out.

First, I’ll bisect. The average of my first two guesses—−0.006 and

0.008—for p is 0.007-or r = 8.4%—which gives a trial balance

S = $20,433.66174 which is only off about $100. In real life, I could

probably stop here. After all, I’m only going to use this estimate to

try to predict the likely future performance of my retirement account

and no accurately I calculate the historical yield in the account, I can

only expect to get a crude measure of the likely future yield.

But, just to see that we can get as much accuracy as we need let’s

continue. Next, I’ll eyeball. When p = 0.007 my S is off by $100 or so
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5.10 The hunt-and-peck method

while when p = 0.008 it’s off by about $1,000. That suggest that the

yield I’m after is about 10 times as close to 0.007 as to 0.008 so let’s

try p = 0.0071 next. This gives a trial savings of $20,541.18837 off

by about $18.

Now to completely nail things down let’s use the Linear Interpola-

tion Formula 5.10.9. How can we use a formula which involves ps

and Bs when our guesses involve ps and Ss? Simple, whereever the

formula calls for a B just use the corresponding S.

The reason this will work is that the idea behind the formula—plot

two existing guesses as points, find the line joining them and use the

formula to guess the right point on this line—is really very general. It

works just as well whether the coordinates of the points plotted rep-

resent rates and balances, or rate and savings—for that matter pop-

ulations and times, or soybean harvest and fertilizer, or any other

two quantities related by a formula. If you’re skeptical, just watch.

My two best guesses so far are (p′, S′) = (0.007,$20,433.66174) and

(p′′, S′′) = (0.0071,$20,541.18837) and the savings amount I am

trying to match is S = $20,523.00 so the formula p = p′(S−S′′)−p′′(S−S′)
S′′−S′

gives

p = 0.007(20523−20,541)−0.0071(20523−20,433.66174)
20541−20,433.66174 = 0.007083084776

and this in turn produces a trial savings of S = $20,522.95130. We’re

off by a nickel! Converting p we get a nominal rate of r = 8.5% for

the yield on our account.

Now we can answer the problem we started with of estimate the

likely amount in the account when you retire. We’ll just assume that

your deposits of $150.00 a month continue for another 30 years and

that the account continues to yield 8.5%—or rather a periodic rate of

0.007083. In other words, your account looks like a savings account

with a 38 year term (the 8 years you already chipped in and the 30
to come) and we can estimate the final sum S in it using the Future

Amortization Formula 5.6.8 as
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5.10 The hunt-and-peck method

S = $150.00
(
(1+ 0.007083)38·12 − 1

0.007083

)
= $508,055.10 ' $5× 105 .

I used that scientific notation to emphasize how rough this estimate

probably is: you are likely to have about half a million when you

retire but a few hundred thousand more or less is not out of the

question.

Problem 5.10.26: Show that a swing up or down of 1% in the final

average yield (over the entire 38 years) on your account will cause

the final sum in it to swing by more than $100,000.00

That’s it: there really was nothing new. The Hunt and Peck Method

5.10.18 worked just as well for amortizations involving future value

as for present value. We’ll see other applications in the next sub-

section. Here are some typical questions for you to answer. These

contain a few wrinkles not found in the example so I have provided

sample solutions to guide you.

Problem 5.10.27: My daughter’s college fund is a big priority. I am

going to aim for a final sum of $150,000.00 and what I’d like to

estimate is how likely various monthly deposits (starting from her

birth and continuing until age 18) are to get me to this goal. What

will the fund have to yield—say to the nearest percent—for me to

reach my goal if I put in,

i) $200 a month?

Solution
In Example 5.6.9, we saw that to build up $120,000.00 over 18
years (so T = 216) at a yield of 3.9% I had to put in $384.05 a

month. Now, I want to halve the deposit and increase the goal

by 25% so I will need a much higher yield. Let’s try r = 10% or

p = 0.0083. This gives a sum of

S = $200.00
(
(1+ 0.0083)216 − 1

0.0083

)
= $119,565.52 .

That’s way to low so let’s try r = 12% or p = 0.0100. Now if get

a sum of § = $151,572.00. We just found that raising r by 2%

1—
1—
2—

a ·· ·· z ? 703 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.10 The hunt-and-peck method

raised S by about $20,000. Since I am less than $2,000 off the

desired S there is no point in adjusting r any further: I’ll need a

yield of about 12%. I’d have to be very optimistic to think I can

achieve that over eighteen years.

ii) $300.00 a month?

iii) $400.00 a month?

iv) What do you think my monthly deposit should be?

Problem 5.10.28: I have been looking for an apartment in Manhat-

tan in the $200,000.00 range but none of the buildings I want to buy

in will sell to me unless I have a 20% down payment. So I have de-

cided to start putting $300.00 a month into a mutual fund account

until the sum in it reaches $40,000.00. I’d like to understand how

the yield on the account will affect the length of time it is likely to

take me to reach this goal.

i) One way to get some insight into the answer is to turn the prob-

lem around, set various time limits, and ask what yield would let me

reach my goal in that time. To the nearest percent, what yield will

allow me to reach my goal in

a. 5 years?

b. 7 years?

c. 9 years?

