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Preface

This is an early draft of a textbook on linear algebra. There is an accompanying
book, An Atlas of Matrices, giving examples suitable for working by hand. I am
making these texts available in incomplete form for the benefit of my linear algebra
students at Barnard College and Columbia University.

Linear algebra is a transitional subject in the mathematics curriculum. It can be
one of the last math courses taken by students heading off to various applications,
and these students are well served by existing textbooks that focus on applications.
However, pulled in many directions by these competing interests, the algebra in lin-
ear algebra has a tendency to get lost. Mathematics itself, and algebra in particular,
is a great application of linear algebra.

Linear algebra is also the first semester of algebra for math majors, leading di-
rectly into the modern algebra sequence. Students who haven’t picked up a fair bit of
algebra by the time that they begin modern algebra have a tendency to hit a brick
wall. I envision this book as a supplementary text for math majors who have the
ambition to learn as much algebra as they can, as soon as they can. For example, we
use linear algebra to study the algebra of polynomials, and then apply this theory
to better understand functions of a matrix.

This draft is currently in a very fragmented state. For now, there are various
stubs for chapters-to-be. I am completing the chapter on eigenvalues and eigen-
vectors first, so that I will know exactly what material is needed to prepare for this
chapter. For this reason, partial drafts of this text will not be self-contained.

This is a draft of January 12, 2007. The most recent drafts of these texts may be
downloaded from

http://projectivepress.com/LinearAlgebra

DAVE BAYER

New York, NY
January 2007
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Introduction

A matrix is a box of numbers arranged in a grid, like

A =
[

2 1
2 3

]
Linear algebra is the study of matrices. Even in its most advanced form, where one
studies linear operators on infinite-dimensional spaces with no coordinate system
in sight, one relies on intuitions built by getting really good at understanding small
matrices that can be manipulated by hand. Such matrices are the focus of this in-
troductory text. We will pile on lots of theory, but theory that is relevant to tackling
increasingly difficult problems involving small matrices.

Matrices act by multiplication on vectors, elements of n-dimensional space, in
the same way that numbers act by multiplication on other numbers in the real
line. One can think of matrices as “rich” numbers. Like computer programmers
following a modular design, we will alternately look inside the box of numbers to
fiddle with the low-level behavior of a matrix, and close up the box to think of the
matrix as a single entity. The analogy between matrices and numbers is a powerful
one; we can add and multiply matrices, solve systems of equations by multiplying
by inverse matrices, substitute matrices for variables in polynomial expressions,
make matrices of matrices, and so forth. This is the spirit of algebra, accepting a
broad notion as to what constitutes a value that may be manipulated in algebraic
expressions. Linear algebra is the algebra of matrices.

There is room in n dimensions for more subtle behavior than in one dimension,
so the behavior of matrices can be more subtle than that of numbers. For example,
in the real line there is only room to make half-turns, facing alternately in the direc-
tions of ∞ and−∞. Multiplication by−1 can be thought of as a half-turn. Already
in the plane there is room to rotate by an arbitrary angle, and there are matrices that
represent each of these rotations, just as there are complex numbers that represent
each of these rotations.

Three objects in a row can be permuted in more than one way, e.g. swap the two
objects on the left, or take the object on one end and move it to the other end, slid-
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vi INTRODUCTION

ing the other objects over. This is the simplest example of operations where order
matters; carrying out these steps gives different results, depending on which step
comes first. Matrices can replicate this behavior, by rearranging the order of the
coordinates in 3-dimensional space, and matrix multiplication can give different
results, depending on which matrix comes first. We say that matrix multiplication
is noncommutative.

This again is in keeping with the spirit of algebra. Rather than hard-wiring the
rules of real arithmetic into our brains, we learn to flexibly flip switches to recon-
figure the rules that we apply, so that we don’t automatically make simplifications
that aren’t allowed. To work with matrices, we learn to keep track of the order
of multiplication, which is not an issue in real arithmetic. Why always play chess
when there are other games? The appeal of algebra is the appeal of learning new
games. For all its complexity, matrix arithmetic is far more interesting than real
arithmetic.

The complexity of matrices is the complexity of the real world. It makes a dif-
ference whether one cracks an egg before frying it, or fries it in its shell and cracks
it later. Such is a matter of taste, but the order matters. More tragically, one can
drink a glass of wine and then drop the glass, but not easily the other way around.
Order matters in a vast array of applications which can be modeled by matrices,
but not by numbers. Not only can we think of matrices as numbers, we can think
of matrices as actions. For example, we will first learn to solve systems of linear
equations by rescaling, adding, and swapping around the equations. Then, we will
store these actions as matrices, with the property that multiplying by the matrix
carries out the action. This is a common mode of thought in linear algebra. When
we say a matrix acts on a space, we mean this quite literally.

Historically, the study of matrices began with the study of solutions to linear
systems of equations. Only later was the subject generalized to the study of linear
maps, functions with a property exemplified by matrices. We approach each of these
points of view on an equal footing; the first two chapters can be read independently
of each other.



Chapter 1

Systems of equations

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos-
trud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

http://en.wikipedia.org/wiki/Lorem_ipsum




Chapter 2

Linear maps

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos-
trud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

http://en.wikipedia.org/wiki/Lorem_ipsum




Chapter 3

Vector spaces

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos-
trud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

http://en.wikipedia.org/wiki/Lorem_ipsum
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Chapter 4

Determinants

The determinant is an expression in the entries of a square matrix, that appears
throughout linear algebra. If it didn’t already come with hundreds of years of his-
tory and a myriad of interpretations, the attentive student would notice the deter-
minant as a pattern cropping up all over the place, and give it a name. For us, the
determinant is first and foremost a formula, whose pattern we want to understand.
Then we will consider interpretations of this formula.

For an operational definition, the determinant of a matrix is the number that
most closely resembles the matrix. Matrices are capable of far more subtle behavior
than numbers, such as representing actions where the order of operations matters,
so it is too much to ask that there be a number that exactly reflects the properties
of a matrix. If this were possible, then we wouldn’t need matrices. Nevertheless,
it is reasonable to ask that an invertible matrix be represented by an invertible
number, for the product of two matrices to be represented by the product of their
corresponding numbers, and so forth. The determinant is that number.





Chapter 5

Coordinates

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos-
trud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

http://en.wikipedia.org/wiki/Lorem_ipsum




Chapter 6

Polynomials

There are striking parallels between the algebra of matrices and the algebra of poly-
nomials. To prepare for the theory of functions of a matrix, we review some poly-
nomial algebra.

If one steps back and takes a fresh look at polynomials, they now look very
much a part of linear algebra. A polynomial in the variable x is after all a linear
combination of powers of x. This is a useful point of view. If we take all powers
of some object x in an arbitrary algebraic setting over a field F, either the powers
are linearly independent, spanning an infinite dimensional subspace, or they are
linearly dependent, and we can write the first dependent power

xd = cd−1xd−1 + . . . + c1x1 + c0

as a linear combination of the preceding powers. This rule can then be used repeat-
edly to rewrite any higher power of x in terms of {xd−1, . . . , x, 1}, showing that this
set is a basis for all powers of x. In this case, x behaves as if we are working modulo
the polynomial

p(x) = xd − cd−1xd−1 − . . . − c1x1 − c0

Square matrices are such a setting. The space of all n× n matrices over a field
F is an n2-dimensional vector space, so it isn’t possible for all powers of an n× n
matrix A to be linearly independent of each other. There simply isn’t enough room.
It must be the case that for some d ≤ n2,

Ad = cd−1Ad−1 + . . . + c1A1 + c0I

In other words, it is inevitable that square matrices behave as if we are working
modulo some polynomial, because their powers live in a finite dimensional vector
space.
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We are very interested in understanding such polynomials. It turns out that
the least such d is smaller than this argument suggests; we can always find such a
dependence with d ≤ n. Viewing A as a linear map V → V, it is the dimension n of
V, not the dimension n2 of possible matrices, that matters. Still, this first argument
makes it clear that there must be some such polynomial, hence our interest now in
polynomials.

6.1 Modular arithmetic

Integers

Let m be an integer. Two integers a, b are equivalent mod m if their difference a− b
is a multiple of m. We write

a ≡ b mod m

and say that we are computing in the ring Z/mZ of integers mod m. For example,
8 ≡ 2 mod 3, because 8− 2 = 6 is a multiple of 3. The distinct elements of Z/3Z
are {0, 1, 2}, which are the possible remainders under division by 3.

It is a tremendous simplification to be able to work modulo an integer m; our
calculations can take place in the finite set {0, 1, . . . , m − 1} of remainders under
division by m. This can mean the difference between a value fitting in one word of
memory on a computer, and a value not fitting on the computer at all.

Example 6.1. The integer 21024 is a 309 digit number, but 21024 mod 5 can be com-
puted by repeated squaring mod 5; after the second squaring, the value becomes
and stays 1:

22 ≡ 4 mod 5
24 ≡ (22)2 ≡ 1 mod 5

. . . 21024 ≡ (2512)2 ≡ 1 mod 5

Polynomials

One can also work with polynomials modulo a polynomial p(x). Computationally,
this is again a tremendous simplification; our calculations can all take place in the
finite dimensional vector space of remainders under division by p.

Two polynomials f , g are equivalent mod p if their difference f − g is a multiple
of p. We again write

f (x) ≡ g(x) mod p(x)

and say that we are computing in the ring F[x]/p(x)F[x] of polynomials mod p.
In this notation, F[x] stands for the ring of all polynomials in the variable x with
coefficients in our field F.
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Example 6.2. Let p(x) = x2 + 1. We have

x2 ≡ −1 mod x2 + 1

because x2− (−1) = x2 + 1. The distinct elements of R[x]/(x2 + 1)R[x] are now all
possible remainders under division by x2 + 1. This is a 2-dimensional vector space
over R with basis {1, x}.

The complex numbers

The complex numbers C can be viewed as an example of polynomial modular
arithmetic.