About how long, do you think I’ll have to wait for that apartment?

ii) There is a second way to attack this problem. I can pick a yield

and then ask, “How long will an account with that yield take to build

up to $40,000.00?” In other words, instead of solving for p and con-

verting to get r , I try to solve for T and convert to get y . How many

years will it take to reach my goal if I expect the account to yield

a. 2%?

Solution
Here we know r and hence p = 0.01·r

100 = 0.00166666666 '
0.0017 and need to guess T . The idea is always the same.

Make a first guess for T , plug it in, stare at the sum and
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make a better guess. We don’t have a formula for making

first guesses here as we did above but this is of minor im-

portance. Any reasonable guess will do.

For example, I can note that if $300.00 a month amounts to

$3,600.00 a year which would give $36,000.00 in 10 years

with no interest. A small amount of interest might just get

me up to $40,000.00 So let’s try y = 10 and T = 12·y = 120.

We get a final sum ofD
(
(1+p)T−1

p

)
= $300.00

(
(1+0.0017)120−1

0.0017

)
=

$39,897. That’s so close it’s got to be the answer. After all in

another year another $3,600.00 will come in even ignoring

interest.

For practice, suppose my goal were $50,000.00. Then, I need

to accrue another $10,000.00: in another three years (for a

total of 13) I am sure to do this as the new deposits will total

more than $10,000.00 so let’s see what happens in 12 years

or T = 144 months. Using B = D
(
(1+p)T−1

p

)
we find

B = $300.00
(
(1+ 0.0017)144 − 1

0.0017

)
= $48,900.06 .

So to reach $50,000.00 will take just over 12 years. The

moral is that any common sense guess is enough in a rough

estimation problem like this.

b. 8%?

c. 14%?

Points

This subsection discusses a standard feature of mortgage loans

where we can apply the Hunt and Peck Method 5.10.18. To be-

gin with, let’s ask, “Why do banks like to write mortgage loans?” I

expect that most of you will answer, “Because their business is lend-

ing money and mortgages are a good way to lend money”. In most

cases, this is wrong. Most banks sell your mortgage before the ink is
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dry to a financial institution which specializes in mortgage finance.

These institutions package large groups of mortgages and resell the

packages (called collateralized mortgage obligations or CMOs) as in-

vestments to yet other financial institutions like pension plans, in-

surance companies and so on.

This wholesaling reduces various administrative costs like those in-

volved in the collection of payments. Another advantage of CMO’s

are that they reduce risk through diversification: they are rather like

mortgage mutual funds. If a homeowner defaults—can’t pay his or

her mortgage—this has only a tiny effect on the income and yield in

a CMO. There is an opposite risk that a homeowner may decide to

pay off his mortgage (by selling his house, refinancing etc.) Why, if

the loan is repaid, is this a risk for the lender? The answer is that

repayment happens much more often when interest rates are low.

This leaves the lender holding cash at exactly the moment when it

is impossible to relend it at the original rate: in effect, the lender’s

yield is suddenly reduced and that’s a risk. Finally, CMOs can often

be converted into so-called derivative securities each of which may

be more attractive to certain buyers than a slice of the whole CMO.

CMOs are a huge—trillion dollar—industry.

Back to the bank which sold you the mortgage. What’s in it for them

if they are just going to resell it immediately? Fees and points. The

bank charges you a substantial fee to prepare and verify your mort-

gage application and makes a small profit on this. More importantly,

when you close the mortgage you generally give a small fraction of

the amount—usually 1% to 2%—back to the bank. These are called

points. For example, if you take out a mortgage with a face value of

$100,000.00 and pay the bank 2 points, you receive only $98,000.00
at closing to give to the seller. If you really need $100,000.00 to

buy the house, you’ll need a mortgage with a face value of about

$102,040.00

Point 5.10.29: Each percent of the face value of a mortgage which
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is returned to the lender at closing as a fee for originating the mort-

gage is called a point.

Basically, the bank wants to sell you the mortgage to get the points.

Then it can happily resell the mortgage: it has no risk of default or

repayment, its capital is not tied up in your house for 15 to 30 years.

It’s just ahead a few thousand dollars on the deal and ready to write

the next mortgage. Actually, things are not quite this simple since

the bank must discount the mortgage slightly when it resells it—

in effect, the bank pays points to the CMO firm—but the bank still

comes out substantially ahead on the deal. You might be asking why

the CMO firm needs the banks at all. Basically, banks provide neigh-

borhood points of sale and the ability to evaluate buyer finances

much more cheaply than a specialist mortgage firm can (although

mortgage web sites have been changing this quickly in recent years).

Points are a major factor in discouraging people from buying homes

which they might have to resell in a few years. If you keep a home

for 20 years, that couple of percent of the sale price becomes a very

small fraction of your total mortgage costs, but if you keep the house

for only a year or two, it can be a substantial component. The effect

is as if you had paid a very high interest rate on your mortgage for

this period.

For this reason, many banks offer what are called no-points mort-

gages where you do not pay the bank any points at closing. “Sounds

good”, you say, “Why would anybody want to pay points if they do

not have to?”. There are two reasons. First, no-point mortgages are

only offered to the lowest risk buyers (e.g., those with a large down-

payment who mortgage payment will be well below the 28% of in-

come threshold and so on). Second, the interest rate on a no-points

mortgage is substantially higher than on a standard two points mort-

gage, generally about a half a percent higher.

In other words, the banks also realize that points amount to a higher

interest rate. Their rule of thumb is that you pay a quarter percent
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higher interest for each point you do not pay. In the rest of this

subsection, we’ll try to decide whether this is a good deal or not. The

answer is sometimes yes and sometimes no. So a better question

is, “When should I prefer a no-points mortgage and when should I

prefer standard one?” I hope that, when you come to buy a home

and have to make this choice, you’ll at least remember that you used

to be able to answer it.

Let’s try to get a feel for this. Suppose that you take out a 30 year

mortgage at a face value of $100,000.00 and a nominal interest rate

of 7.5% so your periodic rate is p = 0.00625 and your monthly pay-

ment is D = $699.21: see Problem 5.8.4. You pay the bank two

points and then use the remaining $98,000.00mortgage to purchase

a house (also valued at $98,000.00). One way to look at your situa-

tion is to say that you are paying D = $699.21 a month for 30 years

to have the use of $98,000.00 now.

This is another example of an amortized loan in which we know

everything except the interest rate and we can find this by hunting

and pecking to solve

98,000.00 = $699.21
(
1− (1+ p)−360

)
p

.

Problem 5.10.30: Use the Hunt and Peck Method 5.10.18 to show

that the the nominal rate at which a 30 year mortgage with an initial

balance of $98,000.00 would have a monthly payment of $699.21 is

7.7% to the nearest tenth of a percent. Make one more guess without

rounding and show that the rate is 7.71% to the nearest hundredth

of a percent.

Hint: This is one problem where we get a good first guess for

free—just use the original nominal rate r = 7.5% which means

p = 0.00625.

In other words, if you hold the mortgage for the entire 30 year term

paying 2 points has the same effect as paying an extra 0.2% interest.
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This suggests a rule-of-thumb that each point you pay is like paying

an extra tenth of a percent in interest. Let’s check this.

Problem 5.10.31:

i) Use the Hunt and Peck Method 5.10.18 to show that the the

nominal rate at which a 30 year mortgage with an initial balance of

$99,000.00 would have a monthly payment of $699.21 is 7.6% to the

nearest tenth of a percent.

Hint: One good first guess here is r = 7.5% or p = 0.00625 as in

the preceding problem. But since we think we know what the answer

is going to be we can make an even better guess: r = 7.6% or p =
0.00633.

ii) Use the Hunt and Peck Method 5.10.18 to show that the the

nominal rate at which a 30 year mortgage with an initial balance of

$97,000.00 would have a monthly payment of $699.21 is 7.8% to the

nearest tenth of a percent. You can use the hint above to make a very

good first guess.

Unfortunately, this rule of thumb works only for 30 year mortgages.

For shorter terms, each point paid corresponds to a larger bump in

the interest rate. The next problem shows this: you’ll need to find

effective rates to with a hundredth of a percent so you should carry

out all the calculations in these problems without rounding.

Problem 5.10.32: In Problem 5.8.4, you should also have found

that the monthly payment on a 30 year mortgage with a face value

of $100,000.00 and a nominal interest rate of 7.5% is D = $927.01.

i) Use the Hunt and Peck Method 5.10.18 to show that the the

nominal rate at which a 15 year mortgage with an initial balance of

$98,000.00 would have a monthly payment of $927.01 is 7.83% to

the nearest hundredth of a percent.

ii) Use the Hunt and Peck Method 5.10.18 to show that the the

nominal rate at which a 15 year mortgage with an initial balance of

$96,000.00 would have a monthly payment of $927.01 is 8.16% to

the nearest hundredth of a percent.
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5.10 The hunt-and-peck method

In other words, for a 15 year term each two points raises the rate by

close to a third of a percent so each point raises the rate by a sixth of

a percent, rather more than the tenth of a percent for a 30 year term.

However, these rules-of-thumb apply only if you hold the mortgage

through the full term. Since the rises for both terms are well below

0.25%, we can however draw one conclusion. If you expect to live in

that house “forever”, you are better off to pay the points. You pay

more with a no-points mortgage in the long run.

What if you sell your home before the end of the mortgage? Things

are worse—much worse if you decide to sell after a short period.

Suppose that you take out a 30 year mortgage at a face value of

$100,000.00 and a nominal interest rate of 7.5% so your periodic

rate is p = 0.00625 and your monthly payment is D = $699.21, as

we saw in, Problem 5.8.4. You pay the bank two points and then use

the remaining $98,000.00mortgage to purchase a house (also valued

at $98,000.00).

After two years, you decide to sell the house. The good news is

that you’ll get $98,000.00 from the new buyer (as usual I’ve ig-

nore changes in value, down payments etc.). The bad news is that

you will have made i = 24 of the T = 360 payments and have

T − i = 336 left to make. The Balance and Equity Principle

5.9.2 says that your outstanding balance—what you owe the bank—is

B = D
(
1−(1+p)−(T−i)

p

)
or

B = $699.21
(
1− (1+ 0.00625)−(336)

)
0.00625

= $98,084.13 .

That’s $84.13 more than the buyer gave you. You just acquired neg-

ative equity: you have to pay money to sell your home

I claim you paid what amounted to 8.6% interest on your mortgage.