Example 6.2 looks familiar. The complex numbers C are also a 2-dimensional
vector space over R, with basis {1, i}, and i2 = −1. The complex numbers look like
R[x]/(x2 + 1)R[x], only with x replaced by i. They are an important special case of
working modulo a polynomial, with x getting the special name i.

Viewing C as the vector space R2, we can represent multiplication by i as a 2× 2
matrix A. Multiplication by i maps the basis {1, i} to {i,−1}, so in vector notation
we want A(1, 0) = (0, 1) and A(0, 1) = (−1, 0). This is the matrix

A =
[

0 −1
1 0

]
which we recognize as a rotation by π/2. Indeed, multiplication by i rotates the
complex plane by π/2. For all intents and purposes, this matrix A is the imaginary
number i. The matrix A goes with the notation R2, the variable x goes with the
notation R[x]/(x2 + 1)R[x], and i goes with the notation C, but they are all the
same thing.

If A and i are the same thing, what about i2 + 1 = 0? We have

A2 + I =
[

0 −1
1 0

]2

+
[

1 0
0 1

]
=

[
−1 0

0 −1

]
+

[
1 0
0 1

]
= 0

A acts just like i, so this is no surprise. We now have three views of the complex
numbers: C, and R[x]/(x2 + 1)R[x], and the ring of all polynomial expressions
in A. For example, the complex number 2− 3i can be viewed as the polynomial
2− 3x mod x2 + 1, and as the matrix expression 2I− 3A.

For an arbitrary square matrix A, the ring of all polynomial expressions in A
is not so different. The governing equation x2 + 1 = 0 changes, but the idea is the
same. C is just a special case, with its own notation.
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The dual numbers

A closely related example is the ring of dual numbers, modeled after the idea of
an infinitesimal in calculus. In calculus, ε is taken to be so small that ε2 is effec-
tively zero. In algebra, we simply dictate that ε2 = 0 by working modulo ε2. In the
notation of modular arithmetic, we have

ε2 ≡ 0 mod ε2

We are again working modulo a polynomial, with our variable getting the special
name ε. The ring of dual numbers can be denoted R[ε]/ε2R[ε].

Not surprisingly given its origins, this ε can be used to differentiate algebraic
expressions. If f (x) is a polynomial or power series, then

f (a +ε) ≡ f (a) + f ′(a)ε mod ε2 (6.1)

This is just a version of the familiar equation

f ′(a) = lim
ε→0

f (a +ε)− f (a)
ε

In calculus, a limit is required to suppress the effects ofε2. Here, no limit is required
because we are working modulo ε2.

When we are firmly ensconced in this setting, we will drop the notation ≡ in
favor of = and stop writing “mod ε2” after every equation.

Example 6.3. If f (x) = x3 then working modulo ε2,

f (1 +ε) = (1 +ε)3 = 1 + 3ε + 3ε2 +ε3 = 1 + 3ε

This agrees with f ′(1) = 3.

The dual numbers are a 2-dimensional vector space over R with basis {ε, 1}.
Viewing the dual numbers as the vector space R2, we can represent multiplication
by ε as a 2× 2 matrix N. Multiplication by ε maps the basis {ε, 1} to {0,ε}, so in
vector notation we want N(1, 0) = (0, 0) and N(0, 1) = (1, 0). This is the matrix

N =
[

0 1
0 0

]
This matrix is the simplest example of a nilpotent matrix:

Definition 6.4. A square matrix N is nilpotent if some power of N is the zero matrix.

Here we have N2 = 0, mirroring the fact that ε2 = 0. We can view the dual
numbers as the ring of all polynomial expressions in N.
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Example 6.5. If the matrix N acts exactly like ε, then we should be able to differen-
tiate using N. Indeed, again taking f (x) = x3,

f (I + N) =
([

1 0
0 1

]
+

[
0 1
0 0

])3

=
[

1 0
0 1

]
+ 3

[
0 1
0 0

]
= f (1) I + f ′(1) N

This calculation agrees with that of example 6.3, with ε replaced by N.

In general, equation 6.1 takes the matrix form

f (aI + N) = f (a) I + f ′(a) N (6.2)

where N is any nilpotent matrix that acts like ε. In other words, N can be any
square matrix with N2 = 0.

Rational canonical form

In both of the preceding examples, we could view the ring of polynomials modulo
p(x) as a 2-dimensional vector space with basis {x, 1}. In both of these rings, x2 was
a linear combination of these basis elements, allowing us to reduce higher powers
of x to an expression in x and 1.

In general, when p(x) is a polynomial of degree n, the distinct elements of
F[x]/p(x)F[x] are the possible remainders under division by p. Our ring is now
an n-dimensional vector space with basis {xn−1, . . . , x, 1}. In this ring, xn is a linear
combination of these basis elements, allowing us to reduce higher powers of x to
an expression in xn−1, . . . , x, 1. For some coefficients cn−1, . . . , c1, c0 we have

xn ≡ cn−1xn−1 + . . . + c1x1 + c0 mod p(x)

This would not change if we replace p by any nonzero multiple of itself, so we
might as well take p to be the monic polynomial

p(x) = xn − cn−1 xn−1 − . . . − c1 x − c0

We can represent multiplication by x as an n× n matrix A. Multiplication by x
maps the basis {xn−1, . . . , x, 1} to

{ cn−1xn−1 + . . . + c1x + c0, xn−1, . . . , x }
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Example 6.6. If
p(x) = x3 − ax2 − bx− c

then multiplication by x maps the basis {x2, x, 1} to {ax2 + bx + c, x2, x}. Let e1 =
(1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), as usual. In vector notation we want
Ae1 = (a, b, c), Ae2 = e1, and Ae3 = e2. This is the matrix

A =

 a 1 0
b 0 1
c 0 0


This matrix is in rational canonical form. An arbitrary square matrix is similar to a
block diagonal matrix with blocks of this form.

Definition 6.7. A matrix A is in rational canonical form1 if it has the form

A =


cn−1 1 . . . 0

...
...

. . .
...

c1 0 . . . 1
c0 0 . . . 0


in which case we say that A is the companion matrix of the polynomial

p(x) = xn − cn−1xn−1 − . . .− c1x− c0

The matrix A constructed in example 6.6 acts like x mod p(x), so it will be
the case that p(A) = 0. However, we would like to be able to see directly that
for any matrix A which is the companion matrix of a polynomial p(x), we have
p(A) = 0. There is a pattern to powers of A that could be used to show this, writing
A = P + N for a nilpotent matrix N, but the pattern isn’t particularly illuminating.

The simplest way to proceed is to argue that such an A is the same matrix that
we would get by following the above construction, so of course p(A) = 0. This
is correct reasoning, but it begs the question of whether we really understand the
above construction. A lot of math gets built quickly this way, so to learn to sketch
new theories one should get the hang of thinking like this. At same time, we always
want to be able to extract an explicit argument from such reasoning.

The following argument is essentially this idea, but spelled out with no mention
of the ring F[x]/p(x)F[x]:

Proposition 6.8. If a matrix A is the companion matrix of the polynomial p(x), then
p(A) = 0.

1There are many versions of rational canonical form in use, varying with the sign convention for
the coefficients of p, the order of the basis {xn−1 , . . . , x, 1}, and whether or not one transposes to ob-
scure the meaning of the columns. We have chosen a form that agrees with the prevailing convention
for writing nilpotent matrices and Jordan canonical form.
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Proof. We give a proof for the 3× 3 case; the proof for n× n matrices is the same.
Let A be the companion matrix

A =

 a 1 0
b 0 1
c 0 0


of the polynomial

p(x) = x3 − ax2 − bx− c

We want to show that p(A) = 0.
We have the progression

e3
A7−→ e2

A7−→ e1
A7−→ ae1 + be2 + ce3

1 x x2 x3

so

(A3 − a A2 − b A− c I) e3 = (ae1 + be2 + ce3)− ae1 − be2 − ce3 = 0

In other words, the matrix

p(A) = A3 − a A2 − b A − c I

maps e3 to zero.
What about e2 and e1, joining the class late? We have

e2 = A e3 and e1 = A2 e3

so
p(A) e2 = p(A) A e3 = A p(A) e3 = 0
p(A) e1 = p(A) A2 e3 = A2 p(A) e3 = 0

Since p(A) maps the basis {e1, e2, e3} to zero, it must be the zero matrix.

So far, the flow of ideas has been to interpret algebras such as the field C first as
modular polynomial arithmetic, then as all polynomial expressions in a matrix. We
have now reversed this flow. Starting with a matrix A in rational canonical form,
we have interpreted the ring of polynomial expressions in A as modular polyno-
mial arithmetic. Doing this for any square matrix A is the subject of chapter 7.
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A geometric interpretation

When a polynomial p factors into distinct linear factors, there is a close connection
between arithmetic mod p(x) and the set of roots of p. Namely, a polynomial is
equivalent to zero mod p(x) if and only if it vanishes on the roots of p. It follows
that two polynomials are equivalent mod p(x) if and only if they have the same
values on the roots of p.

Theorem 6.9. Let f and p be polynomials in x with coefficients in the field F, and suppose
that p factors as

p(x) = (x− a1) · · · (x− ad)

where the roots a1, . . . , ad are distinct. Then f (x) ≡ 0 mod p(x) if and only if

f (a1) = . . . = f (ad) = 0

Proof. If f (x) ≡ 0 mod p(x) then f is a multiple of p, so f (ai) = 0 for each root ai
of p.

Conversely, suppose that f (ai) = 0 for each root ai of p. For any element a of F
and for any polynomial g(x) with coefficients in F we have

g(a) = 0 ⇔ (x− a) | g(x)

This part of the argument works for coefficients in any ring; dividing x − a into
g(x) by long division yields a remainder of g(a), so x− a divides g(x) if and only
if g(a) = 0.

Applying this to f (a1) = 0, write

f (x) = (x− a1) g(x)

Substituting x = a2, we have

f (a2) = (a2 − a1) g(a2) = 0 (6.3)

Because a1 6= a2, it follows that g(a2) = 0, so (x − a2) divides g. Continuing by
induction, we can write

f (x) = (x− a1) (x− a2) · · · (x− ad) h(x)

so f is a multiple of p. Therefore f (x) ≡ 0 mod p(x).

Equation 6.3 is the crux of this argument. Our reasoning actually works for co-
efficients in an integral domain, a ring in which the product of any two nonzero
elements is nonzero. Soon, we will be tempted to view a1 and a1 +ε as distinct val-
ues and apply theorem 6.9. We can’t; the ring of dual numbers is the poster child
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for a ring that isn’t an integral domain, because ε is nonzero but ε2 is zero. How-
ever, the spirit of this idea points us in the right direction. What we can do instead
is to consider the coefficient of ε in various dual number expressions, analogous to
considering the imaginary part of a complex number.

Working mod p(x) is adopting the stance that the domain of our polynomials is
the set of roots of p. We’re taking p itself to be zero because p is zero on these roots.
Two polynomials g and h may disagree on some elements of R other than these
roots, but we’re adopting the stance that we don’t care about any other elements of
R. As long as g and h are the same function when restricted to the roots of p, to us
they are the same function.

This point of view is the beginning of a subject called algebraic geometry. There,
one studies systems of polynomial equations in many variables, both in terms of
the geometry of the solution sets, and in terms of the algebra modulo the defin-
ing equations. Again, this is taking the stance that the solution sets are the do-
mains of the polynomials, as if all other points don’t even exist. This turns out to
be a powerful idea. Around the same time that painting went abstract, so did alge-
braic geometry. Somebody flipped a switch, and suddenly all of the ambient spaces
were gone, leaving just bare point sets, curves and surfaces to study by themselves.
We’re flipping this switch by working modulo p(x).

When two roots of p come together, say a1 and a2, theorem 6.9 requires modifi-
cation. The condition f (a1) = 0 insures that x− a1 divides f , but it is not enough to
insure that (x− a1)2 divides f . It takes d conditions to determine whether f (x) ≡ 0
mod p(x). When a1 and a2 come together, we have lost a condition, which we re-
cover as the condition f ′(a1) = 0.

Proposition 6.10. Let f (x) be a polynomial in x with coefficients in a field F. If a is a root
of the polynomial f (x), then a is a repeated root of f (x) if and only if a is also a root of
f ′(x).

Proof. Write f (x) = (x− a)g(x). Then a is a repeated root of f (x) if and only a is a
root of g(x). By the product rule,

f ′(x) = g(x) + (x− a) g′(x)

so f ′(a) = g(a).

Example 6.11. If
f (x) = (x−a)2 (x−b) (x−c)

then

f ′(x) = 2 (x−a) (x−b) (x−c) + (x−a)2 (x−c) + (x−a)2 (x−b)

Because a is a repeated root of f (x), differentiating once cannot rid f of the factor
(x− a).
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This pattern reappears throughout this chapter. Working over the field R,
knowing f (a1) and f ′(a1) is pretty much the same information as knowing f (a1)
and f (a2) when a1 and a2 are close; we can use f ′(a1) to estimate f (a2). However,
this pattern holds for any field, including fields where we cannot reason analyti-
cally. We can work with an arbitrary field F by using the ring of dual numbers.

Proposition 6.12. Let f and p be polynomials in x with coefficients in the field F, and
suppose that p factors as

p(x) = (x− a1)2 (x− a3) · · · (x− ad)

where the roots a1, a3, . . . , ad are distinct. Then f (x) ≡ 0 mod p(x) if and only if

f (a1) = f ′(a1) = f (a3) = . . . = f (ad) = 0 (6.4)

Proof. If f (x) ≡ 0 mod p(x), then f is a multiple of p. We work with the values

a1, a1 +ε, a3, . . . , ad (6.5)

Note that working modulo ε2,

p(a1 +ε) = ε2 (a1 +ε− a3) · · · (a1 +ε− ad) = 0

Therefore p(x) vanishes on each of the values 6.5, so we have

f (a1) = f (a1 +ε) = f (a3) = . . . = f (ad) = 0

Since f (a1 +ε) = f (a1) +ε f ′(a1), we get the condition f ′(a1) = 0.
Conversely, suppose that the conditions 6.4 hold. From f (a1) = f ′(a1) = 0 we

get f (a1 +ε) = 0. Write
f (x) = (x− a1) g(x)

where g is the quotient of f under division by x− a1. Then

f (a1 +ε) = (a1 +ε− a1) g(a1 +ε) = ε (g(a1) +ε g′(a1)) = ε g(a1) = 0

This is identically zero as an expression in the ring of dual numbers, so the coeffi-
cient g(a1) of ε must be zero. Therefore, x− a1 divides g(x), so x− a1 divides f (x)
twice. It follows that f is a multiple of p, so f (x) ≡ 0 mod p(x).

We could have instead used proposition 6.10 here. We applied the ring of dual
numbers to illustrate their use; they will appear again.

6.2 Polynomial interpolation

A polynomial of degree < d is determined by its values at d distinct points. There is
a steep, direct assault on this statement using the Vandermonde matrix, and a clever
way to sidestep its complexity using Lagrange interpolation.
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The Vandermonde matrix

Proposition 6.13. Let a1, . . . , ad be distinct values in the field F. There is a unique poly-
nomial of degree < d

f (x) = cd−1xd−1 + . . . + c1x + c0

determined by the values f (a1), . . . , f (ad).

Proof. The coefficients of f (x) are determined by the system of equations

ad−1
1 ad−2

1 . . . a1 1

ad−1
2 ad−2

2 . . . a2 1
...

...
...

...

ad−1
d−1 ad−2

d−1 . . . ad−1 1

ad−1
d ad−2

d . . . ad 1





cd−1

cd−2

...

c1

c0


=



f (a1)

f (a2)
...

f (ad−1)

f (ad)


(6.6)

where the ith row is the equation

cd−1 ad−1
i + cd−2 ad−2

i + . . . + c1 ai + c0 = f (ai)

Let A denote the coefficient matrix of this system of equations. A matrix of this
form is called a Vandermonde matrix. We will show that A has the determinant

det(A) = ∏
i< j

(ai − a j) (6.7)

It follows that this system of equations has a unique solution whenever each ai −
a j 6= 0.

It is a worthy exercise to deduce equation 6.7 directly by induction. However,
there is also an argument using modular arithmetic. Let g be the polynomial given
by the right hand side of equation 6.7, where we take a1, . . . , ad to be variables:

g(a1, . . . , ad) = ∏
i< j

(ai − a j)

Consider the term of g obtained by taking the product of the first variables in each
factor,

g(a1, . . . , ad) = ad−1
1 ad−2

2 · · · ad−1 + . . .

We recognize this term as the product of the diagonal entries of A, so it is also a
term of det(A), viewed as a polynomial in a1, . . . , ad:

det(A) = ad−1
1 ad−2

2 · · · ad−1 + . . .
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The polynomials g and det(A) are each homogeneous of degree(
d
2

)
= (d− 1) + (d− 2) + . . . + 1

so if g divides det(A), they must be the same polynomial.
We now work modulo ai − a j. If we substitute ai = a j in the matrix A, then the

ith and jth rows of A become the same, so

det(A) ≡ 0 mod ai − a j

Therefore det(A) is a multiple of ai − a j for each i < j, so g divides det(A).

Example 6.14. Let d = 3, and let a, b, c be values in F. Then

A =

a2 a 1
b2 b 1
c2 c 1


and

(a− b)(a− c)(b− c) = a2b + b2c + ac2 − a2c− ab2 − bc2 = det(A)

Notice that of the eight possible terms in this product, two are abc− abc, leaving
the six shown.

When two points come together, say a1 and a2, the determinant of A vanishes
and we can no longer solve for the polynomial f using the system of equations
6.6. In other words, f is no longer determined by its values at a1, a2, . . . , ad because
the value at a1 = a2 is only useful once; we need another value. However, the
polynomial f is determined by these values and the derivative f ′(a1).

To find the polynomial f (x) determined by the values

f (a1), f ′(a1), f (a3), . . . , f (ad) (6.8)

we want to solve the system of equations
ad−1

1 . . . a2
1 a1 1

(d−1)ad−2
1 . . . 2a1 1 0

ad−1
3 . . . a2

3 a3 1
...

...
...

ad−1
d . . . a2

d ad 1




cd−1

...
c2
c1
c0

 =


f (a1)
f ′(a1)
f (a3)

...
f (ad)

 (6.9)

where the second row is the equation

(d− 1) cd−1 ad−2
1 + . . . + 2 c2 a1 + c1 = f ′(a1)
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We can use dual numbers to understand this matrix. Working modulo ε2, we
can transform 6.6 into 6.9 by substituting a2 = a1 +ε, applying equation 6.1, sub-
tracting the first row from the second, and factoring out an ε from the second row.

Making this same substitution into g yields

g(a1, a1 +ε, a3, . . . , ad) = ε
∂g
∂a2

(a1, a1, a3, . . . , ad)

because g(a1, a1, a3, . . . , ad) vanishes. Writing this out, we have

∏
i< j

(ai − a j) = (a1 − (a1 +ε))
d

∏
j=3

(a1 − a j)((a1 +ε)− a j) ∏
3≤i< j≤d

(ai − a j)

= −ε
d

∏
j=3

(a1 − a j)2
∏

3≤i< j≤d
(ai − a j)

Making this substitution into det(A) yields∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ad−1
1 . . . a2

1 a1 1

(a1+ε)d−1 . . . (a1+ε)2 a1+ε 1

ad−1
3 . . . a2

3 a3 1
...

...
...

...

ad−1
d . . . a2

d ad 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ad−1
1 . . . a2

1 a1 1

(d−1)ad−2
1 . . . 2a1 1 0

ad−1
3 . . . a2

3 a3 1
...