We can see this roughly by ignoring the small balance of $84.13 and

saying that basically all of the $699.21 a month was interest. In other

words, if p is the periodic (i.e., monthly) interest rate which you really

1—
1—
2—

a ·· ·· z ? 710 Comments welcome at �̂�

mailto:morrison@fordham.edu


5.10 The hunt-and-peck method

paid, p · 98,000.00 = 699.21 which gives p = 0.007134795917 and

r = 8.6% to the nearest tenth.

Again this calculation applies only only if you decide to sell after two

years. It’s possible to hunt-and-peck to work out what no-points rate

corresponds to a mortgage with points which you close out after any

number of payments but things get a bit complicated so I have made

this Challenge 5.10.34. But it’s clear that if your plan is to move

soon after buying, then you should pick the no points mortgage.

The extra half a percent of interest you’ll pay is much less than the

effective bump in interest which the points amount to over such a

short span.

Let’s summarize: we can think of paying points on a mortgage as

equivalent to paying a higher interest rate. There is no simple for-

mula for making the conversion but we can say that the shorter

the term of the mortgage the more each point lifts the rate and the

shorter the time you hold the property before selling, the more each

point lifts the rate. If you plan to stay in the house until the mortgage

is paid off, a standard mortgage with points is probably better. If you

are likely to sell in a few years, a no-points mortgage is probably a

better deal. The break even point is about 5 years for a 30 year term

and 5 12 for a 15 year term.

Rule-of-thumb for Points 5.10.33: If you plan to keep paying

the mortgage longer than five years, pay the points; if less, try to get

a no-points mortgage.

Challenge 5.10.34: In this project, we’ll figure out how to com-

pare standard and no-points mortgages under scenarios in which

you sell the property after any number of payments. This will in-

volve hunting and pecking in an equation more complicated than the

Present Amortization Formula 5.8.1. I’ll set the equation up—as

I said above, it’s a bit complicated—and let you deduce the conse-

quences.
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5.10 The hunt-and-peck method

Let’s suppose that your mortgage has a face value B, payment D,

periodic rate p and term T and that you decide to sell out after i
months. We also introduce introduce a second balance C, the amount

you actually get from the bank after the points are deducted and a

second periodic rate q which represents the interest which would

leave you in the same financial position after you settle if we ignored

the points. (I used C and q for the second balance and rate because, in

the alphabet, these letters follow the letters B and p used to describe

the first balance and rate.)

The first goal is to find an equation involving q. To do this we first

ask two questions: What sums will you have received from the bank,

and what sums will you have paid out to the bank? The first is easy:

you got C at the start of the mortgage. The second is not much

harder: there will have been i monthly payments of D each, and at

the end of the i months, the Balance and Equity Principle 5.9.2

says that your outstanding balance—what you owe the bank to close

out the mortgage—is Bi = D
(
1−(1+p)−(T−i)

)
p .

We’d now like to say that we get an equation by equating the money

you got from the bank to the money you gave. However, we can’t

just crudely equate since these sums live at different points in time.

The whole theme of this chapter is that money changes value when

it travels in time. To equate sums, we have to first move them all to

the same point in time. This poses two more questions.

First, what rate do we use to compound these sums when they travel

in time? That’s easy, q! In fact, saying that q is the real rate you were

paying exactly means that when you use it to compound the various

amounts you exchanged with the bank they balance.

Second, which common point in time shall we move them to? The

obvious choice is the start of the mortgage. Now let’s tackle the sums

one-by-one. Since your income C exists at this moment there is no

need to adjust it. What about the outstanding balance Bi? It lives i
periods in the future from the start of the mortgage so we have to
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move it back i periods in time at a periodic rate q. By the Compound

Interest Formula 5.2.4, this means we multiply it by (1 + q)−i to

get (1+ q)−i ·D
(
1−(1+p)−(T−i)

)
p . Finally, there are the i payments of D

each. We can think of these as amortizing a loan with a payment D,

a term of i periods and periodic rate q. (Since we want to move these

payments to a common point in time, we again use the fair rate q to

do it).

The Present Amortization Formula 5.8.1 tells us that at the start

of the mortgage this loan will have a balance of D(1−(1+q)
−i)

q . Now

we can equate the total value at the start of the mortgage of the

amounts you got from the bank with the total value at the start of

the mortgage of the amounts you paid the bank to get

C = (1+ q)−i ·D
(
1− (1+ p)−(T−i)

)
p

+D
(
1− (1+ q)−i

)
q

That’s one big ugly formula and the quantity q we’re looking for now

occurs three times. But don’t be scared; you have nothing to fear but

fear itself. You’ll see that the hunt and peck method works like a

charm. When we plug values into the right side of the formula to

compute trial values of C, we have to hit a few extra keys on the

calculator but that’s all that changes. You can even adapt the Linear

Interpolation Formula 5.10.9 if you wish: here we plug in qs and

compute trial balances C so we just replace the ps and Bs in the

formula by these qs and Cs.

i) Let’s start by checking this formula against some values we com-

puted above. The rates we worked out above should all be special

cases and so we should get equalities if we plug in our earlier results

on both sides. We will suppose that B = $100,000.00, r = 7.5% and

p = 0.00625 as usual.

a. First, let’s suppose that we have a 30 year term so T = 360
and that i = 360 too. In other words, we pay off the mort-

gage. Show that we get near equality when C = $99,000.00 and

q = 0.00633, when C = $98,000.00 and q = 0.00642, and when
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C = $97,000.00 and q = 0.00651. Compare this with the result

of Problem 5.10.30.

b. Next, let’s suppose that we have a 15 year term so T = 180 and

that i = 180 too. In other words, we again pay off the mortgage.