...
...

...

ad−1
d . . . a2

d ad 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
following the same steps that transform 6.6 into 6.9.

Comparing these equivalences, we see that the determinant of the system of
equations 6.9 is nonzero whenever a1, a3, . . . , ad are distinct values, so the polyno-
mial f (x) is uniquely determined by the values 6.8. The general case follows the
same pattern.

We could be forgiven for expecting proposition 6.13 to be useless in the situa-
tion where the value a1 repeats. However, the ring of dual numbers provides us
with a device for viewing the repeated value a1 as the two distinct values a1 and
a1 +ε, allowing us to apply proposition 6.13 after all. Intuitively, the two values a1
and a1 +ε are right next to each other, differing infinitesimally by ε. We have re-
placed differentiation with algebra2. In algebraic geometry, one generalizes this idea
to model multiplicities of higher dimensional sets, as an algebraic counterpart to
multivariable calculus.

We will see a version of this phenomenon in chapter 7. Ordinarily, a function
applied to a matrix is determined by its values at the eigenvalues of the matrix. How-
ever, when two eigenvalues come together, we also need to consider the derivative
at the repeated eigenvalue. This is parallel to polynomial interpolation; our decom-
position of the matrix will sprout a nilpotent matrix playing the role of ε here.

2Few mathematicians see this as an even trade, but there are plenty of takers on both sides.
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Lagrange interpolation

The complexity of the Vandermonde matrix is due to the fact that while

{xd−1, xd−2, . . . , x, 1}

may be the obvious choice of a basis for the polynomials of degree < d, it is poorly
adapted to the problem of interpolating polynomials from their values. We would
be much happier if the Vandermonde matrix were a diagonal matrix, but it isn’t.

The idea of Lagrange interpolation is to choose a basis for the polynomials of
degree < d that diagonalizes the problem of interpolating polynomials from their
values. Indeed, the method is so simple that none of these big words are necessary;
one can apply this method knowing next to nothing3. The virtue of understanding
Lagrange interpolation in the language of linear algebra is that it represents a com-
mon pattern we want to reapply. Whenever possible, it pays to find a basis that
diagonalizes the problem one is studying.

Example 6.15. Let f (x) be the degree two polynomial determined by the values
f (a), f (b), and f (c). Then

f (x) = f (a)
(x− b)(x− c)
(a− b)(a− c)

+ f (b)
(x− a)(x− c)
(b− a)(b− c)

+ f (c)
(x− a)(x− b)
(c− a)(c− b)

It is clear by inspection that this expression yields the desired values; substituting
x = a, b or c, all but one quotient vanishes, and the remaining quotient cancels out
to 1. We have expressed the polynomial f (x) in Lagrange form.

Conceptually, we have chosen the basis

g1(x) =
(x− b)(x− c)
(a− b)(a− c)

, g2(x) =
(x− a)(x− c)
(b− a)(b− c)

, g3(x) =
(x− a)(x− b)
(c− a)(c− b)

for the space of polynomials of degree < 3. Now, any such polynomial can be
expressed as a linear combination of g1, g2, and g3. We want to solve for r1, r2, and
r3 in the system of equations

r1 g1(a) + r2 g2(a) + r3 g3(a) = f (a)
r1 g1(b) + r2 g2(b) + r3 g3(b) = f (b)
r1 g1(c) + r2 g2(c) + r3 g3(c) = f (c)

3I remember thinking of Lagrange interpolation in high school, only to be gently scolded by my
teacher that this was not a new idea. While some math students worry about when they will start to
do original work, one generally starts to think of new ideas long after the distinction stops mattering.
It is simply fun to think of things for oneself.
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However, this leads to the matrix equation1 0 0
0 1 0
0 0 1

 r1
r2
r3

 =

 f (a)
f (b)
f (c)


from which we can simply read off the solution.

6.3 Interpolation mod p(x)

Suppose that the polynomial p(x) factors into the linear factors

p(x) = (x− a1) · · · (x− ad)

for distinct roots a1, . . . , ad, and that we are working modulo p(x). Then all of the
results of this chapter are applicable. This is the setting that most closely resembles
working with a diagonalizable matrix A.

Now, any polynomial f (x) is equivalent mod p(x) to a polynomial of degree
< d, so any polynomial f (x) can be interpolated from its values f (a1), . . . , f (ad).

Example 6.16. Let
p(x) = (x− 2)(x− 3)(x− 4)

Then f (x) = xk can be interpolated mod p(x) from its values at the roots 2, 3, and
4. By Lagrange interpolation,

xk ≡ 2k (x−3)(x−4)
(2−3)(2−4)

+ 3k (x−2)(x−4)
(3−2)(3−4)

+ 4k (x−2)(x−3)
(4−2)(4−3)

mod p(x)

This polynomial is the unique degree < 3 polynomial determined by the values
f (2) = 2k, f (3) = 3k, and f (4) = 4k. On the other hand, f is equivalent mod p to
its remainder under division by p, which is a polynomial of degree < 3. Therefore,
f (x) is this polynomial.

Recall the geometric interpretation of polynomial modular arithmetic. In the
above example, only the values 2, 3, and 4 matter. Working mod p(x), our domain
is the set {2, 3, 4}, as if the rest of our field F isn’t even there. As soon as we have
found a function that agrees with f on this domain, we have found f .

In fact, the distinction between polynomials and other functions breaks down
when our domain is a finite set; any function is equivalent mod p(x) to a polyno-
mial of degree < d, which can be found by Lagrange interpolation from its values
on the roots of p.

In particular, f can be a function of several variables, where the domain of one
of the variables is the set of roots of p.
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Example 6.17. Let f (x, t) = ext be the exponential function, and again take

p(x) = (x− 2)(x− 3)(x− 4)

Working mod p(x), the function f has the form

f : {2, 3, 4} ×R→ R

By Lagrange interpolation, we have

ext = e2t (x−3)(x−4)
(2−3)(2−4)

+ e3t (x−2)(x−4)
(3−2)(3−4)

+ e4t (x−2)(x−3)
(4−2)(4−3)

(6.10)

In other words, f is equivalent mod p(x) to the polynomial determined by the list
of functions e2t, e3t, e4t.

When a polynomial vanishes at all but one value in the domain {2, 3, 4}, mul-
tiplying that polynomial by x mod p(x) is multiplication by the remaining value:

x (x−3)(x−4) = 2 (x−3)(x−4) + (x−2)(x−3)(x−4)
≡ 2 (x−3)(x−4) mod p(x)

x (x−2)(x−4) ≡ 3 (x−2)(x−4) mod p(x)
x (x−2)(x−3) ≡ 4 (x−2)(x−3) mod p(x)

Therefore,

xext = x
(

e2t

2
(x−3)(x−4) − e3t (x−2)(x−4) +

e4t

2
(x−2)(x−3)

)
= e2t (x−3)(x−4) − 3e3t (x−2)(x−4) + 2e4t (x−2)(x−3)

= ∂

∂t ext

Thus, our expression for ext satisfies the differential equation ∂

∂t ext = xext.
Let B be the matrix

B =

2 0 0
0 3 0
0 0 4


Because B is a diagonal matrix, it acts like the three numbers which are its diagonal
entries. These numbers do not interact with each other. In particular, any function
of B is simply that function applied to the diagonal entries of B. Therefore,

f (B, t) = eBt =

e2t 0 0
0 e3t 0
0 0 e4t
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On the other hand, we have

p(B) =

p(2) 0 0
0 p(3) 0
0 0 p(4)

 = 0

so the ring of polynomial expressions in B behaves like polynomials in x mod p(x).
Substituting the matrix B for the variable x in equation 6.10, we get

eBt = e2t (B−3I)(B−4I)
(2−3)(2−4)

+ e3t (B−2I)(B−4I)
(3−2)(3−4)

+ e4t (B−2I)(B−3I)
(4−2)(4−3)

= e2t

1 0 0
0 0 0
0 0 0

 + e3t

0 0 0
0 1 0
0 0 0

 + e4t

0 0 0
0 0 0
0 0 1

 =

e2t 0 0
0 e3t 0
0 0 e4t


which agrees with our first answer.

Now let A be the matrix 3 −1 1
−1 3 1
−1 1 3

 =

1 1 0
1 1 1
0 1 1

 2 0 0
0 3 0
0 0 4

  0 1 −1
1 −1 1
−1 1 0


A C B C−1

It is also the case that p(A) = 0, because A is similar to B:

p(A) = p(CBC−1) = C p(B) C−1 = 0

Therefore, the ring of polynomial expressions in A also behaves like polynomials
in x mod p(x). Substituting the matrix A for the variable x in equation 6.10, we get

eAt = e2t (A−3I)(A−4I)
(2−3)(2−4)

+ e3t (A−2I)(A−4I)
(3−2)(3−4)

+ e4t (A−2I)(A−3I)
(4−2)(4−3)

= e2t

0 1 −1
0 1 −1
0 0 0

 + e3t

1 −1 1
1 −1 1
1 −1 1

 + e4t

 0 0 0
−1 1 0
−1 1 0


which can be checked by expanding out eAt = C eBt C−1.

To apply this method for computing matrix exponentials, it is not necessary
to find an explicit similarity to a diagonal matrix with distinct entries, as we had
available here. To use Lagrange interpolation, all we need is a polynomial p(x)
with distinct roots such that p(A) = 0. If such a polynomial exists, then there are a
variety of ways to find one, and all are fair game.
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Example 6.18. Let A be the matrix

A =
[

2 1
2 3

]
Emboldened by the previous example, we go looking for a polynomial p(x) such
that p(A) = 0. Taking a few powers of A, we have

A0 =
[

1 0
0 1

]
, A1 =

[
2 1
2 3

]
, A2 =

[
6 5

10 11

]
These powers of A are linearly dependent;[

6 5
10 11

]
= 5

[
2 1
2 3

]
− 4

[
1 0
0 1

]
picking the coefficient 5 to get the off-diagonal entries to work, then the coefficient
−4 to get the diagonal entries to work. Thus

A2 − 5 A + 4 I = 0

In other words, p(A) = 0 for the polynomial p(x) given by

p(x) = x2 − 5x + 4 = (x− 1)(x− 4)

which has distinct roots. By Lagrange interpolation we have

f (x) ≡ f (1)
(x− 4)
(1− 4)

+ f (4)
(x− 1)
(4− 1)

mod p(x)

for any function f (x). For the exponential function f (x, t) = ext this yields

eAt = et (A− 4 I)
(1− 4)

+ e4t (A− I)
(4− 1)

=
et

3

[
2 −1
−2 1

]
+

e4t

3

[
1 1
2 2

]
We can check our work by confirming that eAt |t=0 = I and ∂

∂t eAt |t=0 = A.

Example 6.19. Let As be the matrix

As =
[

2 1
0 2 + s

]
and let A = A0. We can think of As is a parametrized family of matrices, with
parameter s. Intuitively, As is a movie, animating a deformation of the matrix A as s
moves away from zero. We want to understand the limit for s near zero. Physicists
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ponder the first moments of the universe, just after the big bang. As algebraists, we
instead ponder life modulo s2.

We look for a polynomial p(x) such that p(As) = 0. We have

A0
s =

[
1 0
0 1

]
, A1

s =
[

2 1
0 2 + s

]
, A2

s =
[

4 4 + s
0 (2 + s)2

]
These powers of As are linearly dependent;[

4 4 + s
0 (2 + s)2

]
= (4+s)

[
2 1
0 2 + s

]
− (4+2s)

[
1 0
0 1

]
picking the coefficient 4 + s to get the off-diagonal entries to work, then the coeffi-
cient 4 + 2s to get the diagonal entries to work. Thus

A2
s − (4+s) As + (4+2s) I = 0

In other words, p(As) = 0 for the polynomial p(x) given by

p(x) = x2 − (4+s) x + (4+2s) = (x− 2)(x− (2+s))

which has the distinct roots 2 and 2 + s when s 6= 0. At s = 0 the root 2 repeats,
and

p(x) |s=0 = (x− 2)2

By Lagrange interpolation we have

f (x) ≡ f (2)
(x− (2+s))
(2− (2+s))

+ f (2+s)
(x− 2)

((2+s)− 2)

≡ − f (2)
s

(x− (2+s)) +
f (2+s)

s
(x− 2)

≡ f (2) +
f (2+s)− f (2)

s
(x− 2) mod p(x)

for any function f (x). Taking the limit as s→ 0 gives us

f (x) ≡ f (2) + f ′(2)(x− 2) mod (x− 2)2 (6.11)

For the exponential function f (x, t) = ext this yields

ext ≡ e2t + te2t (x− 2) mod (x− 2)2

For this formula we have

∂

∂t ext = 2 e2t + (x− 2) e2t + 2 te2t (x− 2) = x e2t + 2 te2t (x− 2)
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and
x ext = x e2t + x te2t (x− 2)

Using
x(x− 2) ≡ 2(x− 2) mod (x− 2)2

we see that ext satisfies the differential equation ∂

∂t ext = xext. Substituting A for x
gives the formula

eAt = e2t
[

1 0
0 1

]
+ te2t

[
0 1
0 0

]
The ring of polynomial expressions in A behaves like polynomials in x mod
(x− 2)2, so we have already checked this formula. We found this formula by de-
formation, using the parameter s to jiggle the entries of A a bit so that we could
apply Lagrange interpolation.

Taking limits is an analytic process available to us for the fields R and C, but
not necessarily for other fields. Again, algebraic geometry provides tools for mak-
ing continuity arguments over arbitrary fields. The ring of dual numbers is the
simplest incarnation of this approach. Rather than taking a limit to find equation
6.11, we can work mod s2, mimicking the relation ε2 = 0. Clearing denominators
in Lagrange interpolation to avoid division, we have

s f (x) = − f (2)(x− (2+s)) + f (2+s)(x− 2)

≡ s
(

f (2) + f ′(2)(x− 2)
)

mod s2

Canceling s recovers equation 6.11 for any field.
Canceling s is the algebraic analog to taking the limit as s→ 0; these two points

of view meet up in the calculus exercise

lim
s→0

s
s

= 1

Notice that all of the information in our equivalence is carried by the coefficents
of s, and would be lost if we substituted s = 0. The information is visible mod s2,
but not visible mod s. The polynomial s2 has zero twice as a root, so working mod
s2 we can view zero as two values, and capture the effect of working with distinct
values. This is the usual pattern, working with dual numbers.



Chapter 7

Functions of matrices

In this chapter, A will always denote a square n× n matrix representing the linear
map L : V → V, where V is an n-dimensional vector space over a field F. For
example, one can take F to either be the field of real numbers R, in which case
V = Rn, or the field of complex numbers C, in which case V = Cn. In order for
polynomials to have full sets of roots, it will sometimes be necessary to move from
R to C.

We consider the problem of computing functions f (A) of the matrix A, such as
the matrix exponential eAt used to solve systems of linear differential equations.
This problem is closely linked to the study of the eigenvalues and eigenvectors of A.

7.1 Polynomials and power series

The functions that we typically want to apply to matrices will either be polynomi-
als of the form

f (x) = cd xd + cd−1 xd−1 + . . . + c1 x + c0

or power series of the form

f (x) =
∞
∑
k=0

ck xk

with coefficients in our field F.
When f (x) is a polynomial, to compute f (A) for a square matrix A we substi-

tute A for the variable x

f (A) = cd Ad + cd−1 Ad−1 + . . . + c1 A + c0

yielding a matrix as the result. A formula for powers of the matrix A is helpful but
not essential.
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When f (x) is a power series, to compute f (A) for a square matrix A we again
substitute A for the variable x

f (A) =
∞
∑
k=0

ck Ak

yielding a matrix as the result. A formula for powers of the matrix A is now essen-
tial, until we develop better methods.

Our favorite power series are those for ex, cos(x) and sin(x), which are about
as user-friendly as power series can be, converging for all real numbers. In general,
the use of power series poses convergence issues. It turns out that for a square
matrix A, the value f (A) is determined by the value of f and possibly of some
of its derivatives at the eigenvalues of A, to be defined shortly. We ask that our
power series and their needed derivatives converge at the eigenvalues of A, and
give convergence issues no further thought.

Matrix Exponentials

The exponential function eat : R→ R can be defined by the power series expansion

eat =
∞
∑
k=0

(at)k

k!
(7.1)

and the other familiar properties of this function, such as

∂

∂t eat = aeat

follow from this definition, which is used to extend the exponential to a complex
function eat : C → C. We use this definition to extend the exponential to a matrix-
valued function eAt : R→ Rn2

with the corresponding property

∂

∂t eAt = AeAt

Example 7.1. Suppose that the matrix similarity A = CBC−1 is given to us, where
B is in as simple a form as possible: 1 1 0

−1 3 0
1 −1 3

 =

 1 0 0
1 1 0
0 1 1

  2 1 0
0 2 0
0 0 3

  1 0 0
−1 1 0

1 −1 1


A C B C−1

We would like to find the matrix exponential eAt of A.
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By multiplying out a few powers of B we find the formula

Bk =

2k k 2k−1 0
0 2k 0
0 0 3k


which can be proved by induction. Substituting Bk for a in equation 7.1 we get

eBt =
∞
∑
k=0

Bktk

k!
=

∞
∑
k=0

tk

k!

2k k 2k−1 0
0 2k 0
0 0 3k



=


∑

∞
k=0

2ktk

k! ∑
∞
k=0

k 2k−1tk

k! 0

0 ∑
∞
k=0

2ktk

k! 0

0 0 ∑
∞
k=0

3ktk

k!


=

e2t te2t 0
0 e2t 0
0 0 e3t


Changing back to our original coordinates, we get

eAt = C eBt C−1 =

 1 0 0
1 1 0
0 1 1

 e2t te2t 0
0 e2t 0
0 0 e3t

  1 0 0
−1 1 0

1 −1 1


=

e2t − te2t te2t 0
−te2t e2t + te2t 0

e3t − e2t e2t − e3t e3t


This answer is both hard on the eyes, and needlessly tedious to multiply out.

Its one virtue is that it could be burying a mistake a grader might never catch.
With a little preparation, we can put this answer in a much nicer form. Write B

as the linear combination

B = 2

1 0 0
0 1 0
0 0 0

 +

0 1 0
0 0 0
0 0 0

 + 3

0 0 0
0 0 0
0 0 1


so

eBt = e2t

1 0 0
0 1 0
0 0 0

 + te2t

0 1 0
0 0 0
0 0 0

 + e3t

0 0 0
0 0 0
0 0 1
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Now write

A1 = C

1 0 0
0 1 0
0 0 0

 C−1 =

 1 0 0
0 1 0
−1 1 0


N1 = C

0 1 0
0 0 0
0 0 0

 C−1 =

−1 1 0
−1 1 0

0 0 0


A2 = C

0 0 0
0 0 0
0 0 1

 C−1 =

 0 0 0
0 0 0
1 −1 1


The similarities I = CIC−1, A = CBC−1, Ak = CBkC−1, and eAt = CeBtC−1 can be
expanded in terms of A1, N1, and A2. We get

I = A1 + + A2

A = 2 A1 + N1 + 3 A2

Ak = 2k A1 + k 2k−1 N1 + 3k A2

eAt = e2t A1 + te2t N1 + e3t A2

(7.2)

This expresses the matrix exponential eAt as

eAt = e2t

 1 0 0
0 1 0
−1 1 0

 + te2t

−1 1 0
−1 1 0

0 0 0

 + e3t

 0 0 0
0 0 0
1 −1 1


Equations 7.2 are instances of the pattern

f (A) = f (2) A1 + f ′(2) N1 + f (3) A2

for the functions f (x) = 1, f (x) = x, f (x) = xk, and f (x) = ext. If we apply this
pattern to the function f (x) =

√
x, we get

√
A =

√
2 A1 +

1
2
√

2
N1 +

√
3 A2

This formula can be checked by squaring:(√
A

)2
=

(√
2 A1 +

1
2
√

2
N1 +

√
3 A2

)2

= 2 A1
2 +

1
2

(A1N1 + N1A1) + 3 A2
2

+
1
8

N1
2 +

√
3

2
√

2
(A2N1 + N1A2) +

√
6 (A1A2 + A2A1)

= 2 A1 + N1 + 3 A2 = A X
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We have noticed and used the relations

A1
2 = A1 A2

2 = A2 N1
2 = 0

A1N1 = N1A1 = N1 A2N1 = N1A2 = 0 A1A2 = A2A1 = 0

This example exhibits behavior typical of the general case of an n× n matrix A.