Show that we get near equality when C = $98,000.00 and q =
0.00653 and when C = $96,000.00 and q = 0.00680. Compare

this with the result of Problem 5.10.31.

c. Finally, let’s suppose that we have a 30 year term so T = 360
and that i = 24 . In other words, we sell after two years. Show

that we get near equality when C = $98,000.00 and q = 0.00715.

Which calculation above does this confirm?

ii) Now find a few solutions of your own using the hunt-and-peck

method. Let’s suppose that we have a 15 year term so T = 180 and

that C = $98,000.00 so we are paying two points. Find the interest

rate q and the corresponding nominal rate s which we’d be paying if

we sold out after i = 24 months and after i = 120 months.

iii) OK, let’s go for the gusto! If we keep the 15 year term, we either

pay two points (C = $98,000.00) or the bank charges us 8% interest

instead of 7.5%. How many months i do we have to hold on to the

property to make these equivalent? That is, for if we plug in the

values above for C, D, T and p and also set q = 0.01·8.0
12 = 0.00667

what value of i brings us nearest to equality.

Hint: You can still hunt-and-peck: in some ways it’s easier since i
takes on only whole number values. The statement above that the

break-even point between standard and no-points mortgages comes

at about 5 years should give you a good first guess for i.
iv) Repeat part iii) for a 30 year term, again assuming you pay 2
points. What happens if you only pay 1 point?

Final comments

This section has a point somewhat broader than the problems we

have attacked which all involved financial formulae. The Hunt and
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5.11 Saving to spend

Peck Method 5.10.18 can be used to find accurate approximate so-

lutions to many kinds of equations. The next time you’d like to solve

an equation for one of the variables and it’s impossible or too com-

plicated to isolate the variable and just plug in, don’t give up!

Try guessing, plugging in and reguessing. With enough elbow grease

this will do the job surprisingly often. If you need a lot of decimals,

you’d probably be smart to interpolate between your guesses (one

of the goals of this section was to give you a feel for doing this)

but the slower methods can give whatever accuracy you need if you

keep pecking a little longer. Likewise, if you have to solve lots of

equations, or very complex ones, you’ll probably find it worth your

while to seek the advice of someone who knows some calculus or

numerical analysis or even find it worthwhile to learn a bit about

these subjects yourself.

5.11 Saving to spend

Now we are ready to pull out all the stops and combine savings and

loans amortizations in a single problem. You might think that I’d

have to make us some artificial situation to come up with such a

problem but you’d be wrong. Your retirement planning is a perfect

example. In considering retirement planning so far, we have always

had as our goal saving a certain lump sum of money in the at retire-

ment: this was always a future value amortization. That’s OK if you

are a Midas who just wants to count his gold but what most people

want when they retire is an income. The real point of accumulating

that lump sum in your retirement account is to be able to finance

such an income.
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5.11 Saving to spend

Fixed term annuities

The mechanics of doing so are just like those of a mortgage or

present value amortization. The only difference is that you’re the

bank: you hand over the lump sum (like the bank handing the home-

owner that initial mortgage balance) when you retire and then sit

back and receive a series of monthly payments (analogous to those

the bank gets from the homeowner) which represent your retirement

income. It’s only rarely that simple. It is possible to use your retire-

ment fund to buy what’s called a fixed term annuity which promises

you a fixed monthly payment for a fixed term. But most people are

afraid—or better, hopeful—that they’ll outlive that term and be left

without any income. Such people usually buy a life annuity which

promises a fixed monthly payment as long as you live.

This involves merging a whole series of amortizations with different

terms—after all, the term of a life annuity is not fixed but depends on

how long you live. Thus, the price of such an annuity has to take into

consideration how likely you are to die at various ages—the fancy

term for this is mortality—and somehow merge the various present

values into a single price. Moreover, these are just the simplest wrin-

kles. You might want an income until both you and your spouse die

(a joint life annuity) and you might want the annuity to take into ac-

count inflation or rises in the cost of living. The complications which

arise have spawned an entire profession: actuaries specialize in the

mathematics and statistics of this type of calculation.

Moreover, the yield on such annuities is generally fairly low. If you

can tolerate a bit more risk, you can do better by continuing to invest

your retirement fund yourself and paying yourself an income out of

the fund. If you do this, you’d like to be sure that the checks are not

going to suddenly start bouncing when you are 73. When the time

comes, I’d suggest getting professional advice. But we already know

enough to make calculations which can help you in planning when
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you are younger. I’d like to look at few examples of these to close

the chapter.