It would appear in this example that the values 2 and 3 and the matrices A1,
N1, and A2 play a fundamental role in the theory of functions of the matrix A. We
have found these values and matrices by ad hoc means, and that was only after
the similarity A = CBC−1 was handed to us on a silver platter. This similarity is
nontrivial to work out from scratch.

We would like to understand these values and matrices better, and work out
faster ways to compute them. That is the goal of this chapter.

Eigenvalues

Eigenvalues are key to finding matrix similarities such as the similarity A = CBC−1

used in example 7.1.

Definition 7.2. Let A be a square matrix. If

Av = λ v

for some scalar λ and nonzero vector v, then we say that λ is an eigenvalue of A,
with eigenvector v.

The matrix A acts on v like multiplication by λ. We can think of v as a “stretch
direction” for A, with stretching factor λ. Eigen is a German word, roughly sug-
gesting that these values belong to the matrix A.

In the simplest case, we can find n distinct eigenvalues λ1, . . . , λn for the matrix
A, and we can find n matrices A1, . . . , An such that

I = A1 + . . . + An
A = λ1 A1 + . . . + λn An

and we are able to compute the function f of A as

f (A) = f (λ1) A1 + . . . + f (λn) An

This is wonderful. Under function evaluation, the matrix A behaves like the list of
eigenvalues λ1, . . . , λn with the helper matrices A1, . . . , An divvying up the effect.

In exceptional cases which do arise in practice, eigenvalues can repeat, leaving
us with m < n distinct eigenvalues λ1, . . . , λm. We can find matrices A1, . . . , Am
and N such that

I = A1 + . . . + Am
A = λ1 A1 + . . . + λm Am + N
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where N is a nilpotent matrix; see definition 6.4. Here, N` = 0 for some ` bounded
by the multiplicity of the eigenvalue of A that repeats the most. One could imagine
that N is present in our first version of these formulas, but we have ` = 1 when
each eigenvalue of A occurs only once, so N is the zero matrix.

Now, the matrix N and some derivatives of f are involved in the computation
of f (A). For example, suppose that in the list λ1, . . . , λn of eigenvalues of A, the
eigenvalues λ1 and λ2 are the same. We say that λ1 = λ2 has multiplicity two, and
we work instead with the shorter list of distinct eigenvalues λ1, λ3, . . . , λn. Then

f (A) = f (λ1) A1 + f ′(λ1) N1 + f (λ3) A3 + . . . + f (λn) An (7.3)

where N1 = A1N. In other words, when λ1 occurs twice as an eigenvalue, we need
to know both f (λ1) and f ′(λ1) to compute f (A).

This is a frequently occurring pattern in mathematics, and it makes sense if we
imagine λ1 and λ2 moving together as real numbers, as we vary the matrix A. Once
these eigenvalues get close to each other, knowing f (λ1) and f ′(λ1) is pretty much
the same information as knowing f (λ1) and f (λ2); we can use f ′(λ1) to estimate
f (λ2). Once these eigenvalues come together, our original formula can break, but
its limit is our new formula, giving the correct answer.

It turns out that the matrix N1 is nilpotent, and

f (λ1) A1 + f ′(λ1) N1

is an instance of the pattern that we saw in equation 6.2. The matrix A1 is a piece of
the identity matrix I, and N1 is the corresponding piece of the nilpotent matrix N.

7.2 The characteristic polynomial

The characteristic polynomial pA of a square matrix A is the polynomial in x defined
by

pA(x) = det(xI−A) (7.4)

We are particularly interested in the roots of pA, which are those values λ such
that pA(λ) = 0. For these λ, we have

det(λI−A) = 0

so λI−A is a singular matrix, and we can find a nonzero vector v such that (λI−
A) v = 0. We have

(λI − A) v = 0 ⇔ A v = λ v
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In other words, if λ is a root of the polynomial pA, then λ is an eigenvalue of A, with
eigenvector v. If we can find a basis of eigenvectors for A, then A can be expressed
as a diagonal matrix in terms of this basis.

In general, the characteristic polynomial pA can have repeated roots, and we
may not be able to find a basis of eigenvectors for A. Nevertheless the matrix equa-
tion

pA(A) = 0

always holds. This identity is known as the Cayley-Hamilton theorem.
Many problems involving the matrix A can be solved either by diagonalizing

A if possible, or by applying the identity pA(A) = 0. Either way, understanding
pA is essential to working with the matrix A.

In this section, we develop formulas for computing the characteristic polyno-
mial pA.

2× 2 matrices

For the matrix

A =
[

a c
b d

]
we have

pA(x) =
∣∣∣∣x− a −c
−b x− d

∣∣∣∣ = x2 − (a + d) x + (ad− bc)

This yields the formula

pA(x) = x2 − trace(A) x + det(A) (7.5)

where trace(A) is the sum of the diagonal entries of A.
One systematic way to carry out this computation is to write[

x− a
−b

]
= x

[
1
0

]
−

[
a
b

]
[

x− c
−d

]
= x

[
0
1

]
−

[
c
d

]
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and to expand pA(x) by linearity in each column of the determinant:

pA(x) =
∣∣∣∣x− a −c
−b x− d

∣∣∣∣
= x

∣∣∣∣1 −c
0 x− d

∣∣∣∣ − ∣∣∣∣a −c
b x− d

∣∣∣∣
= x

(
x

∣∣∣∣1 0
0 1

∣∣∣∣ − ∣∣∣∣1 c
0 d

∣∣∣∣) − (
x

∣∣∣∣a 0
b 1

∣∣∣∣ − ∣∣∣∣a c
b d

∣∣∣∣)
=

∣∣∣∣1 0
0 1

∣∣∣∣ x2 −
(∣∣∣∣a 0

b 1

∣∣∣∣ +
∣∣∣∣1 c
0 d

∣∣∣∣) x +
∣∣∣∣a c
b d

∣∣∣∣
= x2 − (a + d) x +

∣∣∣∣a c
b d

∣∣∣∣
3× 3 matrices

For the matrix

A =

a d g
b e h
c f i


we have

pA(x) =

∣∣∣∣∣∣
x− a −d −g
−b x− e −h
−c − f x− i

∣∣∣∣∣∣
= x3 − (a + e + i) x2

+ ((ae− bd) + (ai− cg) + (ei− f h)) x
− (aei + b f g + cdh− a f h− bdi− ceg)

This yields the formula

pA(x) = x3 − trace(A) x2 + trace(∧2A) x − det(A) (7.6)

where

trace(∧2A) =
∣∣∣∣a d
b e

∣∣∣∣ +
∣∣∣∣a g
c i

∣∣∣∣ +
∣∣∣∣e h
f i

∣∣∣∣
is the sum of the diagonal 2× 2 minors of A.
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Again, one systematic way to carry out this computation is to writex− a
−b
−c

 = x

1
0
0

 −
a

b
c


 −d

x− e
− f

 = x

0
1
0

 −
d

e
f


 −g
−h

x− i

 = x

0
0
1

 −
g

h
i


and to expand pA(x) by linearity in each column of the determinant:

pA(x) =

∣∣∣∣∣∣
x− a −d −g
−b x− e −h
−c − f x− i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ x3 −

∣∣∣∣∣∣
a 0 0
b 1 0
c 0 1

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 d 0
0 e 0
0 f 1

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 0 g
0 1 h
0 0 i

∣∣∣∣∣∣
 x2

+

∣∣∣∣∣∣
a d 0
b e 0
c f 1

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a 0 g
b 1 h
c 0 i

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 d g
0 e h
0 f i

∣∣∣∣∣∣
 x −

∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣
= x3 − (a + e + i) x2 +

(∣∣∣∣a d
b e

∣∣∣∣ +
∣∣∣∣a g
c i

∣∣∣∣ +
∣∣∣∣e h
f i

∣∣∣∣) x −

∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣
The general case

Let ∧iA denote the matrix of all i× i minors of A. Then trace(∧iA) is the sum of the
diagonal i × i minors of A, which are those minors defined using the same rows
and columns of A. For example, if

A =

a d g
b e h
c f i
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then

∧2A =



∣∣∣∣a d
b e

∣∣∣∣ ∣∣∣∣a g
b h

∣∣∣∣ ∣∣∣∣d g
e h

∣∣∣∣∣∣∣∣a d
c f

∣∣∣∣ ∣∣∣∣a g
c i

∣∣∣∣ ∣∣∣∣d g
f i

∣∣∣∣∣∣∣∣b e
c f

∣∣∣∣ ∣∣∣∣b h
c i

∣∣∣∣ ∣∣∣∣e h
f i

∣∣∣∣


The 1× 1 minors of A are the entries of A, so ∧1A = A. The unique 3× 3 minor of
A is det(A), so ∧3A is a 1× 1 matrix whose sole entry is det(A). Thus

trace(∧1A) = trace(A)

trace(∧2A) =
∣∣∣∣a d
b e

∣∣∣∣ +
∣∣∣∣a g
c i

∣∣∣∣ +
∣∣∣∣e h
f i

∣∣∣∣
trace(∧3A) = det(A)

We can now rewrite our formula for pA(x) in the 3× 3 case as

pA(x) = x3 − trace(∧1A) x2 + trace(∧2A) x1 − trace(∧3A) x0

The general formula for the characteristic polynomial of an n× n matrix A fol-
lows this pattern; it is

pA(x) = xn +
n

∑
i=1

(−1)i trace(∧iA) xn−i (7.7)

where trace(∧iA) is the sum of the diagonal i × i minors of A. This formula can
be established by expanding pA(x) by linearity in each column of the determinant,
exactly as we did for n = 2 and n = 3.