Example 5.11.1: Here’s an example which will illustrate the basic

idea. Right now, I am 35 and just starting my retirement planning. I

have found an insurance company which offers fixed term annuity

accounts which earn 5.1% a year (compounded monthly as usual) and

I have decided that when I am 65 I’d like to be able to buy such an

annuity with a term of 25 years and monthly payment of $2,500.00
I plan to finance this purchase with the proceeds of a retirement ac-

count into which I will make monthly payments over the intervening

30 years. With this long term time horizon, I am prepared to invest

this account fairly aggressively—that is, in higher yielding but risker

securities—and I think it is prudent to plan on an average return

of 9% over this period. The basic question I need to answer now is,

“How much do I need to deposit every month?”

What are we dealing with here? Two separate amortizations. My de-

posits into the retirement account are a savings or future amortiza-

tion: I know the term is 30 years (so T = 360) and I am assuming the

rate will be 9% (so p = 0.01·9
12 ) but I know neither the sum which is my

goal nor the monthly deposit I will make. This means we are missing

two ingredients in the Future Amortization Formula 5.6.8: S and

D and so I can’t use it to find out either. So we’ll put this aside for

now.

The annuity I plan to buy represents the other amortization. It’s a

loan or present value amortization in which, as remarked above, I’m

the bank and the insurance company plays the role of the mortgage

holder who makes regular monthly payments. I know the term of this

annuity is 25 years (so T = 300), the rate r is 5.1% (so p = 0.01·5.1
12 )

and the monthly payment D is $2,500.00 Thus I can use the Present

Amortization Formula 5.8.1 to find the balance B I’ll need to pay

the insurance company. Using B = D
(
1−(1+p)−T

p

)
, we find,
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B = $2,500.00

1−
(
1+

(
0.01·5.1
12

))−300(
0.01·5.1
12

)
 = $423,419.45 .

Now comes the only new point. The balance B that I’ll need to pur-

chase the annuity is the same thing as the sum S that I’ll want to

have saved in my retirement account when I’m 65: so B = S =
$423,419.45. Now we do know enough to use the Future Amortiza-

tion Formula 5.6.8 to find the balance to find the depositD I’ll need

to make into the retirement account. Here, using , D = S
(

p
(1+p)T−1

)
,

we find that

D = $423,419.45


(
0.01·9
12

)
(
1+

(
0.01·9
12

))360
− 1

 = $231.28 .

I need to deposit $231.28 a month.

To emphasize, let’s restate the new idea here. We have a pair of re-

lated amortizations: a future or savings amortization in which we

assemble a sum of money which we then use to finance a present or

loan or annuity amortization. (Of course, both amortizations live in

the future, the “present” one lives further in the future than the “fu-

ture” one and the “loan” is really a purchase: we are using all these

terms in the conventional sense established earlier in the chapter).

If we know everything but the final sum S of the savings amorti-

zation, the initial balance B of the loan amortization and one other

quantity, then we can use a two step process like that above to com-

pletely describe both amortizations by identifying B and S. Either,

as above, we know everything about the loan or annuity except the

balance B and can solve for this using the Present Amortization

Formula 5.8.1, or, as above we know everything about the savings

amortization and can solve for S using the Future Amortization

Formula 5.6.8. Then, we use the fact that B = S to use the other for-

mula to determine the remaining missing piece of information about
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the other amortization (this was the deposit of $231.28 above). Here

are some problems for you to try.

Problem 5.11.2: Recalculate the payment I’ll need to make in my

retirement account keep all the values of Example 5.11.1 except that

we assume that,

i) my annuity has a yield of 3% and my retirement account has a

yield of 5%. (Here I am asking, “What’s the worst that can happen?”.)

ii) I am 45 years old and want to retire and buy a 30 year annuity

when I am 60.

iii) I want the annuity to pay $3,000.00 a month.

Problem 5.11.3:

i) Suppose that I am 45 years old and starting a retirement ac-

count. Based on my current income, IRS will only let me put $275.00
a month into this account tax free. If I think the account will have a

yield of 10%, what monthly payment can I expect to get from a 25
year annuity yielding 4.5% which is purchased with the sum in the

account when I am 65?

ii) How does the answer to i) change if I am 25 today?

iii) How do the answers to i) and ii) change if I expect a yield of 7.5%

on both the retirement account and the annuity?

Life annuities

Let’s conclude with a capstone problem in which we’ll model a more

realistic annuity that is to be paid until the holder’s death. Such

an annuity is called a life annuity. For any single individual, this

annuity—like those above—will amount to a loan amortization. The

big difference is that we will only discover what the term of this an-

nuity is in hindsight, after the holder dies. The question we need to

answer is how to price such an annuity before we start to pay it out.

Our plan has four stages. First, we use a probability distribution to

encode the chances that the holder will live to various ages. In other
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words, an outcome in our sample space is just an age from 65 on at

which the holder might die. The probability that the holder will die

at each such age is an empirical one. It depends on many things of

which the most important is the holders current age: for example, a

person who is 65 today has a very small chance of dying at age 100
(because he or she will almost certainly die before that age), but a

person who is 99 today has quite a good chance of dying at age 100
(having avoided dying at any younger age).

Tables that give such probabilities are known as mortality tables.

They are usually given by specifying how many of 1000 people who

reach each age (e.g. turn 73) will die before reaching the next age (i.e.

die before they turn 74) or how many of each 1000 persons born in

the same year survive to reach each age. From such figures, some

easy arithmetic lets us determine the values we want here, the per-

centage of people who reach age 65 who die at each subsequent age

(e.g. 73 again). This is the easy second stage in our plan.

Let’s start to look at Table 5.11.5. I have just assumed our holder is a

65 year old male when the annuity begins. I fix the sex as well as the

age because the mortalities for men and women are very different.

In a more realistic study, we’d want to consider other factors (e.g. if

you’re a smoker, your annuity will be cheaper because you figure to

die much younger). The data in the first column of Table 5.11.5 were

extracted from a much more detailed set of tables on the website of

the American Association of Actuaries and I worked out the second

as in shown in Problem 5.11.4.

Problem 5.11.4: Use the values in the first column of Table 5.11.5

to verify the chances that a person who reaches 65 will die at age

65 or at age 66. Hint: We want the number of people who died aged

66 or aged 67 as a percentage of the cohort that made it to 65. For

example, the number of people who die aged 66 is the difference of

the numbers of survivors in the 66 and 67 rows and the number of

people who reach 65 is in the 64 row.
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Age Survivors to end of
year per 1000

Chance of dying at
this age

Cost of annuity to
this age

Products of Chance ×
Cost

64 834.0363 — — —
65 819.9828 1.69% 48076.92 810.10
66 804.8377 1.82% 94304.73 1712.46
67 788.6685 1.94% 138754.55 2689.99
68 771.4361 2.07% 181494.76 3749.95
69 753.1993 2.19% 222591.12 4867.10
70 733.7894 2.33% 262106.84 6099.83
71 713.1332 2.48% 300102.73 7432.50
72 690.7979 2.68% 336637.24 9015.08
73 666.8825 2.87% 371766.58 10660.15
74 641.4876 3.04% 405544.79 12348.10
75 614.6028 3.22% 438023.84 14119.48
76 586.2819 3.40% 469253.69 15934.18
77 556.4285 3.58% 499282.39 17871.30
78 524.9569 3.77% 528156.15 19929.49
79 491.8531 3.97% 555919.37 22065.03
80 457.3545 4.14% 582614.78 24098.93
81 421.5940 4.29% 608283.44 26081.06
82 385.1092 4.37% 632964.85 27688.91
83 348.3274 4.41% 656696.97 28960.95
84 311.6033 4.40% 679516.32 29920.36
85 275.2797 4.36% 701458.00 30549.60
86 239.7934 4.25% 722555.77 30743.07
87 205.6588 4.09% 742842.08 30402.28
88 173.4259 3.86% 762348.16 29462.38
89 143.6174 3.57% 781104.00 27916.64
90 116.6662 3.23% 799138.46 25823.55
91 93.0483 2.83% 816479.29 23120.73
92 72.7796 2.43% 833153.16 20247.25
93 55.7462 2.04% 849185.73 17342.73
94 41.7461 1.68% 864601.67 14513.18
95 30.5093 1.35% 879424.68 11848.32
96 21.7946 1.04% 893677.57 9337.87
97 15.1869 0.79% 907382.28 7188.79
98 10.2986 0.59% 920559.89 5395.50
99 6.7780 0.42% 933230.66 3939.28
100 4.3163 0.30% 945414.10 2790.44
101 2.6758 0.20% 957128.94 1882.66
102 1.6106 0.13% 968393.21 1236.70
103 0.9387 0.08% 979224.24 788.94
104 0.5280 0.05% 989638.69 487.36
105 0.2855 0.03% 999652.59 290.58
106 0.1478 0.02% 1009281.34 166.61
107 0.0729 0.01% 1018539.75 91.48
108 0.0341 0.00% 1027442.06 47.86
109 0.0150 0.00% 1036001.99 23.72
110 0.0061 0.00% 1044232.68 11.06
111 0.0023 0.00% 1052146.81 4.82
112 0.0008 0.00% 1059756.54 1.94
113 0.0003 0.00% 1067073.60 0.71
114 0.0001 0.00% 1074109.23 0.23
115 0.0000 0.00% 1080874.26 0.09

Value of Life Annuity $581,711.31

Table 5.11.5: Life annuity table for 65 year old Male
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Next, we turn to the third stage of your plan and fill in the third

column. I have assumed that the interest that will be paid on the

annuity is 4%, that it will be paid annually and that the last pay-

ment is made at the end of the year in which policy holder dies. To

fill in this column, we repeatedly use the Present Amortization

Formula 5.8.1 with different terms to calculate what it will cost to

provide the annuity to a holder who dies at each possible age.

Problem 5.11.6: Sincem = 1 (annual payments) here, the term T is

just the number of years in which payments are made. This is the age

at death of the policy holder minus 64 (and not 65, since someone

who dies aged 65 still get a single payment). Use this to verify the

cost the annuity when the holder dies age 65 and the cost when the

holder dies aged 80.

Now we are almost home. Our table is perfectly set up to be used to

compute an expected value. It has one row for each outcome x in our

sample space—that is, each possible age at death of a man who had

reached age 65—and the second entry of the xth row is exactly the

probability Pr(x) of that outcome. The entries in the third column are

the values of the random variable Y that assigned to each outcome

or age of death the cost of providing an annuity of $50,000 a year to

that age.