7.3 Rings and fields

Roots of polynomial equations

Working with polynomials, we must contend with the fact that factorizations of
polynomials depend on the coefficients that we allow. For example, the polynomial
x2 − 2 can’t be factored into linear factors over the rational numbers Q, but it can
be factored over the real numbers R as

x2 − 2 = (x +
√

2) (x−
√

2)
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Similarly, x2 + 1 can’t be factored into linear factors over R, but it can be factored
over the complex numbers C as

x2 + 1 = (x + i) (x− i)

where i is the imaginary number
√
−1. Equivalently, the equation x2 + 1 = 0 has

no solutions in R, but it has the two solutions −i, i in C.
The fundamental theorem of algebra states that every polynomial in one variable

can be factored into linear factors over C. Equivalently, if f (x) is a degree d polyno-
mial with complex coefficients, then the equation f (x) = 0 always has d complex
solutions, where we count each solution as many times as the corresponding linear
factor appears in f (x). This is called counting with multiplicity. For example, the
degree four equation

x4 + x2 = (x + i) (x− i) (x− 0) (x− 0) = 0

has the four solutions −i, i, 0, 0 over C, where we count the solution 0 with multi-
plicity 2.

Our matrices typically have entries in either the integers Z, or in Q, R, or C. The
integers Z are an example of a ring, a number system in which one can’t always di-
vide. When we work with integer matrices, we do divide as necessary, moving to
the rational numbers Q when these divisions create fractions. A similar issue arises
in working with matrices with polynomial entries, where divisions can create ra-
tional functions.

Q, R, and C are examples of a field, a number system in which one can always
divide by any nonzero number. For most of the operations of linear algebra, we are
implicitly working over a field, even if our matrix entries start out in a smaller ring
contained in that field, and generally any field is as good as any other field.

C is an example of an algebraically closed field, a field over which every poly-
nomial in one variable can be factored into linear factors. In a course on modern
algebra, one proves that every field can be embedded in an algebraically closed
field, generalizing the fact that Q and R are contained in C.

To compute functions of matrices, we often end up working with matrices with
entries in an algebraically closed field, because we need the characteristic polyno-
mial pA to have a full set of roots. If A is an n × n matrix, then we want pA to
factor into n linear factors, so pA(x) = 0 has n solutions counted with multiplicity.
Starting with an integer, rational, or real matrix, it may be necessary to move to the
complex numbers to find all these roots.

Euler’s formula

We’re nearly out of the woods, working with real numbers: Every polynomial in
one variable with coefficients in R can be factored into linear and quadratic factors.
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In calculus one studies exponential and trigonometric functions, corresponding
to solutions to certain degree one and two differential equations. Ever wonder why
there isn’t some ornate theory that comes next, studying functions that correspond
to solutions to certain degree three differential equations? Because real polynomials
factor into linear and quadratic factors, we can reduce to the study of exponential
and trigonometric functions.

Over the complex numbers, we have Euler’s formula

eix = cos(x) + i sin(x) (7.8)

which can easily be established by comparing power series expansions. Because
complex polynomials factor into linear factors, we can reduce to the study of expo-
nential functions alone. Euler’s formula expresses how to reduce questions involv-
ing trigonometric functions to ones involving complex exponentials.

For example, what were the addition laws for sine and cosine again? We can
form the complex exponential

cos(a + b) + i sin(a + b) = ei(a+b)

= eia eib

= (cos(a) + i sin(a))(cos(b) + i sin(b))
= (cos(a) cos(b)− sin(a) sin(b))

+ i (cos(a) sin(b) + cos(b) sin(a))

and by taking real and imaginary parts, we get

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)
sin(a + b) = cos(a) sin(b) + cos(b) sin(a)

In general, Euler’s formula is a radical simplification of the trigonometric iden-
tities. One can understand Euler’s formula as factoring the Pythagorean trigono-
metric identity as a difference of squares:

cos2(x) + sin2(x) = (cos(x) + i sin(x)) (cos(x)− i sin(x))

= eixe−ix = 1

This approach really comes into its own for solving integration problems. Com-
puter programs for symbolic integration work over C in order to avoid the intrica-
cies of trigonometric integration; a broad swath of disparate integration problems
can be viewed uniformly as rational functions of matrix exponentials. Many people
also make this migration to C, with the same motivation.
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We are at a similar juncture in our study of linear algebra. One could develop a
complete theory of functions of real matrices without ever involving C, by reducing
matrices to 1× 1 and 2× 2 blocks corresponding to linear and quadratic factors of
pA(x). Instead, we choose to move to C as necessary, so a linear factorization is
always available. This leads to a simpler theory.

Taking this point of view, by far the most important function of a matrix A is
the matrix exponential eAt, which is used to solve systems of linear differential
equations. One can also compute trigonometric functions of matrices, but with the
availability of the complex numbers their importance is diminished. We again can
use Euler’s formula to reduce trigonometry to exponentiation:[

1 i
1 −i

] [
cos(x)
sin(x)

]
=

[
cos(x) + i sin(x)
cos(x)− i sin(x)

]
=

[
eix

e−ix

]
so [

cos(x)
sin(x)

]
=

[
1 i
1 −i

]−1 [
eix

e−ix

]
This leads in particular to the matrix identities

cos(At) = (eiAt + e−iAt)/2

sin(At) = (eiAt − e−iAt)/2i

which allow us to compute trigonometric functions of matrices in terms of matrix
exponentials.

In practice, many polynomials do factor into linear factors over R. We will gen-
erally choose examples where pA(x) factors over Z, while reserving the option to
move to R or C as necessary.

7.4 Diagonal and triangular forms

This will be a section on diagonal and triangular forms. Over an algebraically
closed field, a matrix whose characteristic polynomial has distinct roots is similar
to a diagonal matrix, and any matrix is similar to a triangular matrix.

7.5 The Cayley-Hamilton Theorem

It is a remarkable and useful fact that a square matrix A satisfies its own character-
istic polynomial. Namely,

pA(A) = 0
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In other words, if A is an n× n matrix and

pA(x) = xn + c1 xn−1 + . . . + cn−1 x + cn

then substituting the matrix A for the variable x yields the zero matrix:

An + c1 An−1 + ... + cn−1 A + cn I = 0 (7.9)

We often like to think of matrices as if they are single values, a kind of general-
ized number. Bearing in mind the caveats that order of multiplication matters, and
that there are many singular matrices in place of the unique number zero, much can
be learned about matrices by manipulating algebraic expressions involving matrix
values.

The significance of the Cayley-Hamilton theorem is that all computations in-
volving a matrix A can be viewed as taking place modulo pA. Using this result, we
will develop methods that make short work of typical eigenvalue problems such
as computing matrix exponentials.

A formula for the inverse

Equation 7.9 has many applications; one is to express the inverse of an invertible
matrix A as a polynomial in A. We have

cn = pA(0) = det(−A) = (−1)n det(A)

If cn 6= 0, then we can rewrite equation 7.9 as

cnI = − (An−1 + c1 An−2 + ... + cn−1 I) A

so

A−1 = − 1
cn

(An−1 + c1 An−2 + ... + cn−1 I) (7.10)

Example

Let

A =
[

2 1
2 3

]
By equation 7.5,

pA(x) = x2 − trace(A) x + det(A)

= x2 − (2 + 3) x + (2 · 3− 2 · 1)

= x2 − 5 x + 4
= (x − 1) (x − 4)
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so by equation 7.9,

pA(A) = A2 − 5 A + 4 I

=
[

2 1
2 3

]2

− 5
[

2 1
2 3

]
+ 4

[
1 0
0 1

]
=

[
6 5

10 11

]
−

[
10 5
10 15

]
+

[
4 0
0 4

]
=

[
0 0
0 0

]
and

pA(A) = (A − I) (A − 4 I)

=
([

2 1
2 3

]
−

[
1 0
0 1

]) ([
2 1
2 3

]
− 4

[
1 0
0 1

])
=

[
1 1
2 2

] [
−2 1

2 −1

]
=

[
0 0
0 0

]
and by equation 7.10,

A−1 = − 1
4

(A − 5 I)

=
1
4

(
−

[
2 1
2 3

]
+

[
5 0
0 5

])
=

[
3 −1
−2 2

]
/4

One confirms that

A A−1 =
[

2 1
2 3

] [
3 −1
−2 2

]
/4

=
[

1 0
0 1

]
= I

2× 2 matrices

One can confirm equation 7.9 by direct computation, for a general 2× 2 matrix. Let

A =
[

a c
b d

]
Then

pA

([
a c
b d

])
=

[
a c
b d

]2

− (a + d)
[

a c
b d

]
+ (ad− bc)

[
1 0
0 1

]
=

[
a2 + bc ac + cd
ab + bd bc + d2

]
−

[
a2 + ad ac + cd
ab + bd ad + d2

]
+

[
ad− bc 0

0 ad− bc

]
=

[
0 0
0 0

]
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Diagonal matrices

One can confirm equation 7.9 by direct computation, for a diagonal matrix. We
demonstrate using a 3× 3 diagonal matrix. Let

A =

a
b

c


Then

pA(x) =

∣∣∣∣∣∣
x− a

x− b
x− c

∣∣∣∣∣∣ = (x− a) (x− b) (x− c)

so

pA(A) = (A− aI) (A− bI) (A− cI)

=

a− a
b− a

c− a

 a− b
b− b

c− b

 a− c
b− c

c− c


=

pA(a)
pA(b)

pA(c)

 =

0
0

0


In general, any polynomial function of a diagonal matrix is the diagonal matrix

obtained by applying that function to each diagonal entry. Since pA(x) vanishes on
each diagonal entry of A, we have pA(A) = 0.