Conceptually, the expected value E(Y) is just what we’re after: the

expected cost of providing an annuity of $50,000 a year to a person

aged 65 until his death. In this expected value, each of the different

dollar amounts (values of Y(x)) is weighted by the probability that

a policyholder will die at the corresponding age x and collect Y(x).
So all we have to do, by Outcomes Expected Value Formula 4.8.2,

is first to form the products Y(x)Pr(x) and then take their total.

The products form the right column of Table 5.11.5 and the total

$581,711.31 is shown at the bottom.

A few closing comments on this example. First, note that, rather

paradoxically, it’s cheaper to purchase a life annuity than one with
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a fixed term. For example, the $581,711.31 cost of our life annuity

is less than the cost of an annuity with a 16 year term. This latter

would make annual payments to you each year through age 80, so

from the table or from Problem 5.11.6 would cost 528,156.15.

Problem 5.11.7: Show that you’d be pretty foolish to opt, at age 65,

for an annuity with a 16 year term option. Hint: Show that more than

half of all of men who reach age 65 will survive past age 80.

In other words, you need to “bid high” if you are trying to set the

term of an fixed term annuity since you need to retain your income

to any age that there’s a reasonable chance you might hit. Even a 25
year term (which takes you though age 89 and cost 200,000 more

than our life annuity) still leaves you with a one in seven chance of

surviving uncovered beyond the end of the annuity. But much of the

value of an annuity with such a long term is likely to be wasted. For

example, you have a roughly 50 chance of dying by age 80. If you do,

the last 10 years of an annuity with a 25 year term will benefit not

you but your heirs.

The fixed term option is more expensive because much of what you

are buying will not come back as retirement income. The life annuity

is cheaper because it guarantees to apply the full purchase price to

your retirement needs. The seller can afford to carry the fewer than

1 in 5000 policy holders who live to 106 and cost it over $1,000,000
each because it benefits from the more than 25% who die by age

75 and cost it less than 450,000. Of course, there is a bit of double

jeopardy. When you buy a life annuity you either hit the jackpot (live

to a ripe age and get a “discount” on your retirement income) or

get slimed (die you and “overpay”). But those air quotes are needed

because in both cases the life annuity made it possible for you to

contract for what you want, lifetime income, as cheaply as possible.

Finally, a project for those who want to start to understand how

real-world complications affect the kind of financial lessons we have

learnt in this chapter.
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Project 5.11.8: What fundamental reality has been totally ignored

in this entire chapter? Hint: it’s not death. Right, taxes! We have dis-

cussed all kinds of financial planning decisions which in real life are

critically affected by tax considerations without ever mentioning this

issue. In this project, I’d like you to pick a few of the examples we

have looked at and to try to understand how tax issues should affect

your thinking about them. Here are a three suggestions but feel free

to pick others if they interest you.

i) (Mortgage interest) The interest you pay on a mortgage on your

primary residence may generally be deducted from your income for

federal tax purposes. How does this affect the relative desirability of

owning versus renting? Illustrate your general discussion with a con-

crete scenarios involving low, middle and upper income taxpayers.

ii) (Retirement income) The Federal Government encourages you to

save for retirement by allowing you to deduct many forms of retire-

ment savings from your income for federal tax purposes. However,

when you spend these savings at retirement, they—and any gains re-

alized from them—are subject to taxes. How might this affect your

planning for retirement? Are there situations when you might want

to pay taxes on income before investing it for retirement?

iii) (Capital gains) Your profits on many investments like stocks and

bonds are subject to tax when realized. For example, if you bought

100 shares of a stock for $10.00 a share and it is now selling at

$20.00 a share you have a paper profit of $1,000.00. If you sell the

stock and realize the profit, it will be subject to capital gains tax.

You will not, however, be taxed if you continue to hold the stock. In

effect, the government is allowing you to invest that profit without

paying taxes on it but only in the stock you already own. Discuss how

this affects the real yield of investment strategies. Illustrate your dis-

cussion with comparative scenarios. For example, how much higher

a before-tax yield must you be able to achieve via a strategy which

involves selling assets every 6 months to match the after-tax yield of

a strategy in which you hold assets for an average of a decade?
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691, 695, 702
list, 142, 179, 180, 181, 195, 197

from a set, 181
length of, 179, 180

lists, 150, 201
loan, 614, 640, 641, 643
logarithm property, 52

logarithms, 52
applications, 50
area definition

discovery of, 80ñ, ð81
area definition of, 56
Bernoulli’s limit for, 66
defining property, 52
exponent interpretation, 77
horizontal lines, intersection, 69
increasing property, 67
log10, 49, 60
natural, 56, 569
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Malkiel, Burton, 640
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mean, 477
Mercator, Nicolaus, 81
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compound interest, 543
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expected value, 449
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future amortization, 621
hunt-and-peck, 690, 713
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present amortization, 644
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simple interest, 518
tree diagram, 380

Moore’s law, 598ñ, 598, ð604
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see also abomination, 296
multiset formula, 296
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or, 227, 232
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period, 513, 517, 518, 528
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present value, 537
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prior expectation, 395
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conditional, 340, 360
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equally likely outcomes
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