Triangular matrices

One can also confirm equation 7.9 by direct computation, for a triangular matrix.
We demonstrate using a 3× 3 triangular matrix. Let

A =

a d f
b e

c


Then

pA(x) =

∣∣∣∣∣∣
x− a −d − f

x− b −e
x− c

∣∣∣∣∣∣ = (x− a) (x− b) (x− c)

so

pA(A) = (A− aI) (A− bI) (A− cI)

=

0 d f
b− a e

c− a

 a− b d f
0 e

c− b

 a− c d f
b− c e

0
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The pattern of zeros here forces this product to be zero: Let ∗ denote a matrix entry
that is not known to be zero. Then we have the pattern

pA(A) =

0 ∗ ∗
∗ ∗
∗

 ∗ ∗ ∗0 ∗
∗

 ∗ ∗ ∗∗ ∗
0


=

0 ∗ ∗
∗ ∗
∗

 ∗ ∗ ∗0 0
0


=

0 0 0
0 0

0


Algebraically closed fields

If our field F is algebraically closed, then any matrix A is similar to a triangular
matrix B:

A = C B C−1

for some change of basis matrix C. If A and B are similar, then xI− A and xI− B
are similar, so they have the same determinant:

det(xI− B) = det(C(xI− B)C−1)

= det(xI− CBC−1)
= det(xI−A)

so pA(x) = pB(x). Because B is triangular, pB(B) = 0, so

pA(A) = pB(A) = pB(CBC−1) = C pB(B) C−1 = 0

This proves equation 7.9 when the field F is algebraically closed. Any field can be
embedded in an algebraically closed field, so this gives one method of proof for an
arbitrary matrix A.

Over an algebraically closed field, most matrices A are in fact similar to a diago-
nal matrix D. Intuitively, one can make any matrix diagonalizable by deforming its
entries a bit. More precisely, those n× n matrices that aren’t diagonalizable form a
lower dimensional set in the space of all n× n matrices. By reasoning like the above
argument, pA(A) is a function on this space that vanishes on diagonalizable matri-
ces, so it vanishes by continuity on all matrices. The details are straightforward for
the complex numbers, but require the tools of algebraic geometry for other fields.
We avoid these technicalities by working instead with triangular matrices.
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The general case

We now establish equation 7.9 by a systematic approach that works for any ma-
trix A, over any field F. The Cayley-Hamilton theorem in fact holds for matrices
defined over arbitrary commutative rings. We have only developed a theory of
bases when F is a field, but the following argument is quite general, and can be
adapted to the case where F is a ring. One sees this same argument as the lead-in
to Nakayama’s lemma, in any commutative algebra textbook.

We demonstrate the method using a 2× 2 matrix. Again let

A =
[

a c
b d

]
Let MA(x) be the matrix function

MA(x) = (xI−A)T =
[

x− a −b
−c x− d

]
The transpose does not change the determinant, so we have

det(MA(x)) = pA(x)

Therefore, if we multiply MA(x) by its adjoint, we obtain a diagonal matrix whose
entries are pA(x):[

x− d b
c x− a

] [
x− a −b
−c x− d

]
=

[
pA(x) 0

0 pA(x)

]
MA(x) creates a 2× 2 matrix of elements of the same form as x. If we substitute

a matrix for x, then M creates a 2× 2 matrix of matrices. In particular,

MA(A) =
[

A− aI −bI
−cI A− dI

]
=


[

a− a c
b d− a

][
−b 0
0 −b

]
[
−c 0
0 −c

][
a− d c

b d− d

]


Note that
[

a− a c
b d− a

][
−b 0
0 −b

]
[
−c 0
0 −c

][
a− d c

b d− d

]



[

1
0

]
[

0
1

]
 =


[

a− a
b− b

]
[

c− c
d− d

]
 =


[

0
0

]
[

0
0

]


Using e1 = (1, 0), e2 = (0, 1), we can write this more concisely as[
A− aI −bI
−cI A− dI

] [
e1
e2

]
=

[
Ae1 − ae1 − be2
Ae2 − ce1 − de2

]
=

[
0
0

]
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Now, multiply MA(A) by its adjoint:[
A− dI bI

cI A− aI

] [
A− aI −bI
−cI A− dI

]
=

[
pA(A) 0

0 pA(A)

]
Putting this together, we have[

pA(A) 0
0 pA(A)

] [
e1
e2

]
=

[
pA(A) e1
pA(A) e2

]
=

[
0
0

]
Since pA(A) maps the basis e1, e2 to 0, it must be the zero matrix.

7.6 Repeated roots

If the characteristic polynomial pA of a matrix A has repeated roots, then it may
not be possible to diagonalize A.

A 2× 2 example

Let V = R2 with the usual basis S = {e1, e2}. Let L : V → V be the linear map
represented in S coordinates by the matrix

L

A =
[

2 −4
1 6

]
S← S

Then
pA(x) = x2 − 8x + 16 = (x− 4)2

so A has the single eigenvalue λ = 4, with multiplicity two.
If A could be diagonalized, then it would be similar to the scalar matrix 4 I.

However, for any change of basis matrix C we have

C
[

4 0
0 4

]
C−1 = 4 C

[
1 0
0 1

]
C−1 =

[
4 0
0 4

]
6=

[
2 −4
1 6

]
In other words, scalar matrices aren’t similar to any other matrix, and A isn’t a
scalar matrix, so it can’t be diagonalized. Put differently, if L looks like multiplica-
tion by 4 in some coordinate system, then it looks like multiplication by 4 in every
coordinate system. The matrix A certainly doesn’t look like multiplication by 4,
so it cannot be diagonalized. This reasoning will apply whenever A has only one
eigenvalue.
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Let

B = A− 4 I =
[
−2 −4

1 2

]
B is indeed singular, as expected because pA(4) = 0. The nullspace of B is the
eigenspace of A with eigenvalue λ = 4. For A to have a basis of eigenvectors
v1, v2, this nullspace would have to have dimension two, so B would have to have
rank zero. However, only the zero matrix has rank zero. B is not the zero matrix, so
we again see that A cannot be diagonalized.

This means that we cannot find two linearly independent vectors v1, v2 such
that

v1
B−−→ 0, v2

B−−→ 0

However, by the Cayley-Hamilton theorem,

pA(A) = (A− 4 I)2 = B2 = 0

so B2 is the zero matrix, as we would have liked for B itself. We check this. Indeed,

B2 =
[
−2 −4

1 2

][
−2 −4

1 2

]
=

[
0 0
0 0

]
X

It would be nice if we could simply choose an arbitrary basis for the nullspace
of B2 and be done. However, S is already such a basis, and the appearance of A
isn’t exactly illuminating. We can do better.

The best we can do is to find a basis of vectors v1, v2 forming a chain

v2
B−−→ v1

B−−→ 0

In terms of such a basis T = {v1, v2} we have

Av1 = (4 I + B) v1 = 4 v1 + 0
Av2 = (4 I + B) v2 = 4 v2 + v1

allowing us to represent the linear map L in T coordinates by the matrix

L

E =
[

4 1
0 4

]
T ← T

This matrix E is in Jordan canonical form.
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Any vector v2 that is not in the nullspace of B will yield the desired chain. For
example, the standard basis vectors e1, e2 can’t both be in the nullspace of B, so we
try both of them:

e1 = (1, 0) B−−→ (−2, 1) B−−→ 0

e2 = (0, 1) B−−→ (−4, 2) B−−→ 0

We prefer the first chain; it leads to a simpler basis, with a change of basis matrix
having determinant 1. Had we balked at using either of these chains, we could
have chosen a nice solution to Bv1 = 0, and then solved Bv2 = v1.

We have found the basis T given by

v1 = (−2, 1), v2 = (1, 0)

Let C be the change of basis matrix with columns v1, v2. Then we have the change
of basis

L I L I[
2 −4
1 6

]
=

[
−2 1

1 0

] [
4 1
0 4

] [
0 1
1 2

]
S← S S← T T ← T T ← S

A C E C−1

We can expand E as the linear combination E = 4 I + N of the identity matrix
and a nilpotent matrix N [

4 1
0 4

]
= 4

[
1 0
0 1

]
+

[
0 1
0 0

]
Changing back to S coordinates, we expand

A = C E C−1 = C (4 I + N) C−1 = 4 C I C−1 + C N C−1

This gives us[
2 −4
1 6

]
= 4

[
−2 1

1 0

] [
1 0
0 1

] [
0 1
1 2

]
︸ ︷︷ ︸ +

[
−2 1

1 0

] [
0 1
0 0

] [
0 1
1 2

]
︸ ︷︷ ︸

= 4
[

1 0
0 1

]
+

[
−2 −4

1 2

]
expressing our original matrix A as the same linear combination of the identity
matrix and the nilpotent matrix B. Seeing that this is where we ended up, it would
seem that we could have skipped right to this step.
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Indeed, we have

A = C E C−1 ⇒ An = C En C−1

A = λ I + B ⇒ An = λn I + n λn−1 B

using B2 = 0. The first implication expands into the second, and either can be used
to compute functions of A: We have

En =
[

4 1
0 4

]n

=
[

4n n 4n−1

0 4n

]
= 4n

[
1 0
0 1

]
+ n 4n−1

[
0 1
0 0

]
so

An = 4n
[

1 0
0 1

]
+ n 4n−1

[
−2 −4

1 2

]



Chapter 8

Inner products

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos-
trud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

http://en.wikipedia.org/wiki/Lorem_ipsum
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